m B

Automation 6K Series
Command Reference

Effective: November 5, 1998

PORTANT

User Information

A WARNING A\

6K Series products are used to control electrical and mechanical
components of motion control systems. You should test your motion
system for safety under all potential conditions. Failure to do so can result
in damage to equipment and/or serious injury to personnel.

6K Series products and the information in this user guide are the proprietary property of Parker Hannifin Corporation or its licensers, and may
not be copied, disclosed, or used for any purpose not expressly authorized by the owner thereof.

Since Parker Hannifin constantly strives to improve all of its products, we reserve the right to change this user guide and software and
hardware mentioned therein at any time without notice.

In no event will the provider of the equipment be liable for any incidental, consequential, or special damages of any kind or nature
whatsoever, including but not limited to lost profits arising from or in any way connected with the use of the equipment or this user guide.

© 1998, Parker Hannifin Corporation
All Rights Reserved

Motion Planner and Servo Tuner are trademarks of Parker Hannifin Corporation.
Microsoft and MS-DOS are registered trademarks, and Windows, Visual Basic, and Visual C++ are trademarks of Microsoft Corporation.

Technical Assistance > Contact your local automation technology center (ATC) or distributor, or ...

North America and Asia: Europe (non-German speaking): Germany, Austria, Switzerland:
Compumotor Division of Parker Hannifin Parker Digiplan HAUSER Elektronik GmbH

5500 Business Park Drive 21 Balena Close Postfach: 77607-1720

Rohnert Park, CA 94928 Poole, Dorset Robert-Bosch-Str. 22

Telephone: (800) 358-9070 or (707) 584-7558 England BH17 7DX D-77656 Offenburg

Fax: (707) 584-3793 Telephone: +44 (0)1202 69 9000 Telephone: +49 (0)781 509-0
FaxBack: (800) 936-6939 or (707) 586-8586 Fax: +44 (0)1202 69 5750 Fax: +49 (0)781 509-176

e-mail: tech_help@cmotor.com
| nternet: Http:77www.compumotor.com|

m Product Feedback Welcome

. E-mail: 6Kuser@cmotor.com
Automation

http://www.parkermotion.com

Introduction

Purpose of this Document

This document is designed as a reference for all the 6K Series commands. To gain a full understanding of
how the 6K Series commands are used together to implement specific features, refeK tdties
Programmer’s Guid€p/n 88-017137-01). For hardware-related information (e.g., electrical wiring
connections, specifications, tuning, etc.), refer to6tkeSeries Hardware Installation Guide

Table of Contents

Pages 1-20 Introduction

Command Description Format

Syntax -- Letters and Symbols

Syntax -- General Guidelines

Syntax -- Command Value Substitutions
Programmable I/O Bit Patterns
Programming Error Messages

S-Curve Accel/Decel Profiling

Units of Measure and Scaling

Pages 21-302 Command DescriptionsOperator symbols are described first, followed by the rest of the
6K Series commands in alphabetical order.

Pages 303-306 Appendix A: 6K Series Command Lilphabetical list of all 6K Series commands.
Pages 307-308 Appendix B: ASCII Table

Pages 309-312 Appendix C: 6K vs. 6000 Programming Differences

Pages 313-320 Index

Introduction 1

Description of Format

1. 2. 3.
INEN Input Enable
4. Type Inputs or Program Debug Tools Product Rev
5. Syntax <I>INEN<d><d><d>...<d> 6K 5.0
6. Units d=0,1,E,or X
7. Range 0 = off, 1 = on, E = enable, X = don't care
8. Default E
9. Response INEN: *INENEEEE_EEEE_EEEE_EEEE_EEEE_EEEE_EEEE
10. See Also [IN], INFNC, INLVL, INPLC, INSTW, TIN, TIO
Item Number Description

1. Mnemonic Code : This field contains the command’'s mnemonic code. If the command is
in brackets (e.g., [IN]), it is an operator that must be used within the syntax of another
command (e.g., IN may be used in a conditional expression like IF(IN.3=b1)).

2. Full Name : This field contains the command's full name.

3. Valid Product & Revision : This field lists the 6K Series products and the revision of each
product when this command was incorporated or modified per the description. If the
command does not apply to that particular product, the Rev is specified as “n/a”.

You can use the TREVcommand to determine which product revision you are using. For
example, if the TREVresponse is *TREV92-012222-01-5.0 , the product revision is 5.0.

4. Type: This field contains the command's type. Inside the back cover you will find a list of
all 6K Series commands organized by command type.

5. Syntax : The proper syntax for the command is shown here. The specific parameters
associated with the command are also shown. Definitions of the parameters are
described in the Syntax sections below.

6. Units : This field describes what unit of measurement the parameter (b, d,i,r,ort)in
the command syntax represents.

7. Range: This is the range of valid values that you can specify for an argument (or any
other parameter specified).

8. Default : The default setting for the command is shown in this field. A command will
perform its function with the default setting if you do not provide a value.

9. Response : Some commands allow you to check the status of the command. In the
example above, entering the INEN command by itself, you will receive the response
*INENEEEE_EEEE_EEEE_EEEE_EEEE_EEEE_EEKesponse indicates all inputs are
enabled). The example responses provided are based on the default error level, Error
Level 4, established with the ERRLVL4command.

10. See Also : Commands related or similar to the command described are listed here.

2

6K Series Command Reference

Syntax -- Letters and Symbols

The command descriptions provided within this manual use alphabetic letters and ASCII symbols within the
Syntax description (see example below) to represent different parameter requirements.

INEN Input Enable
Type Inputs or Program Debug Tools Product Rev
- Syntax <I><%>INEN<d><d><d>...<d> 6K 5.0
Units d=0,1,E,orX
Range 0 = off, 1 = on, E = enable, X = don't care
Default E

Response INEN: *INENEEEE_EEEE_EEEE_EEEE_EEEE_EEEE_EEEE
See Also [IN], INENC, INLVL, INPLC, INSTW, TIN, TIO

Letter/Symbol Description

Represents an axis specifier, numeric value from 1 to 8.

Represents the number of the product's I/O brick. External I/O bricks are represented by numbers 1
through n (to connect external 1/O bricks, refer to your product's Installation Guide). On-board 1/O are
address at brick location zero (9). If the brick identifier is omitted from the command, the controller
assumes the command is supposed to affect the onboard 1/0.

b*..... Represents the values 1, 0, X or x; does not require field separator between values.
C ovvrreenn Represents a character (Ato Z, or ato z)
d o Represents the values 1, 0, X or x, E or e ; does not require field separator between values. E or e

enables a specific command field. X or x leaves the specific command field unchanged or ignored. In
the ANIEN command, the “d” symbol may also represent a real numeric value.

[Represents a numeric value that cannot contain a decimal point (integer values only). The numeric
range varies by command. Field separator required.

| TR Represents a numeric value that may contain a decimal point, but is not required to have a decimal
point. The numeric range varies by command. Field separator required.
| A Represents a string of alpha numeric characters from 1 to 6 characters in length. The string must

start with a alpha character.

[Represents an immediate command. Changes a buffered command to an immediate command.
Immediate commands are processed immediately, even before previously entered buffered
commands.

L T (Multitasking Only) Represents a task identifier. To address the command to a specific task, prefix

the command with “i%”, where “i " is the task number. For example, the 4%CUTcommand uses task
#4 to execute the program called “CUT.

) e Represents a field separator. Commands with the symbol r ori in their Syntax description require
field separators. Commands with the symbol b or d in their Syntax description do not require field
separators (but they may be included). See General Guidelines table below.

@.......... Represents a global specifier, where only one field need be entered. Applicable to all commands with
multiple command fields. (e.g., @V 1sets velocity on all axes to 1 rps).

<> ... Indicates that the item contained within the < > is optional, not required by that command.
NOTE: Do not confuse with <cr> , <sp>, and <If> , which refer to the ASCII characters
corresponding to a carriage return, space, and line feed, respectively.

[1 e Indicates that the command between the [] must be used in conjunction with another command,

and cannot be used by itself.

* The ASCII character b can also be used within a command to precede a binary number. When the b is used in this
context, it is not to be replaced with a 0, 1, X, or x. Examples are assignments such as VARB1=b10001, and
comparisons such as IF(3IN=b1001X1)

Order of Precedence for Command Prefix Characters (from left to right):

<I><Y%><@><a>

1% Immediate 1 T
2" Task number

3" Apply to all axes or I/O bricks
3" Axis number
3" 1/O brick number

Introduction 3

Syntax -- General Guidelines

Guideline Topic

Guideline

Examples

Command Delimiters
(<cr> , <If> ,and:)

All commands must be separated by a
delimiter. A carriage return is the most
commonly used. The colon (:)allows you to
place multiple commands on one line of code.

Set acceleration on axis 2 to 10 rev/sec/sec:
A,10,,<cr>
A,10,,<If>
A10,: V.25,

: D,25000,, : @GO<cr>

Neutral Characters
(<sp> and <tab>)

Using neutral characters anywhere within a
command will not affect the command.

Set velocity on axis 1 to 10 rps, axis 2 to 25 rps:
V<sp>10,<sp>25,,<cr>

Add a comment to the command:
V 10, 25,,<tab> ;set accel.<cr>

Case Sensitivity

There is no case sensitivity. Use upper or
lower case letters within commands.

Initiate motion on axes 1, 3 and 4:
GO01011
gol011

Comment Delimiter (;)

All text between a comment delimiter and a
command delimiter is considered program
comments.

Add a comment to the command:
V10<tab> ;set velocity

Field Separator (,)

Commands with the symbol r ori in their
Syntax description require field separators.

Commands with the symbol b or d in their
Syntax description do not require field
separators (but they may be included).

Axes not participating in the command need
not be specified; however, field separators
that are normally required must be specified
(unless the axis prefix is used).

Set velocity on axes 1 - 4 to 10 rps, 25 rps, 5
rps and 10 rps, respectively:
V10,25,5,10

Initiate motion on axes 1, 3 and 4:
GO1011<cr>
G01,0,1,1

Set velocity on axes 4 and 6 to 5 rps:

9,

Alternative is to use the axis prefix:
4V5,,5

Global Command
Identifier (@

When you wish to set the command value
equal on all axes, add the @symbol at the
beginning of the command (enter only the
value for one command field).

The @symbol is also useful for checking
the status of all axes, or all inputs or
outputs on all I/O bricks.

Set velocity on all axes to 10 rps:
@Vv10

Check the status of all digital outputs (onboard,
and on external I/O bricks):
@ouT

Bit Select Operator (.)

The bit select operator allows you to affect
one or more binary bits without having to
enter all the preceding bits in the command.

Syntax for setup commands:
[command name].[bit #]-[binary value]

Syntax for conditional expressions:
[command name].[bit #]=[binary value]

Enable error-checking bit #9:
ERROR.9-1

Enable error-check bits #9-12:
ERROR.9-1,1,1,1

IF statement based on value of axis status bit
#12 for axis #1:
IF(1AS.12=b1)

Left-to-right Math

All mathematical operations assume
left-to-right precedence.

VAR1=5+3*2
Result: Variable 1 is assigned the value of 16
(8*2), not 11 (5+6).

Binary and Hexadecimal
Values

When making assignments with or
comparisons against binary or hexadecimal
values, you must precede the binary value
with the letter “b” or “B”, and the hex value
with “h” or “H". In the binary syntax, an “x”
simply means the status of that bit is ignored.

Binary: IF(IN=b1x01)

Hexadecimal: IF(IN=h7F)

Multi-tasking Task
Identifier (%9

Use the %command prefix to identify the
command with a specific task.

Launch the “movel” program in Task 1:
1%movel

Check the error status for Task 3:
3%TER

Check the system status for Task 3:
3%TSS

NOTE: The command line is limited to 80 characters (excluding spaces).

4 6K Series Command Reference

Syntax -- Command Value Substitutions

Many commands can substitute one or more of its command field values with one of these substitution
items (demonstrated in the programming example below):

VAR............ Places current value of the numeric variable in the corresponding field of the command.
VARB........... Uses the value of the binary variable to establish all the fields in the command.

VARI Places current value of the integer variable in the corresponding field of the command.
READ.......... Information is requested at the time the command is executed.

DREAD........ Reads the RP240's numeric keypad into the corresponding field of the command.
DREADE.....Reads the RP240's function keypad into the corresponding field of the command.
TW.ieeeees Places the current value set on the thumbwheels in the corresponding field of the command.
DAT...cc.c.e. Places the current value of the data prodts&ii) in the corresponding field of the command.

Programming Example : (NOTE: The substitution item must be enclosed in parentheses.)

VAR1=15 ; Set variable 1 to 15
A5,(VAR1),4,4 ; Set acceleration to 5,15,4,4 for axes 1-4, respectively
VARB1=b1101XX1 ; Set binary variable 1 to 1101XX1 (bits 5 & 6 not affected)

GO(VARB1) ; Initiate motion on axes 1, 2 & 4 (value of binary

; variable 1 makes it equivalent to the GO1101 command)
OUT(VARB1) ; Turn on outputs 1, 2, 4, and 7
VARS1="Enter Velocity" ; Set string variable 1 to the message "Enter Velocity"
V2,(READ1) ; Set the velocity to 2 on axis 1. Read in the velocity for

; axis 2, output variable string 1 as the prompting message

; 1. Operator sees "ENTER VELOCITY" displayed on the screen.

; 2. Operator enters velocity prefixed by !I' (e.g., I'20).
HOMV2,1,(TW1) ; Setthe home velocity to 2 and 1 on axes 1 and 2, respectively.

; Read in the home velocity for axis 3 from thumbwheel set 1
HOMV2,1,(DAT1) ; Setthe home velocity to 2 and 1 on axes 1 and 2, respectively.

; Read home velocity for axis 3 from data program 1.
VARI1=2*3 ; Set integer variable 1 to 6 (2 multiplied by 3)
D(VARI2),,(VARI3) ; Set the distance of axis 1 equal to the value of

; integer variable 2, and the distance of axis 3 equal to

; the value of integer variable 3.

Rule of Thumb

Not all of the commands allow command field substitutions. In
general, commands with a binary command field (in the
syntax) will accept the VARBsubstitution. Commands with a real
or integer command field (<r> or <i> in the syntax) will accept
VAR VARI, READ DREADDREADETWor DAT.

Introduction 5

Programmable 1/O Bit Patterns

The 6K product has programmable inputs and outputs. The total number of onboard inputs and outputs (trigger
inputs, limit inputs, digital outputs) depends on the product. The total number of expansion inputs and outputs
(analog inputs, digital inputs and digital outputs) depends on your configuration of expansion 1/O bricks.

These programmable 1/O are represented by binary bit patterns, and it is the bit pattern that you reference when
programming and checking the status of specific inputs and outputs. The bit pattern is referencéwh to
left to right.

» Onboard I/0. For example, the status command to check all onboard trigger ifpnts is
An example response for the 6K845tN0100_0001_0000_0011_0
Bit 1 —4 4 Bit17
» Expansion I/O. For example, the status command to check all digital inputs on 1/O britirR .is
An example response for the 6K848TIN0010_0110_1100_0000_XXXX_XXXX_XXXX_XXXX .

vo Brick2 — 4— Bit1 4 Bit32
Onboard I/O
/0 Location Programming Status Report, Assignment
Limit Inputs “LIMITS/HOME” connectors LIMENC, LIMEN, LIMLVL TLIM, LIM
Trigger Inputs “TRIGGERS/OUTPUTS” connectors INFNC, INLVL, INEN, ONIN, TIN, IN

(pins 9, 11, 13, 15, 17, 19, 21 & 23). INPLC, INSTW
Master Trigger is “MASTER TRIG” on
connector on top of the 6K chassis

Outputs (digital) “TRIGGERS/OUTPUTS” connectors OUT OUTFNCOUTLVL, TOUT [OUT]
(pins 1,3,5&7). OUTENOUTALL OUTPLC
OUTTWPOUT

Limit Inputs (“LIMITS/HOME” connectors)

Input bit pattern for LIM, TLIM, LIMEN, LIMFNC, and LIMLVL :
Bit# Pin# Function *
B 23 Positive end-of-travel limit, axis 1.
2 21 Negative end-of-travel limit, axis 1.
3 19 Home limit, axis 1.
4 17 Positive end-of-travel limit, axis 2.
. 5 15 Negative end-of-travel limit, axis 2.
i 6 13 Home limit, axis 2.
7 11 Positive end-of-travel limit, axis 3.
8 9 Negative end-of-travel limit, axis 3.
9 7 Home limit, axis 3.
10 5 Positive end-of-travel limit, axis 4.
11 3 Negative end-of-travel limit, axis 4.

L— 12 1 Home limit, axis 4. —
[13 23 Positive end-of-travel limit, axis 5. |
14 21 Negative end-of-travel limit, axis 5.

15 19 Home limit, axis 5.
16 17 Positive end-of-travel limit, axis 6.

_ 17 15 Negative end-of-travel limit, axis 6.

v 18 13 Home limit, axis 6.
19 11 Positive end-of-travel limit, axis 7.
20 9 Negative end-of-travel limit, axis 7.
21 7 Home limit, axis 7.
22 5 Positive end-of-travel limit, axis 8.
23 3 Negative end-of-travel limit, axis 8.

L 24 1 Home limit, axis 8. —
* The functions listed are the factory default functions; other
functions may be assigned with the LIMFNC command.
Sample response T.IM (limit inputs status) command:
*TLIMO001_001_001_001_001_001_001_001
L)L J
T %

6 6K Series Command Reference

Trigger Inputs (“TRIGGERS/OUTPUTS” connectors)

Input bit pattern for TIN, IN, INFNC,
INLVL, INEN, INPLC, INSTW, and ONIN:

Bit# Pin# Function *

1 23 Trigger input 1 (TRIG-1A).]
2 21 Trigger input 2 (TRIG-1B).
3 19 Trigger input 3 (TRIG-2A).
4 17 Trigger input 4 (TRIG-2B).
5 15 Trigger input 5 (TRIG-3A).
6
7
8

v

13 Trigger input 6 (TRIG-3B).
11 Trigger input 7 (TRIG-4A).
9 Trigger input 8 (TRIG-4B). __|

— 9 23 Trigger input 9 (TRIG-5A).
10 21 Trigger input 10 (TRIG-5B).
11 19 Trigger input 11 (TRIG-6A).
Trigger input 12 (TRIG-6B).
13 15 Trigger input 13 (TRIG-7A).
14 13 Trigger input 14 (TRIG-7B).
15 11 Trigger input 15 (TRIG-8A).
“MASTER TRIG" L 16 9 Trigger input 16 (TRIG-8B).

» 17 - Trigger input 17 (TRIG-M).

* |If the input is assigned the “trigger
interrupt” function with the INFNCi-H
command, it will capture the position of
the dedicated “n" axis identified in the
input’'s name (TRIG-nA and TRIG-nB).
TRIG-M captures the position of the
master encoder, as well as all axes.

A 4
=
N
=
Y]

Sample response TN (trigger inputs status) command:
*TINOOOO_0010_1100_0000_0

I R R

Outputs (“TRIGGERS/OUTPUTS” connectors)

Output bit pattern for TOUT, [OUT] , OUT, OUTFNC
OUTLVL OUTENOUTALL OUTPLCOUTTWPOUT

Bit# Pin# Function

Output 1.7 |
Output 2.
Output 3.
Output 4.—
Output 5.7]
Output 6.
Output 7.
Output 8.

v

O~NO U WN B
P WO NP WO

Sample response TWUT

(onboard outputs status) command:
*TOUTO0000_0000

T

Introduction 7

Expansion 1/O Bricks

The 6K product allows you to expand your system I/O by connecting up to 8 I/O brickssfsélation
Guidefor connections). Expansion I/O bricks may be ordered separately (referred to as the “EVM32"). Each
I/O brick can hold from 1 to 4 of these I/O SIM modules in any combination;

SIM Type Programming Status Report, Assignment
Digital Inputs SIM (8 inputs) INFNC, INLVL, INEN, ONIN, INPLC, INSTW TIN, IN
Digital Outputs SIM (8 outputs) OUT OUTFNCOUTLVL OUTENOUTALL, TOUT [OUT]

OUTPLCOUTTWPOUT

Analog Inputs SIM (8 inputs) « Enable/Disable: ANIEN.

« Joystick setup: JOYAXH JOYAXL, JOYCDB
JOYCTRJOYEDBJOYZ
* Servo feedback: ANIFB, SFB

« Voltage: TANI, ANI
« Servo position: TPANI, PANI,
FB, TFB

« Following master source: ANIMAS FOLMAS

Each 1/O brick has a unique “brick address”, denoted with4Be™symbol in the command syntax. The
/0 bricks are connected in series to tHEFANSION 1/0” connector on the 6K. The'1/O brick has
address #1, the next brick has address #2, and sNOTH: If you leave out the brick address in the

command, the 6K product will assume you are addressing the command to the onboard I/0O.) Each 1/O brick

has 32 I/O addresses, referenced as absolute I/O point locations:

¢ SIM slot 1 =1/O points 1-8

¢ SIM slot 2 = 1/O points 9-16
¢ SIM slot 3 = 1/O points 17-24
¢ SIM slot 4 = 1/O points 25-32

Example:

6K 1/0 Brick #1
Controller

Slot #1 (I/O points 1-8)
’ Digital Inputs SIM

Slot #2 (I/0 points 9-16)
’ Digital Inputs SIM

Slot #3 (I/0 points 17-24)
’ Digital Inputs SIM

Slot #4 (1/0 points 25-32)
l Analog Inputs SIM ‘

Sample response ITIN (digital inputs status) command:
*1TINOOOO_0010_1100_0000_0100_0001_XXXX_XXXX

1/0 Brick #2

Slot #1 (I/O points 1-8)

’ Digital Outputs SIM |

Slot #2 (I/0 points 9-16)

’ Digital Inputs SIM |

Slot #3 (I/0 points 17-24)

’ No SIMM installed |

Slot #4 (1/0 points 25-32)
l Digital Outputs SIM |

Sample response BTOUT(digital outputs status) command;
*2TOUT0000_0000_XXXX_XXXX_XXXX_XXXX_0000_0000

T

TheTIO command identifies the connected I/O bricks (and installed SIMs), including the status of each 1/O point:

*BRICK 1: SIM Type Function
1-8: DIGITAL INPUTS 0000_0000 AAAA_AAAA
9-16: DIGITAL INPUTS 0000_0000 AAAA_AAAA

17-24: DIGITAL INPUTS 0000_0000 AAAA_AAAA

Status

25-32: ANALOG INPUTS 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000

*BRICK 2: SIM Type Status Function

1-8: DIGITAL OUTPUTS 0000_0000 AAAA_AAAA -- SINKING

9-16: DIGITAL INPUTS 0000_0000 AAAA_AAAA
17-24: NO SIM PRESENT

25-32: DIGITAL OUTPUTS 0000_0000 AAAA_AAAA -- SOURCING

8 6K Series Command Reference

Programming Error Messages

Depending on the error level setting (set withER®RLVLcommand), when a programming error is created,
the 6K controller will respond with an error message and/or an error prompt. A list of all possible error
messages is provided in a table below. The default error prompt is a questior?)ylauk you can change it
with theERRBADzommand if you wish.

At error level 4 ERRLVL4—the factory default setting) the 6K controller responds with both the error message
and the error prompt. At error level BRRLVL3, the 6K controller responds with only the error prompt.

Error Response Possible Cause

ACCESSDENIED Program security feature enabled, but the program access input (INFNCi-Q or
LIMFNCI-Q) is not activated.

ALREADYDEFINED FORTHUMBWHEELSAttempting to assign an I/O function to an I/O that is already defined as a
thumbwheel I/O.

ALTERNATIVE TASK NOT ALLOWED Attempting to execute a LOCKcommand directed to another task.

AXESNOTREADY Compiled Profile path compilation error.

COMMANROTIMPLEMENTED Command is not applicable to the 6K Series product.

COMMANROTALLOWED IN PROGRAM Command is not allowed inside a program definition (between DEFand END.

COMMAND/DRIVE MISMATCH The command (or = one field in the command) is not appropriate to the
AXSDEFconfiguration (e.g., attempting to execute a servo tuning command on
a stepper axis)

ERROR: MOTION ENDS IN NON-ZERO Compiled Motion: The last GOBURsegment within a PLOORPLN loop does not

VELOCITY - AXIS N end at zero velocity, or there is no final GOBUFRsegment placed outside the loop.
EXCESSIVEPATHRADIUS Contouring path compilation error.

DIFFERENCE

FOLMASNOTSPECIFIED No FOLMASor the axis is currently specified. It will occur if FMCNEWFSHFC

or FSHFDcommands are executed and no FOLMAS@ommand was executed,
or FOLMASOwas executed.

INCORRECTAXIS Axis specified is incorrect.

INCORRECTBRICK NUMBER Attempted to execute a command that addresses an I/O brick that is not
connected to your 6K controller.

INCORRECTDATA Incorrect command syntax.

Following: Velocity (V), acceleration (A) or deceleration (AD) command is zero
(used by FSHFC& FSHFD).

INPUT(S) NOT DEFINED AS Attempted to execute JOYCDBJOYCTR JOYEDB or JOYZ before executing
JOYSTICK INPUT JOYAXHor JOYAXLto assign the analog input to an axis.
INSUFFICIENT MEMORY Not enough memory for the user program or compiled profile segments. This

may be remedied by reallocating memory (see MEMOR¥ommand description).

INVALID COMMAND Command is invalid because of existing conditions

Introduction 9

Programming Error Messages

(continued)

Error Response

Possible Cause

INVALID CONDITIONSFORCOMMAND

System not ready for command (e.g., LN command issued before the L
command).

Following (these conditions can cause an error during Following):

* The FOLMDvalue is too small to achieve the preset distance and still
remain within the FOLRN/FOLRDratio.

« A phase shift cannot be performed:

FSHFD... Error if already shifting or performing other time based move.
FSHFC... Error if currently executing a FSHFDmove, or if currently
executing another FSHFCmove in the opposite direction.

* The FOLEN1command was given while a profile was suspended by a
GOWHEN

INVALID CONDITIONSFOR
S_CURVEACCELERATION—FIELD

Average (AA) acceleration or deceleration command (e.g., AA ADA HOMAA
HOMAD/etc.) with a range that violates the equation %2A < AA <A (A is the
max. accel or decel command—e.g., A, AD HOMAHOMADPetc.)

INVALID DATA

Data for a command is out of range.

Following (these conditions can cause an error during Following):

¢ The parameter supplied with the command is valid.

FFILT Error if: smooth number is not 0-4

FMCLEN. Error if: master steps > 999999999 or negative
FMCR..... Error if: master steps > 999999999 or < -999999999
FOLMD... Error if: master steps > 999999999 or negative
FOLRD... Error if: master steps > 999999999 or negative
FOLRN... Error if: follower steps > 999999999 or negative
FSHFC... Error if: number is not 0-3

FSHFD... Error if: follower steps > 999999999 or < -999999999
GOWHENETror if: position > 999999999 or < -999999999
WAIT...... Error if: position > 999999999 or < -999999999

« Error if a GOcommand is given in the preset positioning mode (MC@and:

FOLRN= zero
FOLMD= zero, or too small
(see Following chapter in the Programmer's Guide)

INVALID FOLMASSPECIFIED

Following: An illegal master was specified in FOLMASA follower may never
use its own commanded position or feedback source as its master.

INVALID RATIO

Following: Error if the FOLRN:FOLRDratio after scaling is > 127 when a GQOis
executed

INVALID TASK IDENTIFIER

Attempting to launch a PEXEor EXEcommand into the supervisor task (task 0).

LABEL ALREADYDEFINED

Defining a program or label with an existing program name or label name

MAXIMUMCOMMANLCENGTHEXCEEDED Command exceeds the maximum number of characters

MAXIMUMCOUNTSERSECOND
EXCEEDED

Velocity value is greater than 1,600,000 counts/sec

MOTIONIN PROGRESS

Attempting to execute a command not allowed during motion (see Restricted
Commands During Motion section in the Programmer’s Guide.)

Following: The FOLEN1command was given while that follower was moving in
a non-Following mode.

10 6K Series Command Reference

Programming Error Messages

(continued)

Error Response

Possible Cause

NESTLEVEL TOODEEP

IFs , REPEATs WHILESs, or GOSUBsested greater than 16 levels (for each type)

NOMOTIONIN PROGRESS

Attempting to execute a command that requires motion, but motion is not in
progress

NOPATHSEGMENT®EFINED

Compiled Profile compilation error

NOPROGRAMREING DEFINED

ENDcommand issued before a DEFcommand

NOTALLOWEDF SFB@

Changes to tuning commands (SGILIM , SGAF, SGI, SGR SGV and SGVH and
SMPERare not allowed if SFBdis selected

NOTALLOWEDN PATH

Compiled Profile path compilation error

NOTDEFINING A PATH

Executing a compiled profile or contouring path command while not in a path

NOTVALID DURINGFOLLOWING
MOTION

A GOcommand was given while moving in the Following mode (FOLENY and
while in the preset positioning mode (MC@l

NOTVALID DURINGRAMP

A GOcommand was given while moving in a Following ramp and while in the
continuous positioning mode (MCJ. Following status (FS) bit #3 will be set to 1.

A FOLENcommand was given during one of these conditions:
* During a shift (FSHFCor FSHFD
» During a change in ratio (FOLRN/FOLRD
« During deceleration to a stop

PATHALREADYMOVING

Compiled Profile path compilation error

PATHNOTCOMPILED

Attempting to execute a individual axis profile or a multiple axis contouring path
that has not been compiled

PATHRADIUSTOOSMALL

Contouring path compilation error

PATHRADIUSZERO

Contouring path compilation error

PATHVELOCITY ZERO

Contouring path compilation error

STRINGALREADYDEFINED

A string (program name or label) with the specified name already exists

STRINGIS A COMMAND

Defining a program or label that is a command or a variant of a command

UNDEFINEDLABEL

Command issued to product is not a command or program name

WARNING:POINTERHASWRAPPED
AROUNOODATAPOINT 1

During the process of writing data (DATTCHl or recalling data (DAT), the pointer
reached the last data element in the program and automatically wrapped
around to the first datum in the program

WARNING:ENABLEINPUT INACTIVE

ENABLE input is no longer connected to ground (GND)

WARNING:DEFINEDWITHANOTHER
TW/PLC

Duplicate 1/O in multiple thumbwheel definitions

Introduction 11

Identifying Bad Commands

To facilitate program debugging, the Transfer Command En@vpERcommand allows you to transfer

the first command that the controller detects as an error. This is especially useful if you receive an error
message when running or downloading a program, because it catches and remembers the command that
caused the error.

Using Motion Planner:

If you are typing the command in a live terminal emulator session, the controller will detect the bad
command and respond with an error message, followed BRRBADerror prompt %). If the bad
command was detected on download, the bad command is reported automatically (see example below).

NOTE: If you are not using Motion Planner, you'll have to type infb®IDERRommand at the error
prompt to display the bad command.

Once a command error has occurred, the command and its fields are stored and system status bit #11
(reported in th& SSF, TSS andSS commands) is set th The status bit remains set until theMDER
command is issued.

Example Error Scenario:

1.

2.

12

In Motion Planner's program editor, create and save a program with a programming error:

DEL badprg ; Delete a program before defining and downloading
DEF badprg ; Begin definition of program called badprg

MA11 ; Select the absolute preset positioning mode
A25,40 : Set acceleration

AD11,26 ; Set deceleration

V5,8 ; Set velocity

VAR1=0 ; Set variable #1 equal to zero

G011 : Initiate move on both axes

IF(VAR1<)16 ; MISTYPED IF STATEMENT - should be typed as "IF(VAR1<16)"
VAR1=VAR1+1 ; If variable #1 is less than 16, increment the counter by 1

NIF : End IF statement

END ; End programming of program called badprg

Using Motion Planner's terminal emulator, download the program to the 6K Series product. Notice that
an error response identifies the bad command aBN@®RRECT DATA item and displays it:

> *NO ERRORS
*INCORRECT DATA
> *IF(VAR1<)16

>

6K Series Command Reference

S-Curve Acceleration/Deceleration Profiling

6K controllers allow you to perfori@-curvemove profiles, in addition to the usual trapezoidal profiles.
S-curve profiling provides smoother mation control by reducingettig(rate of change) in acceleration and
deceleration portions of the move profile (see drawing below). Because S-curve profiling reduces jerk, it
improves position tracking performance, especially in linear interpolation applications (not contouring).

Trapezoidal

Velocity

S-Curve

Velocity

Time Time

Time

_/ Time

Decel Accel
\

Maximum Jerk

Decel Accel

Less Jerk

S-Curve Programming Requirements

To program an S-curve profile, you must useabherage accel/decelommands provided in the 6K Series
programming language. For every maximum accel/decel commandeA@,HOMAHOMADIOGA
JOGADetc.) there is aaveragecommand for S-curve profiling (see table below).

Maximum Accel/Decel Commands:

Average (“S-Curve”) Accel/Decel Commands:

Command Function Command Function

A Acceleration AA Average Acceleration

AD Deceleration ADA Average Deceleration

HOMA Home Acceleration HOMAA Average Home Acceleration
HOMAD Home Deceleration HOMADA Average Home Deceleration
JOGA Jog Acceleration JOGAA Average Jog Acceleration
JOGAD Jog Deceleration JOGADA Average Jog Deceleration
JOYA Joystick Acceleration JOYAA Average Joystick Acceleration
JOYAD Joystick Deceleration JOYADA Average Joystick Deceleration
LHAD Hard Limit Deceleration LHADA Average Hard Limit Deceleration
LSAD Soft Limit Deceleration LSADA Average Soft Limit Deceleration
PA Path Acceleration PAA Average Path Acceleration
PAD Path Deceleration PADA Average Path Deceleration

Introduction 13

Determining the S-Curve Characteristics

The command values for average accel/dexgIADA etc.) and maximum accel/deca] AD, etc.) determine

the characteristics of the S-curve. To smooth the accel/decel ramps, you must enter average accel/decel
command values that satisfy the equakionA % AA < A,| where A represents maximum accel/decel and
AA represents average accel/decel. Given this requirement, the following conditions are possible:

Acceleration Setting Profiling Condition

AA > Y% A, but AA<A S-curve profile with a variable period of constant acceleration. Increasing the AA value above
the pure S-curve level (AA > %2 A), the time required to reach the target velocity and the target
distance is decreased. However, increasing AA also increases jerk.

AA =Y A Pure S-curve (no period of constant acceleration—smoothest motion).
AA=A Trapezoidal profile (but can be changed to an S-curve by specifying a new AA value less than A).
AA<A;orAA>A When you issue the GOcommand, the move will not be executed and an error message,

*INVALID CONDITIONSFORS_CURVEACCELERATION—FIELD, will be displayed.

AA = zero S-curve profiling is disabled. Trapezoidal profiling is enabled. AA tracks A. (Track means the
command's value will match the other command's value and will continue to match whatever
the other command's value is set to.)

AA # zero and AAZ A S-curve profiling is enabled only for standard moves (e.g., not for contouring, which requires
the PADAand/or PAAcommands). All subsequent standard moves for that axis must comply
with this equation: 2 A < AA < A

AA > A Average accel/decel is raised above the pure S-curve level; this decreases the time required
to reach the target velocity and distance. However, increasing AA also increases jerk. After
increasing AA, you can reduce jerk by increasing A, but be aware that increasing A requires a
greater torque to achieve the commanded velocity at the mid-point of the acceleration profile.

No AA value ever entered Profile will default to trapezoidal. AA tracks A.

If you never change theor AA deceleration commandsA deceleratiomwill track AA acceleration
However, once you changedecelerationAA deceleration will no longer track changeamacceleration.

The calculation for determining S-curve average accel and decel move times is as @allowat{on
method identical for S-curve and trapezoidal m@ives

Velocity

or Time = 2 Distance
Aavg Aavg

Scaling affects theAA average acceleratioA4, ADA etc.) the same as it does for hemaximum
acceleration4, AD, etc.). See page 16 for details on scaling.

Time =

NOTE: Equations for calculating jerk are provided on page 15.

Programming Example (see move profile drawings below)

; In this example, axis 1 executes a pure S-curve and takes 1 second
; to reach a velocity of 5 rps; axis 2 executes a trapezoidal profile
; and takes 0.5 seconds to reach a velocity of 5 rps.

SCALEO ; Disable scaling v Axis 1
DEF SCURV ; Begin definition of program SCURV
@MAO ; Select incremental positioning mode
@D40000 ; Set distances to 40,000 positive-
; direction steps ") ‘ T T T =T
A10,10 : Set max. accel to 10 rev/sec/sec 0 ! 2 8
;onaxes1and?2 v Axis 2
AA5,10 ; Set avg. accel to 5 rev/sec/sec on
;axis 1, & 10 rev/sec/sec on axis 2
AD10,10 : Set max. decel to 10 rev/sec/sec
;onaxes 1and?2 ‘ 1 ‘ ‘ ‘ ‘ =T
ADA5,10 ; Set avg. decel to 5 rev/sec/sec on 0 1 2 3
;axis 1, & 10 rev/sec/sec on axis 2)
V5,5 ; Set velocity to 5rpson axes 1 & 2 Move profiles
G011 : Execute motion on axes 1 and 2
END ; End definition of program

14 6K Series Command Reference

Calculating Jerk

Zero Acceleration

\Y

Jerk = %
A _av
(Programmed Accel) a= r

(Programmed Velocity)

Rules of Motion:

_dx o
v =g (x = distance)

Assuming the accel profile starts when
the load is at zero velocity and the
ramp to the programmed velocity is
not compromised:

A%« AA
Jerk =Jp= —————
V (A-AA)
Zero Velocity - : : 1 A = programmed acceleration
o t t, t (A, AD, HOMAPetc.)
(zero) ! ! ! AA = average acceleration
3 1 (AA ADA HOMARetc.)
- ® © ! V = programmed velocity
| (V, HOMVetc.)
A @ t12t>20Q a(t)y=Jpxt a(t) = acceleration at time t
t1= — 2 v (t) = velocity at time t
Ja Jaxt d(t) = distance at time t
V()=
V A
tp= — - — Taef
AA I d) = AT
V
tg= —
AA Hh=t>t a(t)=A
NOTE: t3-tp =t A*
PR v () = + Ax(t-t)
Ja
JA*t13 A*(t-tl)z
JA*tlz A® d(t)= 5 +) +Vix(t-tg)
Vl = =
2 24 Jp
A2 © 2>, a®=A-Oax(t-t)
Vo = - JA*(t3't)2
2%Jpa v(t)= V - (T

V¢ Ja (i3 - t)3
d@)= 2AA+ 5 -(Vx(tz-1)

Starting at a Non-Zero Velocity. If starting the acceleration profile with a non-zero initial velocity, the move
comprises two components: a constant velocity component, and an s-curve component. Typically, the change
of velocity should be used in the S-curve calculations. Thus, in the calculations above, you would substitute
“(Ve - Vo)" for “V” (Vg = final velocity,Vo = initial velocity). For example, the jerk equation would be:

A%« AA

Jerk = Jp =
(VE - Vo) (A-AA)

Introduction 15

Units of Measure and Scaling

Units of Measure without Scaling
Scaling is disabledSCALE®@ as the factory default condition:

» Stepper axes: All distance values entered are in commanded counts (sometimes refemetbto as
step3, and all acceleration, deceleration and velocity values entered are internally multiplied by the
DREScommand value.

e Servo axes: Units of Measure (per feedback source)
Motion Attribute Encoder Analog Input
Accel/Decel Revs/sec/sec * volts/sec/sec
Velocity Revs/sec * volts/sec
Distance Counts ** Counts **

* All accel/decel & velocity values are internally multiplied by the EREScommand value.
** Distance is measured in the counts received from the feedback device.

Contouring & Linear Interpolated Motion: Path acceleration, velocity, and distance are based on the
resolution DRESfor steppersERESfor servos) of axis 1. If multi-tasking is used, path motion units are
based on the resolution of the first (lowest number) axis associated with thESEZKY.

What is Scaling?

Scaling allows you to program acceleration, deceleration, velocity, and position values in units of measure
that are appropriate for your application. B@ALEcommand is used to enable or disable scaling
(SCALE1to enableSCALE@o disable). The motion type(s) you are using in your application determines
which scale factor commands you need to configure:

Type of Motion Accel/Decel Scaling Velocity Scaling Distance Scaling

Standard Point-to-Point Motion SCLA SCLV SCLD

Contouring, SCLD SCLD SCLD

Linear Interpolation

Following SCLA SCLV SCLD for follower distances

SCLMASfor master distances

When Should | Define Scaling Factors?

Scaling calculations are performed when a program is defined or downloaded. Consequently, you must
enable scalinggCALEJ) and define the scaling factoiSELD SCLA SCLV, SCLMAS$ prior to defining
(DEB), uploading TPROG or running RUN the program.

RECOMMENDATION: Place the scaling commands at the beginning of your prograiefiteethe

location of any defined programs. This ensures that the motion parameters in subsequent programs in your
program file are scaled correctly. When you use Motion Planner’s Setup Generator wizard, the scaling
commands are automatically placed in the appropriate location in your program file.

ALTERNATIVE: Scaling factors could be defined via a terminal emuljaistrbeforedefining or

downloading a program. Because scaling command values are saved in battery-backed RAM (remembered
until you issue ®ESETcommand), all subsequent program definitions and downloads will be scaled
correctly.

NOTES

¢ Scaling commands are not allowed in a program. If there are scaling commands in a program, the controller
will report an error message (‘COMMAND NOT ALLOWED IN PROGRAMhen the program is downloaded.

« If you intend to upload a program with scaled motion parameters, be sure to use Motion Planner. Motion
Planner automatically uploads the scaling parameters and places them at the beginning of the program file
containing the uploaded program from the controller. This ensures correct scaling when the program file is
later downloaded.

16 6K Series Command Reference

Servo Axes

Scaling can be used with encoder or analog input feedback sources. When the scaling commands
(SCLA SCLD etc.) are executed, they are specific only to the current feedback source selected
with the last SFB command.

If your application requires switching between feedback sources for the same axis, then for each
feedback source, you must select the feedback source with the appropriate SFB command and
issue the scaling factors specific to operating with that feedback source.

For example, if you have two axes and will be switching between encoder and ANI feedback, you
should include code similar to the following in your setup program:

SFB1,1 ; Select encoder feedback (subsequent scaling
; parameters are specific to encoder feedback)

SCLA4000,4000 ; Program accel/decel in revs/sec/sec

SCLV4000,4000 ; Program velocity in revs/sec

SCLD4000,4000 ; Program distances in revs

SFB2,2 ; Select ANI feedback (subsequent scaling

; parameters are specific to ANI feedback)
SCLA205,205 ; Program accel/decel in volts/sec/sec
SCLV205,205 ; Program velocity in volts/sec
SCLD205,205 ; Program distances in volts

Acceleration & Deceleration Scaling (SCLA)

Stepper Axes: If scaling is enable®GQALEY), all accel/decel values entered are internally multiplied by
the acceleration scaling factor to convert user units/sec/sec to commanded counts/sec/sec.
The scaled values are always in reference in commanded counts, regardless of the existence
of an encoder.

Servo Axes: If scaling is enableBCALEY), all accel/decel values entered are internally multiplied by
the acceleration scaling factor to convert user units/sec/sec to encoder or analog input
counts/sec/sec.

All accel/decel commands (e.é,,AA, AD, HOMAHOMADIOGA etc.) are multiplied by th8 CLA
command valueNOTE: Path accel/decel command®(PAD etc.) are multiplied by th8CLDvalue.

As the accel/decel scaling fact@dLA changes,
the resolution of the accel and decel values and
the number of positions to the right of the

SCLAVvalue (counts/unit/unit) Decimal Places

decimal point also change (see table at right). An 100-999 . 2
accel/decel value with greater resolution than 1000 - 9999 oo 3
allowed will be truncated (e.qg., if scaling is set to 10000 - 99999, oo, 4
SCLA1g theA9.9999 command would be 100000 - 999999ovoveii, 5

truncated t9.9).

The following equations can help you determine the range of acceleration and deceleration values.

Axis Type Min. Accel or Decel (resolution) Max. Accel or Decel
Stepper 0.001 ODRES 999.9999 [0 DRES
SCLA SCLA
servo Encoder Feedback: 0.001 UERES Encoder Feedback: 999.9999 ERES
SCLA SCLA
ANI Feedback: * 0.205 ANI Feedback: * 204799.9795
SCLA SCLA

* This calculation assumes the analog input range (ANIRNGvalue) is left in its default setting (range is -10V to +10V).

Introduction 17

Velocity Scaling (SCLV)

Stepper Axes: If scaling is enabl€siGALEY), all velocity values entered are internally multiplied by the
velocity scaling factor to convert user units/sec to commanded counts/sec. The scaled values
are always in reference to commanded counts (sometimes referred to as “motor steps”).

Servo Axes: If scaling is enableBCALEY), all velocity values entered are internally multiplied by the
velocity scaling factor to convert user units/sec to encoder or analog input counts/sec.

All velocity commands (e.g¥, HOMYHOMVFJOGVHJOGVL, etc.) are multiplied by th6CLV
command valueNOTE: Path velocity PV) is multiplied by theSCLDvalue.

As the velocity scaling factoSCLV) changes, the velocity command's range and its decimal places also
change (see table below). A velocity value with greater resolution than allowed will be truncated. For
example, if scaling is set ®CLV10, theV9.9999 command would be truncated\8.9 .

SCLVValue Velocity Resolution Decimal Places
(counts/unit) (units/sec)

1-9 1 0

10-99 0.1 1

100 - 999 0.01 2

1000 - 9999 0.001 3

10000 - 99999 0.0001 4

100000 - 999999 0.00001 5

Use the following equations to determine the maximum velocity range for your product type.

Max. Velocity for Servo Axes

Max. Velocity for Stepper Axes (determined by feedback source selected for axis #1)
n n = maximum velocity is determined Encoder Feedback: 6,500,000
SCLV by the PULSEcommand setting. ncoder Feedback: SCLV
ANI Feedback: * 1000 0205
SCLV

* This calculation assumes the analog input range (ANIRNGvalue) is left in its default setting (range is -10V to +10V).

Distance Scaling (SCLDand SCLMA3

Stepper Axes: If scaling is enable®GALE]), all distance values entered are internally multiplied by the
distance scaling factor to convert user units to commanded counts (“motor steps”).

Servo Axes: If scaling is enableBCALEJ), all distance values entered are internally multiplied by the
distance scaling factor to convert user units to encoder or analog input counts.

All distance commands (e.@®, PSET, REG SMPERare multiplied by th&CLDcommand value. The
only exception is for master distance values (see table below)

Scaling for Following Motion: The SCLDcommand defines the follower axis distance scale factor, and the
SCLMASommand defines the master’s distance scale factor. The Following-related commands that are affected
by SCLDand SCLMASare listed in the table below.

Commands Affected by Master Scaling (SCLMA$ Commands Affected by Follower Scaling (SCLD

FMCLEN Master Cycle Length FOLRN Follower-to-Master Ratio (Numerator)
FMCP Master Cycle Position Offset FGADV Geared Advance

FOLMD Master Distance FSHFD Preset Phase Shift

FOLRD Follower-to-Master Ratio (Denominator) GOWHENConditional GO (left-hand variable # PMA$
GOWHENConditional GO (left-hand variable is PMAS TPSHF& [PSHHF: Net Position Shift of Follower
TPMAS& [PMAS: Position of Master Axis TPSLV& [PSLV]: Position of Follower Axis

TVMASK [VMAS: Velocity of Master Axis

18 6K Series Command Reference

As theSCLDor SCLMASscaling factor changes, the distance command’s range and its decimal places also
change (see table below). A distance value with greater resolution than allowed will be truncated. For
example, if scaling is set ®CLD4000, theD105.2776 command would be truncated®d.05.277 .

SCLDor SCLMASVvalue Distance Resolution Distance Range * Decimal

(counts/unit) (units) (units) Places

1-9 1.0 0 - £999999999 0

10-99 0.10 0.0 - £99999999.9 1

100 - 999 0.010 0.00 - £9999999.99 2

1000 - 9999 0.0010 0.000 - £999999.999 3

10000 - 99999 0.00010 0.0000 - +99999.9999 4

100000 - 999999 0.00001 0.00000 - £9999.99999 5
NOTE ERACTIONAL STEP TRUNCATION NOTE

If you are operating in the incremental mode (MA@, or specifying master distance values with
FOLMDwhen the distance scaling factor (SCLDor SCLMA$ and the distance value are multiplied,
a fraction of one step may be left over. This fraction is truncated when the distance value is used
in the move algorithm. This truncation error can accumulate over a period of time, when
performing incremental moves continuously in the same direction. To eliminate this truncation
problem, set SCLDor SCLMASo 1, or a multiple of 10.

Scaling Example — Stepper Axes

Axis #1 and axis #2 control 25,000 step/rev motor/drives attached to 5-pitch leadscrews. The user wants to
program motion parameters in inches; therefore the scale factor calculation is: 25,000 steps/rev x 5
revs/inch = 125,000 steps/inch. For instance, with a scale factor of 125,000, the operator could enter a move
distance value of 2.000 and the controller would send out 250,000 pulses, corresponding to two inches of
travel.

SCALE1 ; Enable scaling

DRES25000,25000 ; Set drive resolution to 25,000 steps/rev on both axes
SCLD125000,125000 ; Allow user to enter distance in inches (both axes)
SCLV125000,125000 ; Allow user to enter velocity in inches/sec (both axes)
SCLA125000,125000 ; Allow entering accel/decel in inches/sec/sec (both axes)

Scaling Example — Servo Axes

Axis #1 controls a 4,000 count/rev servo motor/drive system (using a 1000-line encoder) attached to a 5-
pitch leadscrew. The user wants to position in inches; therefore, the scale factor calculation is 4,000
counts/rev x 5 revs/inch = 20,000 counts/inch. Half way through the motion process, axis #1 must switch to
ANI feedback for the purpose of positioning to a voltage (scale factor is 205 counts/volt).

Axis #2 controls a 4,000 count/rev servo motor/drive system (using a 1000-line encoder) attached to a 10-
pitch leadscrew. The user wants to position in inches (scale factor calculation: 4,000 counts/rev x 10
revs/inch = 40,000 counts/inch).

SFB1,1 : Select encoder feedback for both axes
ERES4000,4000 ; Set encoder res to 4000 steps/rev (post quadrature)
SCALE1 ; Enable scaling

SCLD20000,40000 ; Allow user to enter distance values in inches
SCLV20000,40000 ; Allow user to enter velocity values in inches/sec
SCLA20000,40000 ; Allow user to enter accel/decel values in inches/sec/sec

SFB2 : Select ANI feedback for axis #1

SCALE1 ; Enable scaling

SCLD205 : Allow user to enter distance values in volts

SCLV205 ; Allow user to enter velocity values in volts/sec

SCLA205 : Allow user to enter accel/decel values in volts/sec/sec
SFB1,1 ; Select encoder feedback for both axes (prepare for motion)

Introduction 19

Scaling Example — Following

Typically, the master and follower scale factors are programmed so that master and follower units are the
same, but this is not required. Consider the scenario below as an example.

The master is a 1000-line encoder (4000 counts/rev post-quadrature) mounted to a 50 teeth/rev pulley
attached to a 10 teeth/inch conveyor belt, resulting in 80 counts/tooth (4000 counts/50 teeth = 80
counts/tooth). To program in inches, you would set up the master scaling factor vVBGBLIEAS800
command (80 counts/toofhi10 teeth/inch = 800 counts/inch).

The follower axis is a servo motor with position feedback from a 1000-line encoder (4000 counts/rev). The
motor is mounted to a 4-pitch (4 revs/inch) leadscrew. Thus, to program in inches, you would set up the
follower scaling factor with th8 CLD16000 command (4000 counts/r& revs/inch = 16000

counts/inch).

SCALE1 ; Enable scaling

SCLMASB800 ; Master scaling (80 counts/tooth * 10 teeth/inch = 800 counts/inch)
SCLD16000 ; Follower scaling (4000 counts/rev * 4 revs/inch = 16000 counts/inch)

Scaling Example — Contouring & Linear Interpolation

This simple example uses 2 servo axes (axes 1 and 2) for contouring. Both axes use encoder feedback with
a resolution ERES of 4000 counts/rev, axis 1 uses a 10-pitch (10 revs per inch) leadscrew and axis 2 uses
a 5-pitch (5 revs per inch) lead screw, and you want to program in inches. For this application you would
use theSCLD40000,20000 command to establish path motion units in inches: distance is inches,
acceleration is inches/sec/sec, and velocity is inches/sec. Note that all path motion attributes are scaled by
the SCLDvalue.

SCALE1 ; Enable scaling

SCLD40000,20000 ; Set scaling to program in inches:
; Axis 1: 4000 counts/rev * 10 revs/inch = 40000 counts/inch
; Axis 2: 4000 counts/rev * 5 revs/inch = 20000 counts/inch

PV5 ; Set path velocity to 5 inches/sec

PA50 ; Set path acceleration to 50 inches/sec/sec

PAD100 ; Set path deceleration to 100 inches/sec/sec

DEF progl ; Begin definition of path named progl

PAXES1,2 ; Set axes 1 and 2 as the X and Y contouring axes

PABO ; Set to incremental coordinates

PLIN1,1 ; Specify X-Y endpoint position to create a 45 degree
; angle line segment

END ; End definition of path progl

PCOMP progl ; Compile path progl

PRUN progl ; Execute path progl

20 6K Series Command Reference

%

Task ldentifier

Product Rev
6K 5.0

Type Multi-Tasking

Syntax i%<command>

Units i = task number

Range 1-10

Default 1

Response n/a

See Also LOCK, [SWAP], [TASK], TSKAX, TSKTRN, TSWAP, TTASK

Use the Task Identifiep§

prefix to specify that the
associated command widffect
the indicated task number. For
most simple multi-tasking

1%movel

6K Controller

Task Management Program Memory

Supervisor

Assign Task 1 to

applications, theéoprefix is used
to start a program running in a
specific task. For example, the
drawing on the right illustrates
how the1%movelcommand
starts the program called
“movel” in task 1 (specified
with the 1%prefix).

Because theoprefix specifies the task number that the
associated command will affect, new tasks can be

T
'

'

'

'

'

'

'

'

'

- execute the !
.movel" program '
'

'

'

'

'

\

'

'

'

'

'

I

Program: movel
DEF movel

Y
Task 1

END

Execute the
"movel" program. o

6K Controller

started from within other tasks, as shown in the
drawing on the right: >

Within a program in a task, it is not necessary to use
the %prefix unless trying to initiate a program or
command in a different task. For example, iffithe
program running in task 3 executeS@MEXC1
command, only task 3 is placed i@@MEXCmode.

If thefill ~ program running in task 3 also executes a
2%PScommand, task 3 executes the command, but the
program being executed in task 2 is paused, not task 3

Task Management Program Memory

Supervisor
Program: main

Running "main” __/ DEF main
‘ END

Task 1
Execute "movel" 4+——T |

Program: movel
DEF movel

END

1

Task 3

Execute "fill"

How the Task Supervisor Works The “Task Supervisor” (also referred to as Tdsks the main program
execution environment. It contains the command buffer and parser. Immediate commands and commands
executed from the communications buffer are implicitly directed to affect the supervisor unless explicitly
directed to a task with theprefix. Only the supervisor executes buffered commands from the
communications buffer. If the supervisor is executing a program, incoming commands will be buffered, not
executed. If the supervisor is not executing a program, it will execute commands from the input command
buffer, even if the other tasks are executing programs. If a command in the command buffer has a task
prefix, it is still executed by the supervisor, but affects the task specified by the prefix.

Command Descriptions 21

[1] Immediate Command Identifier

Type Operator (Other) Product Rev
Syntax l<command> 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also COMEXC

The Immediate Command Identifier)(changes a buffered command into an immediate command. All
immediate commands are processed immediately, even before previously entered buffered commands.

All 6K Series commands are buffered.

The commands that use thédentifier are identified in th8yntax portion of the command description.

NOTE
A command with the ! prefix cannot be stored in a program.

[@] Global Command Identifier

Type Operator (Other) Product Rev
Syntax @<command><field1> 6K 50
Units n/a

Range n/a

Default n/a

Response n/a

See Also INDAX

The Global Command Identifie@ is used to set the value of all fields to the value entered only in the first
field. For example@Alassigns the value 1 to all axes. All commands with multiple fields are able to use
the Global Command Identifier. If you have any doubts about which commands can @sgrtiiml, refer

to theSyntax portion of the command description.

; Begin Comment

Type Operator (Other) Product Rev
Syntax i<this is a comment> 6K 50
Units n/a

Range n/a

Default n/a

Response n/a

See Also None

The Begin Comment | command is used to comment application programs. The comment begins with a
semicolon () and is terminated by a command delimiter. The comment is not stored in a program. An
example of using the comment delimiter is as follows:

DEFpick ; Begin definition of program pick<cr>

22 6K Series Command Reference

$

Label Declaration

Type Operator (Other) Product Rev
Syntax <I>$<t> 6K 5.0
Units t =text name

Range Text nameof 6 characters or less

Default n/a

Response n/a

See Also DEF, DEL, END, GOSUB,GOTO,JUMP, RUN, TLABEL

The Label Declaratior) command defines the current location as the label specified. A label consists of 6
or fewer alpha-numeric characters and must start with an alpha-character, not a number. Labels can only be
defined within a program or subroutine. TR@ TQGOSURI JUMPcommands can be used to branch to a

label. TheRUNcommand can also be used to start executing statements at a label. The label cannot be
deleted by ®EL command. However, when the program that contains the label is deleted, all labels
contained within the program will be deleted.

NOTE: The maximum number of labels possible is 600.
A label declaration cannot consist of any of the following characters:
!l_l#|$l%,\l&l*l(l)l+|-l{|}l\l|l"l:l;l' l<|>11|' 1?1/1:

NOTE: A label cannot have the same name as a 6K Series command. For esampld$A123 are
illegal labels.

Example
DEF pick
GO01100
IF(VAR1=5)

GOTO pickl
ELSE
GOTO pick2
NIF

$pickl
G00011
BREAK
$pick2
G01001
END

RUN pick

; Begin definition of program called pick
; Initiate motion on axes 1 and 2
; If variable 1 = 5 then do commands between IF and ELSE,
; otherwise commands between ELSE and NIF
; Goto label pickl
; Else part of IF command
; Goto label pick2
; End IF command
; Label declaration for pickl
; Initiate motion on axes 3 and 4
; Break out of current subroutine or program
; Label declaration for pick2
; Initiate motion on axes 1 and 4
; End program definition
; Execute program named pick

Command Descriptions 23

[#] Step Through a Program

Type Operator (Other) Product Rev
Syntax #<i> 6K 5.0
Units i =number of commandsto execute from the buffer

Range i =1- 200

Default 1

Response n/a

See Also DEF, HELP, STEP, TRACE, TRANS

This command controls the execution of a program or sequence when the single step mode is enabled
(STEPIJ). Each time you enter the<i> command followed by a delimitdr,commands in the sequence
buffer will be executed. A¢ followed by a delimiter will cause one command to be executed.

Single step mode can be advantageous when trying to debug a program.

Example:

DEF tst ; Begin definition of program named tst

@Vi ; Set velocity to 1 unit/sec on all axes

@A10 ; Set acceleration to 10 units/sec/sec on all axes

D1,2,3,4 ; Set distance to 1 unit on axis 1, 2 units on axis 2,
; 3 units on axis 3, and 4 units on axis 4

G0O1101 ; Initiate motion on axes 1, 2, and 4

OUT11X1 ; Turn on on-board programmable outputs 1, 2, and 4,
; leave 3 unchanged

END ; End program definition

STEP1 ; Enable single step mode

RUN tst ; Execute program named tst

NOTE: After entering the commarRUNno action will occur because single step mode has been enabled.
Single step operation is as follows:

1#2 ; First 2 commands in the program tst are executed,
; commands to be executed are @V1 and @A10.
I# ; Execute 1 command from program; command to execute is D1,2,3,4
#1 ; Execute 1 command from program; command to be executed is GO1101
1#2 ; Execute 2 commands from program; commands to be executed are

; OUT11X1 and END

Enter Interactive Data

Type Operator (Other) Product Rev
Syntax '<numeric data> 6K 5.0
Units Numeric data is command-dependent

Range Numeric data is command-dependent

Default n/a

Response n/a

See Also [READ], VARI, VARS

To enter data interactively, two operations must occur. First, numeric information must be requested.
Requesting the numeric information is accomplished wittvkRx=READycommand. The specifies the
numeric variable to place the data into, andytlspecifies the string variable to transmit before the data is
entered. Numeric information can also be requested by placiEtkiscommand in place of a command
argument (e.gA(READ1),12.52,(READ2),5.62). After the data has been requested, a numeric response
must be provided. The numeric response must be preceded by the interactive data $peafier (

followed by a delimiter (<cr> or <If>).

Command processing will pause while waiting for data.

Example:
VARS1="Enter the count > " ; Set string variable 1 equal to the message
VAR5=READ1 ; Transmit string variable 1, and wait for numeric data in the
; form of !'<data>. Once numeric data has been received, place
; it in numeric variable 5
1'65.12 : Variable 5 will receive the value 65.12

24 6K Series Command Reference

[.] Bit Select

Type Operator (Other) Product Rev
Syr_1tax _<com_mand>.i 6K 5.0
Units i =bit number
Range Command-dependent
Default None
Response n/a
See Also [AS], [ER], ERROR[IN], INEN, INLVL, [INO], INTHW, LHLVL,
[LIM], [MOV, ONIN, ONUS,OUT, OUTEN, OUTLVL, POUT,[SS], TAS,

TER, TIN, TINO, TINT, TLIM, TOUT, TSS, TUS, [US]

The Bit Select.() operator specifies which bit to select. The primary purpose of this command is to let the
user specify a specific bit (or range), instead of having to type in an entire bit string.

When using the bit operator in a comparison, the bit operator must always come to the left of the
comparison. For example, the commamdAS.12=b1) s legal, bultF(b1=1AS.12) s illegal.

Command Shortcut Examples(affect only one binary bit location)

« Activate outputs at I/O location Brick 3, /0 point 9: 30UT.9=1
» Enable analog input at I/O location Brick 2, I/O poin2 2NIEN.2=E

» Enable error-checking bit 6 for task 3: 3%ERROR.6=1
Example:
VARB2=ER.12 ; Error status bit 12 assigned to binary variable 2
VARB2 ; Response (if bit 12 is set to 1):

7 FVARB2=X XXX XXXX_XXXL_XXXX_XXXX XXX XXXX_XXXX

20UT.5=1 ; Activate the output at location Brick 2, 1/0 point 5
["] Begin and End String
Type Operator (Other) Product Rev
Syntax "<message>" (see below for possibilities) 6K 5.0
Units n/a
Range n/a
Default n/a
Response n/a

See Also DWRITE, VARS, WRITE, WRVARS

There are three commands that deal with string variables, or messages. The first of these commands is the
VARScommand. This command sets a string variable equal to a specific messayaRS1=Enter

part count"). The message must be placed in quotes for it to be recognized. The same can be said for the
WRITEandDWRITEcommands. Their messages must also be placed in quote®V@TE, Today is the

first day of the rest of your life").

Syntax possibilities: VARSn="<message>" wheren equals the string variable number
WRITE"<message>"
DWRITE"<message>"

There are three ASCII characters that cannot be used within the qudtear{d;). These characters can
be specified in the string by using the backslash charagtear ¢ombination with the ASCII decimal value
for the character. For example, if you wanted to display the me8s&p&SKWHY"in quotes, you would
use the following syntaxvVRITE"\34WHY ASKWHY\34".

An ASCII table is provided in Appendix B. Common characters and their ASCII equivalent value:

Character Description ASCII Decimal Value
<If> Line Feed 10
<cr> Carriage Return 13
" Quote 34
: Colon 58
; Semi-colon 59
\ Backslash 92 (cannot be used with DWRITE

Command Descriptions 25

[\] ASCII Character Designator

Type Operator (Other) Product Rev
Syntax See below 6K 5.0
Units n/a
Range n/a
Default n/a

Response n/a
See Also VARS, WRITE, WRVARS

The ASCII Character Designatar)(operator is used to place a character in a string that is normally not
represented by a keyboard character. Th@gperator can be used within tYiaRSor thewRITE
commands. The syntax for the) operator is as follows:

WRITE"<i>" , Where<i> is the ASCII decimal equivalent of the character to be placed in the string.
VARS1="\<i>" , Where<i> is the ASCII decimal equivalent of the character to be placed in the string.

There are three ASCII characters that cannot be used within the quatear{d"). These characters must
be specified in the string by using the backslash charagtar ¢ombination with the ASCII decimal value
for the character.

An ASCII table is provided in Appendix B. Common characters and their ASCII equivalent value:

Character Description ASCII Decimal Value
<If> Line Feed 10
<cr> Carriage Return 13
" Quote 34
Colon 58
; Semi-colon 59
\ Backslash 92

Example:
WRITE"cd\92AT6400\13\10" ;Displays: cd\AT6400<cr><If>

[=] Assignment or Equivalence

Type Operator (Mathematical or Relational) Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [>].[>=],[<].[<=].[<>],[AND], IF, [OR],

UNTIL, VAR, VARB, VARI, VARS, WAIT, WHILE

The assignment or equivalence operatdig used to either assign a value to a variable, or compare two
values and/or variables. The) (operator is limited to 1 assignment operation per line. It is acceptable to
stateVAR1=25, but it is unacceptable to stataR1=25=VAR2

More than 1 equivalence operator can be used in a command; however, the total number of relational
operators used in a line is limited by the command length limitation (80 characters), not the number of
relational operators (e.g., the commam@AR1=1 ANDVAR2=4 ANDVAR3=4) is a legal command).

When €) is used as an assignment operator, it can be used with these commandsRI, VARB VARS
When €) is used as an equivalence operator, it can be used with these command4iLE, UNTIL,
WAIT.

26 6K Series Command Reference

[>] Greater Than

Type Operator (Relational) Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also =], [>=1, [<1, [<=1, [<=1, [AND], IF, [OR], UNTIL, WAIT,

WHILE

The greater thar-] operator is used to compare two values. If the value on the left of the operator is
greater than the value on the right of the operator, then the expresERIJESIf the value on the left is
less than or equal to the value on the right of the operator, then the expreBgibBEs The greater than
operator ¥) can only be used to compare two values.

More than onex) operator can be used within a single command; however, the total command length is
limited to 80 characters.

The ¢) operator can be used in conjunction with ifheWHILE, UNTIL, andWAIT commands.

Examples of valid commands dr¢VAR1>1) andWHILE(VAR1>1 ANDVAR2>3). An example of an
invalid command i$F(5>VAR1>1) .

[>=] Greater Than or Equal
Type Operator (Relational) Product Rev
Syntax See below 6K 5.0
Units n/a
Range n/a
Default n/a
Response n/a
See Also =], [>], [<] [<=1 [<>], [AND], IF, [OR], UNTIL, WAIT,
WHILE

The greater than or equak) operator is used to compare two values. If the value on the left of the
operator is greater than or equal to the value on the right of the operator, then the exprER&ianlfshe
value on the left is less than the value on the right of the operator, then the exprds&ldBHSThe
greater than or equal operater) can only be used to compare two values.

More than onex=) operator can be used within a single command; however, the total command length is
limited to 80 characters.

The ¢=) operator can be used in conjunction with theWHILE, UNTIL, andWAIT commands.

Examples of valid commands dVAR1>=1) andWHILE(VAR1>=1 ANDVAR2>=3). An example of an
invalid command i$F(5>VAR1>=1) .

[<] Less Than
Type Operator (Relational) Product Rev
Syntax See below 6K 5.0
Units n/a
Range n/a
Default n/a
Response n/a
See Also =1, [>, [>=1, [<=1, [<=1, [AND], IF, [OR], UNTIL, WAIT,
WHILE

The less thank{) operator is used to compare two values. If the value on the left of the operator is less than
the value on the right of the operator, then the expressitRUE If the value on the left is greater than or
equal to the value on the right of the operator, then the expres$§idh & The less than operater)(can

only be used to compare two values.

Command Descriptions 27

More than one<) operator can be used within a single command; however, the total command length is
limited to 80 characters.

The) operator can be used in conjunction with ltheWHILE, UNTIL, andWAIT commands.

Examples of valid commands ar¢VAR1<1) andWHILE(VAR1<1 ANDVAR2<3). An example of an
invalid command i$F(1<VAR1<54)

[<=] Less Than or Equal
Type Operator (Relational) Product Rev
Syntax See below 6K 5.0
Units n/a
Range n/a
Default n/a
Response n/a
See Also [=]1 [>)] [<] [>=] [<>] [AND], IF, [OR], UNTIL, WAIT,
WHILE

The less than or equal<) operator is used to compare two values. If the value on the left of the operator is
less than or equal to the value on the right of the operator, then the expre$&tlkidf the value on the

left is greater than the value on the right of the operator, then the expre$sirSiE The less than or

equal operator<E) can only be used to compare two values.

More than one4=) operator can be used within a single command; however, the total command length is
limited to 80 characters.

The =) operator can be used in conjunction with theWHILE, UNTIL, andWAIT commands.

Examples of valid commands dr§VAR1<=1) andWHILE(VAR1<=1 ANDVAR2<=3). An example of an
invalid command i$F(1<VAR1<=54)

[<>] Not Equal

Type Operator (Relational) Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [=] [>=] [<] [<=] [AND], IF, [OR], UNTIL, WAIT, WHILE

The not equal«>) operator is used to compare two values. If the value on the left of the operator is not
equal to the value on the right of the operator, then the expres3iBUE If the value on the left is equal
to the value on the right of the operator, then the expressioALISE The not equal operatotx) can only
be used to compare two values.

More than one<>) operator can be used within a single command; however, the total command length is
limited to 80 characters.

The >) operator can be used in conjunction with theWHILE, UNTIL, andWAIT commands.

Examples of valid commands d¢VAR1<>1) andWHILE(VAR1<>1 ANDVAR2<=3). An example of an
invalid command i$F(1<VAR1<>54)

28 6K Series Command Reference

[()] Operation Priority Level

Type Operator (Mathematical) Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [=1L, [-1 [*1L [/ [SQRT], VAR,VARI

The Operation Priority Level operators determines which operation to do first in a mathematical expression.
For example, if you want to add 5 to 6 times 3, you can spesiR1=6*3+5 or VAR1=5+ (6*3)

More than one set of parentheses can be used in a mathematical expression; however, they cannot be nested
(e.9.VAR1=(VAR2* 3) * (3 + VAR4)).

[+] Addition

Type Operator (Mathematical) Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [=1L, [TO) [-1 [*) [/]1 [SQRT, VAR,VARI, VARB

The addition €) operator adds the value to the left of the operator with the value to the right of the operator.
The addition operator can only be used in conjunction witvareVARI andvVARBcommands.

The total command length must be less than 80 characters. The order of precddérogiight. The
Operation Priority Level ()) operators can be used; however, they cannot be nested.

Examples of valid command&/AR1=1+2+3+4+5+6+7+8+9
VAR2=VAR1+1+(5*3)
VARB1=b1101 + b11001

[-] Subtraction

Type Operator (Mathematical) Product Rev
Syntax See Below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [=1L, [0 [+ [*) [/1 [SQRT, VAR,VARI, VARB

The subtraction-() operator subtracts the value to the right of the operator from the value to the left of the
operator. The subtraction operator can only be used in conjunction witARe¢ARI andVARB
commands.

The total command length must be less than 80 characters. The order of precddérogiight. The
Operation Priority Level ()) operators can be used; however, they cannot be nested.

Examples of valid command $AR1=1-2-3-4-5-6-7-8-9

VAR2=VAR1-1+(5*3)
VARB1=b111101 - b11001

Command Descriptions 29

[*] Multiplication

Type Operator (Mathematical) Product Rev
Syntax See Below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [=L 101 [+, [-1 [/1 [SOQRT, VAR,VARI, VARB

The multiplication {) operator multiplies the value to the right of the operator with the value to the left of
the operator. The multiplication operator can only be used in conjunction wMAB®ARI andVARB
commands\{ARI integer values are truncated).

The total command length must be less than 80 characters. The order of precddérogiight. The
Operation Priority Level ()) operators can be used; however, they cannot be nested.

Examples of valid commands/AR1=1*2*3*4*5*6*7*8*9
VAR2=VAR1-1+(5*3)
VARB1=b111101 * b11001

[/] Division

Type Operator (Mathematical) Product Rev
Syntax See Below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [=1, 101 [+1L [-1 [*1 [SQRT, VAR,VARI, VARB

The division () operator divides the value to the left of the operator by the value on the right of the operator.
The result of the division is specified to five decimal plas#sR({ integer variables are truncated). The
division operator can only be used in conjunction withwhBandvVARBcommands.

The total command length must be less than 80 characters. The order of precddérogiight. The
Operation Priority Level ()) operators can be used; however, they cannot be nested.

Examples of valid commands/AR1=1/2/3/4/5/6/7/8/9
VAR2=VAR1-1/(5*3)

VARB1=b111101/ b11001 DIVISION BY ZERO IS NOT ALLOWED.
[&] Boolean And
Type Operator (Bitwise) Product Rev
Syntax See Below 6K 5.0
Units n/a
Range n/a
Default n/a
Response n/a
See Also [=1L0IL[~) ("] [<<][>>1] VAR, VARI, VARB

The Boolean And&) operator performs a logical AND on the two values to the left and right of the
operator when used with tv&Ror VARI command. The Boolean Ang)(performs a bitwise AND on the
two values to the left and right of the operator when used witiAR8command.

For a logical AND (usingyARor VARI), the possible combinations are as follows:

positive numbeg positive number =1
positive numbeg zero or a negative number =0
zero or negative numbé&rpositive number =0
zero or negative numb@&rzero or negative number =0
Example: VAR1=5&-1

Result: VAR1=0

30 6K Series Command Reference

For a bitwise AND (usin¢yARB), the value on the left side of tReperator has each of its bits ANDed
with the corresponding bit of the value on the right side of the operator. Each bit comparison will be
composed of 9 possible combinations:

1&1=1
1&0=0
0&1=0
0&0=0
X&X=X

Example:

1&X=X
X&1=X
0&X=0
X&0=0

VARB1=b0000 1000 & bh1000 1011 1

Response tYARB1is *VARB1=0000_1000_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX

Example: VARB1=h32FD& h23
Response t¥ARBL1is *VARB1=0100_0100_0000_0000_0000_0000_0000_0000

Example: VARB1=h23& b1101
Response tYARBL1is *VARB1=0100_XX00_0000_0000_0000_0000_0000_0000

The total command length must be less than 80 characters. The order of precddénogight. The
Operation Priority Level ()) operators can be used; however, they cannot be nested.

[1]

Boolean Inclusive Or

Type Operator (Bitwise) Product Rev
Syntax See Below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [=1, [&L [~ ["] [<<] [>>] VAR,VARI, VARB

The Boolean Inclusive Of } operator performs a logical OR on the two values to the left and right of the
operator when used with t#Ror VARI command. The Boolean Inclusive Q) performs a bitwise OR
on the two values to the left and right of the operator when used witthttgcommand.

For a logical OR (usingARor VARI), the possible combinations are as follows:

positive numbef positive number =1
positive numbef zero or a negative number =1
zero or negative numbegrpositive number =1
zero or negative numbegrzero or negative number =0
Example: VAR1=5| -1

Result: VAR1=1

For a bitwise OR (usingARB, the value on the left side of theoperator has each of its bi&Redwith the
corresponding bit of the value on the right side of the operator. Each bit comparison will be composed of 9
possible combinations:

11 1=1 1] X=1

1]0=1 X| 1=1

0] 1=1 0] X=X

0] 0=0 X] 0=X

X| X=X

Example: VARB1=b100101X1 XX11| b1000 1011 10

Response tYARB1is *VARB1=1001_1111 1X11 XXXX_XXXX_XXXX_XXXX_XXXX

Example: VARB1=h1234| hFAD31
Response tYARB1is *VARB1=1111_0101_1111 1110 _1000_0000_0000_0000

Example: VARB1=h23| b1101 001X 001X 1X11
Response tYARB1is *VARB1=1101_111X_001X_1X11 XXXX_XXXX_XXXX_XXXX

The total command length must be less than 80 characters. The order of precddérogiight. The
Operation Priority Level ()) operators can be used; however, they cannot be nested.

Command Descriptions 31

Boolean Exclusive Or

[*]

Type Operator (Bitwise) Product Rev
Syntax See Below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [=1, [&L [~L [115 [<<1l [>>] VAR, VARI, VARB

The Boolean Exclusive Of) operator performs a logical exclusive OR on the two values to the left and right
of the operator when used with tiaRor VARI command. The Boolean Exclusive @) performs a bitwise
exclusive OR on the two values to the left and right of the operator when used wWikRiBeommand.

For a logical exclusive OR (usingpRor VARI), the possible combinations are as follows:

positive numbef paositive number =0
positive numbef zero or a negative number £
zero or negative numberpositive number =1
zero or negative numberzero or negative number 8

VAR1=5" -1
VAR1=1

Example:
Result:

For a bitwise exclusive OR (usiMARB, the value on the left side of theoperator has each of its bits
exclusiveORedwith the corresponding bit of the value on the right side of the operator. Each bit
comparison will be composed of 9 possible combinations:

171=0 17 X=X

170=1 XA 1=X

or1=1 0/ X=X

070=0 XA 0=X

XA X=X

Example: VARB1=b0000 1111 XXX1" b10XX 10XX 10XX

Response tWARB1iS *VARBL=10XX_01XX_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX

Example: VARB1=h32FD" h6A
Response t¥ARBL1is *VARB1=1010_0001_1111_1011_0000_0000_0000_0000

Example: VARB1=h7FFF” b1101 1111 0000 1101
Response tWARB1is *VARB1=0011_0000_1111 0010 XXXX_XXXX_XXXX_XXXX

The total command length must be less than 80 characters. The order of precddénogight. The
Operation Priority Level ()) operators can be used; however, they cannot be nested.

[~()] Boolean Not

Type Operator (Bitwise) Product Rev
Syntax See Below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [=1, [&L [L [11) [<<1 [>>] VAR,VARI, VARB

The Boolean Not~) operator performs a logical NOT on the value immediately to its right when used with
theVARor VARI command. The Boolean NO¥F)(performs a bitwise NOT on the value immediately to its
right when used with theARBcommand. Parenthese§ () are required.

For a logical NOT (usin§yARor VARI), the possible combinations are as follows:

~ (positive number = 0
~ (zero or a negative number 1
Example: VAR1=~(5) ; Result:VAR1=0

Example: VAR1=~(-1) ; Result:vAR1=1

32 6K Series Command Reference

For a bitwise NOT (usingARB, each bit iNOTed

Example: VARB1=~(b0000 1000 1XX1)
Response tWARB1iS *VARB1=1111_0111_0XX0_XXXX_XXXX_XXXX_XXXX_XXXX

Example: VARB1=~(h32FD)
Response t¥ARB1is *VARB1=0011_1011_0000_0100_1111 1111 1111 1111

The total command length must be less than 80 characters. The order of precddénoeight.

The Boolean Not~) operator also has one additional use. It can be used to change the sign of the distance
(D) command. (e.g., if the distance has the vatDe25000,+25000,+12000,-123000).

By issuingD~,~,~,~ the new values for distance would4pe25000,-25000,-12000,+123000

[<<] Shift from R to L (Bit 32 to Bit 1)

Type Operator (Bitwise Product Rev
Syntax See Below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [=1, [&L [“L [1L [~1 [>>] VAR, VARI, VARB

The Shift R to L €£<) operator shifts a binary value from right to left (reducing its value) the number of bits
specified. Zeros are shifted into the most significant bit locations. The number of bits to shift by is specified
with the value immediately to the right of the<] operator, 32 maximum. The number of places to shift

must be specified in either binary or hexadecimal forri&ie pits in the binary variable are displayed

from 1 to 32, left to right, and shifting from right to left causes bits to be shifted from 32 to 1.

Example: VARB1=b0000 1000 1XX1 << b01
Response tWARB1is *VARB1=0010_001X_X1XX_XXXX_XXXX_XXXX_XXX_XX00

Example: VARB1=b11110000 1111 << b001
Response tYARB1is *VARB1=0000_1111_XXXX_XXXX_XXXX_XXXX_XXXX_0000

Example: VARB1=h0000 E3 << hA
Response t¥ARBL1is *VARB1=0000_0001_1111_0000_0000_0000_0000_0000

The total command length must be less than 80 characters. The order of precddériogiight .

[>>] Shift from L to R (Bt 1 to Bit 32)

Type Operator (Bitwise) Product Rev
Syntax See Below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [=1, [&L [“L [15L [~1 [<<] VAR, VARI, VARB

The Shift L to R $#>) operator shifts a binary value from left to right (increasing its value) the number of
bits specified. Zeros are shifted into the least significant bit locations. The number of bits to shift by is
specified with the value immediately to the right of tie) (operator, 32 maximum. The number of places
to shift must be specified in either binary or hexadecimal forrhhe pits in the binary variable are
displayed from 1 to 32, left to right, and shifting from left to right causes bits to be shifted from)1 to 32.

Example: VARB1=b0000 1000 1XX1 >> b01
Response tWARB1is *VARB1=0000_0010_001X_XIXX_XXXX_XXXX_XXXX_XXXX

Example: VARB1=b11110000 1111 >> b001
Response tYARB1is *VARB1=0000_1111_0000_1111_XXXX_XXXX_XXXX_XXXX

Example: VARB1=h45FA2 >> h4
Response t¥ARBL1is *VARB1=0000_0010_1010_1111 0101_0100_0000_0000

The total command length must be less than 80 characters. The order of precddériogiight .

Command Descriptions 33

[Send Response to Both Communication Ports

Type Communication Interface Product Rev
Syntax <I>[<command><field1> 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also BOT, PORT,], ECHO, EOL, EOT, LOCK

The Send Response to All Porfs)(command is used to send the response from the command which
follows it to all communication ports. If a syntax error occurs, an error message will be sent to both
communication ports.

NOTE: COML1 refers to the “RS-232" or “ETHERNET” connector, and COM2 refers to the “RS-232/485"
connector.

Example

[TER ;Transfer TER Status to both serial ports

] Send Response to Alternate Communication Port

Type Communication Interface Product Rev
Syntax <I>] <command><field1> 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also BOT, PORT, [, ECHO, EOL, EOT, LOCK

The Send Response to Alternate Pprt ¢ommand is used to send the response from the command which
follows it to the alternate port from the one selected. If a report back is requested from port COM1, the
response will be sent out port COM2, and vice-versa. If a command is in a stored program, the report will
be sent out the alternate port from the one selected IBQRIcommand. If a syntax error occurs an error
message will be sent to the alternate port from the one selected.

NOTE: COML1 refers to the “RS-232" or “ETHERNET” connector, and COM2 refers to the “RS-232/485"
connector.

Example

; In this example, we place the "]TAS" statement in a program so that

; we can select the port (in this case, "PORT1" selects COM1) as a

; reference. Otherwise, executing "]TAS" outside of a program merely

; sends the response to whatever port you are hot communicating through.

DEF COM ; Begin definition of program called "COM"
PORT1 ; Select COM1

TER ; Transfer TER Status to port COM1

JTAS ; Transfer TAS Status to port COM2

END ; End program definition

34 6K Series Command Reference

A Acceleration

Type Motion Product Rev
Syntax <I><@><a>A<r>,<r>,<r><r>,<r> <r>,<r> <r> 6K 50
Units r = units/sec/sec

Range 0.00001 - 39,999,998 (depending on the SCLA scaling factor)

Default 10.0000

Response A: *A10.0000,10.0000,10.0000,10.0000 ...
1A: *A10.0000

See Also [A], AA AD, ADA, DRES, ERES, GO, MC, SCALE, SCLA, TSTAT

The Acceleration4) command specifies the acceleration rate to be used upon executing the @t go (
command.

UNITS OF MEASURE andSCALING : refer to page 16. |

The acceleration remains set until you change it with a subsequent acceleration command. Accelerations
outside the valid range are flagged as an error, with a messa@eID DATA-FIELD x, where x is the
field number. When an invalid acceleration is entered the previous acceleration value is retained.

If the DecelerationAD) command has not been entered, the accelera&jao(mand will set the
deceleration rate. Once the decelerati®i) command has been entered, the acceleratjocofnmand no
longer affects deceleration.

ON-THE-FLY CHANGES : You can change acceleration the fly(while motion is in progress) in two
ways. One way is to send an immediate acceleration commsantbllowed by an immediate go command
('GO). The other way is to enable the continuous command execution @OMEKCland execute a
buffered acceleration comman) followed by a buffered go comman@dq.

Example:
SCALE1 ; Enable scaling
SCLA25000,25000,1,1 ; Set the acceleration scaling factor for axes 1 & 2 to
; 25000 steps/unit, axes 3 & 4 to 1 step/unit
SCLV25000,25000,1,1 ; Set the velocity scaling factor for axes 1 & 2 to
; 25000 steps/unit, axes 3 & 4 to 1 step/unit

@SCLD1 ; Set the distance scaling factor for all axes to
; 1 step/unit

DEL proga ; Delete program called proga

DEF proga ; Begin definition of program called proga

MAO0000 : Incremental index mode for all axes

MCO0000 : Preset index mode for all axes

A10,12,1,2 : Set the acceleration to 10, 12, 1, & 2 units/sec/sec
;foraxes 1,2,3&4

v1,1,1,2 ; Set the velocity to 1, 1, 1, & 2 units/sec for

;axes 1, 2, 3 & 4, respectively
D100000,1000,10,100 : Set the distance to 100000, 1000, 10, & 100 units for

;axes 1,2,3&4
G0O1100 : Initiate motion on axes 1 and 2, 3 and 4 do not move
END ; End definition of program called proga

Command Descriptions 35

[A] Acceleration Assignment

Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units units/sec/sec

Range 0.00001 - 39,999,998 (depending on the scaling factor)

Default n/a

Response n/a
See Also A, AA, AD, ADA, DRES, ERES, GO, SCALE, SCLA

The acceleration assignment command is used to compare the programmed acceleration value to another
value or variable, or to assign the current programmed acceleration to a variable.

Syntax: VARn=aA wheren is the variable number, aads the axis number, @ can be used in an
expression such a5(1A<25@@@) . When assigning the acceleration value to a variable, an
axis specifier must always precede the assignm¢mmmand or it defaults to axis 1 (e.g.,
VAR1=14). When making a comparison to the programmed acceleration, an axis specifier must
also be used (e.gR(1A<2@@@@)). The @) value used in any comparison, or in any
assignment statement is the programnigdélue.

UNITS OF MEASURE andSCALING: refer to page 16.

Example:
IF(2A<25000) ; If the acceleration on axis 2 is less than 25000 units/sec/sec,
: then do the statements between the IF and NIF
VAR1=2A*2 ; Variable 1 = acceleration of axis 2 times 2
A,(VAR1) ; Set the acceleration on axis 2 to the value of variable 1
NIF : End the IF statement
AA Average Acceleration
Type Motion (S-Curve) Product Rev
Syntax <I><@><a>AA<I>,<r>,<r>,<r> <r> <r> <r>,<r> 6K 5.0
Units r = units/sec/sec
Range 0.00001 - 39,999,998 (depending on the scaling factor)
Default 10.00 (trapezoidal profiling is default, where AAtracks A)

Response AA: *AA10.0000,10.0000,10.0000,10.0000
1AA: *1AA10.0000

See Also A, AD, ADA, SCALE, SCLA

The Average Acceleratiomf) command allows you to specify the average acceleration for an S-curve
motion profile. S-curve profiling provides smoother motion control by reducing the rate of change in
acceleration and deceleration; this accel/decel rate of change is knfask Befer to page 13 for details on
S-curve profiling.

Scaling affects the average acceleratiy (he same as it does for the maximum acceleratiprRefer to
page 16 for details on scaling.

ON-THE-FLY CHANGES : You can change acceleration the fly(while motion is in progress) in two
ways. One way is to send an immediate acceleration comriaexgfollowed by an immediate go
command!GO). The other way is to enable the continuous command execution @OMEKCland
execute a buffered acceleration commaxy {ollowed by a buffered go comman@d.

Example:

; In this example, axis 1 executes a pure S-curve and takes 1 second
; to reach a velocity of 5 rps; axis 2 executes a trapezoidal profile

; and takes 0.5 seconds to reach a velocity of 5 rps.

SCALEO ; Disable scaling

DEL proga ; Delete program called proga

DEF proga ; Begin definition of program called proga

@MAO ; Select incremental positioning mode
@D40000 ; Set distances to 40,000 positive-direction steps
A10,10 ; Set max. accel to 10 rev/sec/sec (axes 1 and 2)

36 6K Series Command Reference

AA5,10 ; Set avg. accel to 5 rev/sec/sec on axis 1,
: and 10 rev/sec/sec on axis 2

AD10,10 ; Set max. decel to 10 rev/sec/sec (axes 1 and 2)
ADA5,10 ; Set avg. decel to 5 rev/sec/sec on axis 1,
: and 10 rev/sec/sec on axis 2
V5,5 ; Set velocity to 5 rps on axes 1 and 2
G011 : Execute motion on axes 1 and 2
END ; End definition of program called proga
AD Deceleration
Type Motion Product Rev
Syntax <I><@><a>AD<r>,<r> <r>,<r>,<r>,<r> <r> <r> 6K 5.0
Units r = units/sec/sec
Range 0.00001 - 39,999,998 (depending on the scaling factor)
Default 10.0000 (AD tracks A)

Response AD: *AD10.0000,10.0000,10.0000,10.0000 ...
1AD: *AD10.0000

See Also [Al, A, AA, ADA, DRES, ERES, GO, MC, SCALE, SCLA, TSTAT

The DecelerationAD) command specifies the deceleration rate to be used upon executing the @&t go (
command.

UNITS OF MEASURE andSCALING : refer to page 16. |

The deceleration remains set until you change it with a subsequent deceleration command. Decelerations
outside the valid range are flagged as an error, with a messageID DATA-FIELD x, wherex is the
field number. When an invalid deceleration is entered the previous deceleration value is retained.

If the decelerationAD) command has not been entered, the acceler&jaofhmand will set the
deceleration rate. Once the decelerati®) command has been entered, the acceleratjocofnmand no
longer affects deceleration. If ti@® command is set to zeralg, then the deceleration will once again
track whatever th& command is set to.

ON-THE-FLY CHANGES : You can change deceleration the fly(while motion is in progress) in two
ways. One way is to send an immediate deceleration comrzampfollowed by an immediate go
command!GO). The other way is to enable the continuous command execution @OMEKCland
execute a buffered deceleration commaxm) followed by a buffered go commandq.

Example:
SCALE1 ; Enable scaling
SCLA25000,25000,1,1 ; Set the acceleration scaling factor for axes 1 and 2 to
; 25000 steps/unit, axes 3 and 4 to 1 step/unit
SCLV25000,25000,1,1 ; Set the velocity scaling factor for axes 1 and 2 to
; 25000 steps/unit, axes 3 and 4 to 1 step/unit

@SCLD1 ; Set the distance scaling factor for all axes to 1 step/unit

DEL proga ; Delete program called proga

DEF proga ; Begin definition of program called proga

MAO0000 : Incremental index mode for all axes

MCO0000 : Preset index mode for all axes

A10,12,1,2 : Set the acceleration to 10, 12, 1, and 2 units/sec/sec
; for axes 1, 2, 3 and 4, respectively

AD1,1,1,2 : Set the deceleration to 1, 1, 1, and 2 units/sec/sec for
;axes 1, 2, 3 and 4, respectively

v1,1,1,2 ; Set the velocity to 1, 1, 1, and 2 units/sec for axes

; 1, 2, 3 and 4, respectively
D100000,1000,10,100 ; Set the distance to 100000, 1000, 10, and 100 units for
;axes 1, 2, 3 and 4, respectively
G0O1100 ; Initiate motion on axes 1 and 2, 3 and 4 do not move
END ; End definition of program called proga

Command Descriptions 37

[AD] Deceleration Assignment

Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units units/sec/sec

Range 0.00001 - 39,999,998 (depending on the scaling factor)

Default n/a

Response n/a

See Also [Al, A, AA,/ AD, ADA, DRES, ERES, GO, SCALE, SCLA

The deceleration assignment command is used to compare the programmed deceleration value to another
value or variable, or to assign the current programmed deceleration to a variable.

Syntax: VARn=aADwheren is the variable number, aads the axis number, D] can be used in an
expression such a5(1AD<25@@@) . When assigning the deceleration value to a variable, an
axis specifier must always precede the assignn@¢dmmand or it defaults to axis 1 (e.g.,
VAR1=1AD. When making a comparison to the programmed deceleration, an axis specifier
must also be used (e.t0F(LAD<2@@@@)). The @D) value used in any comparison, or in any
assignment statement is the programnadg yalue.

UNITS OF MEASURE andSCALING : refer to page 16.

Example:
IF(2AD<25000) : If the deceleration on axis 2 is less than 25000 units/sec/sec,
: then do the statements between the IF and NIF

VAR1=2AD*2 : Variable 1 = deceleration of axis 2 times 2

AD,(VAR1) : Set the deceleration on axis 2 to the value of variable 1

NIF : End the IF statement

ADA Average Deceleration

Type Motion (S-Curve) Product Rev
Syntax <I><@><a>ADASI> <r>,<r>,<r> <r> <r> <r>,<r> 6K 5.0
Units r = units/sec/sec

Range 0.00001 - 39,999,998 (depending on the scaling factor)

Default 10.00 (ADAtracks AA)

Response ADA: *ADA10.0000,10.0000,10.0000,10.0000 ...
1ADA: *1ADA10.0000

See Also A, AA, AD, SCALE, SCLA

The Average DecelerationA command allows you to specify the average deceleration for an S-curve
motion profile. S-curve profiling provides smoother motion control by reducing the rate of change in
acceleration and deceleration; this accel/decel rate of change is knjask Befer to page 13 for details on
S-curve profiling.

Scaling affects the average acceleratiy (he same as it does for the maximum acceleratiprRefer to
page 16 for details on scaling.

ON-THE-FLY CHANGES : You can change deceleration the fly(while motion is in progress) in two
ways. One way is to send an immediate deceleration comrizawl) (followed by an immediate go
command!GO). The other way is to enable the continuous command execution @OMEKCland
execute a buffered deceleration commaxly followed by a buffered go comman@d.

In the example below, axis 1 executes a pure S-curve and takes 1 second to return to zero velocity; axis 2
executes a trapezoidal profile and takes 0.5 seconds to return to zero velocity.

Example:

SCALEO ; Disable scaling

DEL proga ; Delete program called proga

DEF proga ; Begin definition of program called proga

@MAO ; Select incremental positioning mode
@D40000 ; Set distances to 40,000 positive-direction steps

38 6K Series Command Reference

A10,10 ; Set max. accel to 10 rev/sec/sec (axes 1 and 2)

AA5,10 ; Set avg. accel to 5 rev/sec/sec on axis 1,
: and 10 rev/sec/sec on axis 2
AD10,10 ; Set max. decel to 10 rev/sec/sec (axes 1 and 2)
ADA5,10 ; Set avg. decel to 5 rev/sec/sec on axis 1,
: and 10 rev/sec/sec on axis 2
V5,5 ; Set velocity to 5 rps on axes 1 and 2
G011 : Execute motion on axes 1 and 2
END ; End definition of program
ADDR Multiple Unit Auto-Address
Type Controller Configuration Product Rev
Syntax <I>ADDR<i> 6K 5.0
Units i = axis number
Range 0to 99
Default 0

Response ADDR: *ADDRO
See Also BAUD, E, PORT

The ADDRcommand automatically configures unit addresses for a daisy-chain or multi-drop. This command
allows up to 99 units on a chain to be uniquely addressed.

The ADDRvalue is stored in non-volatile memory.

RS-232C Daisy Chain:
SendingADDRI to the first unit in the chain sets its address t@)be The first unit in turn transmits
ADDR(i + 1) to the next unit to set its addresgito+ 1) . This continues down the daisy chain until
the last unit ofn) daisy-chained units has its address s@tte n) .

RS-485 Multi-Drop:
To use theADDRcommand, you must address each unit individually before it is connected on the multi

drop. For example, given that each product is shipped configured with address zero, you could set up
a 4-unit multi-drop with the commands below, and then connect them in a multi drop:

Connect the unit that is to be unit #1 and transmi@gthkdDRicommand to it.
Connect the unit that is to be unit #2 and transmi@thedDR2Zommand to it.
Connect the unit that is to be unit #3 and transmi@gthkdDRITommand to it.
Connect the unit that is to be unit #4 and transmi@thedDR4ommand to it.

PondE

If you need to replace a unit in the multi drop, sendzh&DDRicommand to it, wherd " is the
address you wish the new unit to have.

To send a 6K command from the master unit to a specific unit in the multi-drop, prefix the command
with the unit address and an underscore (8.@UT@turns off output #1 on unit #3). The master unit
(if it is not a 6K product) may receive data from a multi-drop unit.

For more information on controlling multiple 6K Series controllers in an RS-232 daisy-chain or RS-485
multi-drop, refer to th&rogrammer's Guide

Example:
ADDR1 ; Set the address of the first unit in the daisy-chain to 1

Command Descriptions 39

[AND] And

Type Operator (logical) Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also IF, [NOT], [OR], REPEAT,UNTIL, WAIT, WHILE

The ANDcommand is used in conjunction with the program flow control comm#hdREPEAT UNTIL,
WHILE, WAIT). TheANDcommand logically links two events. If each of the two events are true, and are
linked with anANDcommand, then the whole statement is true. This fact is best illustrated by example.

Example 1: IF(VAR1>0 ANDVAR2<3) : TPM: NIF

If variable 1 = 1 and variable 2 = 1, then the expression withifFthetatement is true, and
the commands between tie and theNIF will be executed.

Example 2: WHILE(VAR1=1 ANDVAR2=2) : TPM: NWHILE

If variable 1 = 1 and variable 2 = 1, then the expression withiithieE statement is false,
and the commands between WEILE and theNWHILEwill not be executed.

To evaluate an expression (ExpressiokNDEXxpression 2 = Result) to determine if the whole expression is
true, use the following rules:

TRUEANDTRUE = TRUE
TRUE ANDFALSE = FALSE
FALSE ANDTRUE = FALSE
FALSE ANDFALSE = FALSE

[ANI] Analog Input Value

Type Assignment or comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also ANIRNG, [FB], [PANI], SFB, TANI, TFB, TPANI

Use theANI operator to assign the voltage level present at one of the analog inputs (ANI) to a variable, or to
make a comparison against another value. The ANI value is measured in volts and does not reflect the effects of
distance scalingSCLD, position offsetBSET), or commanded direction polaritgNIDDIR. To assign/compare

the ANI input value, as affected I®CLD PSET, and CMDDIR use the?ANI command or thEB command.

TheANI value is derived from the voltage applied to the corresponding analog input and ground. The analog
value is determined from a 12-bit analog-to-digital converter. Under the default ANI voltage range, set with
ANIRNG the range of thaNI operator is -10.000VDC to +10.000VDC (g¢¢RNGcommand for optional

voltage ranges).

Syntax: VARn=ANLi where ‘h” is the variable number<B8>" is the number of the 1/O brick, and
“i " is I/O brick address where the analog input residesNorcan be used in an expression such
asIF(1ANI.2=2.3) . If no brick identifier €B>) is provided, it defaults to 1. To understand the
I/O brick addressing convention, refer to page 6.

Example:
VAR2=3ANI.2 ; Voltage value at analog input 2 on I/O brick 3 is assigned
; to variable 2
IF(1ANI.1<8.2) ; If voltage value at analog input 1 on brick 1 < 8.2V, do the
; commands between the IF statement and the NIF statement.
TREV : Transfer revision level
NIF ; End if statement

40 6K Series Command Reference

ANIEN Analog Input Enable

Type Inputs Product Rev
Syntax To enable only: <!>ANIEN<.i>=<E> 6K 50
To override only: <!>ANIEN<.i>=<r>
Units B = 1/O brick number
i = input location on 1/O brick “B”
E = Enable
r = volts
Range B=1-8

i = 1-32 (dependent on I/O brick configuration)
r =-10.000 to +10.000 (voltage override value)
Default E (enabled)
Response 2ANIEN: *2ANIENX,X,X,X,X,X,X,X (SIM slot 1)
XXX XXX, XX (SIM slot 2)
E,E.E.E.E.EEEE (SIMslot 3)
XXX XXX, XX (SIM slot 4)

See Also [ANI'], ANIFB, ANIMAS, ANIRNG, FOLMAS, TANI, TIO

The Analog Input EnableANIEN) command enables or disables specific analog inputs. The default state
for each input is the enabled conditiaIEN can also be used to set analog inputs to specific override
voltage levels. To disable an analog input, set an override voltage of 0.

Performance The rate at which the controller samples each analog input depends on how many are
enabled on the SIM; each enabled analog input adds 2 ms to the sample rate for all analog inputs on the
SIM. For example, if 4 of the 8 analog inputs on a SIM are enabled, the sample rate for any specific input
on the same SIM is 8 ms (4 inputs x 2 ms). Disabling input channels increases the performance of the
remaining channels; this is important if an input channel is to be used as a servo feedbackisB@rce (
andSFB selection) or Following sourcafIMASandFOLMASselection).

Example:
1ANIEN.9=E,E ; Enable the 1st & 2nd analog input in SIM slot 2 (I/O
; locations 9 & 10) on /O brick 1.
1ANIEN.11=E,2.5 ; Override the 3rd analog input in SIM slot 2 (I/O location 11)
; on /O brick 1 with a voltage of 2.4 volts.
2ANIEN ; Check status of analog inputs on I/O brick 2. As an example,
; a response of *2ANIENX,X,X,X,X,X,X,X
XX, X, X, %, X, X, X
E.E,E,E,E,E,EE
XX, X, X, %, X, X, X
; indicates that an analog input SIM is installed in slot 3 of
; 11O brick 2 and all eight channels are enabled ("E").

ANIFB Assign Analog Inputs as Axis Feedback
Type Controller Configuration Product Rev
Syntax <I>ANIFB<B-i>,<B-i>,<B-i>,<B-i>,<B-i>,<B-i>,<B-i>,<B-i> 6K 50
Units B = 1/O brick number

i = input location on 1/O brick “B”
Range B=1-8

i = 1-32 (dependent on I/O brick configuration)
Default 0-0 (No assignment)

Response ANIFB: *ANIFB1-1,1-9,0,0,0,0,0,0
See Also [ANI], ANIEN, ANIRNG, SFB, TANI, TIO

The ANIFB command determines which analog (ANI) inputs to use as feedback sources for specific axes
when ANI feedback is selected by theB command. ThaNIFB command only has an effect if ANI
feedback is selected by a subseq@#® command ANIFB command must be issued before $ire

command).

Example

ANIFB,,,,,4-17 ; Select the 1st analog input channel in SIM slot 3
; (/O location 17) of I/O brick 4 to be used as
; feedback for axis 6

SFB,,,,,2 ; Select analog input feedback for axis 6

Command Descriptions 41

ANIMAS Assign Analog Inputs to Axes

Type Following Product Rev
Syntax <I>ANIMAS<B-i><B-i><B-i><B-i>,<B-i>,<B-i>,<B-i>,<B-i> 6K 50
Units B = 1/O brick number

i = input location on I/O brick “B”
Range B=1-8

i = 1-32 (dependent on I/O brick configuration)
Default 0-0 (No assignment)

Response ANIMAS: *ANIMAS1-1,1-9,0,0,0,0,0,0
See Also ANIEN, FOLMAS

The ANIMAScommand assigns an analog input channel to a specific Following master axis for use when an
ANI master is selected with tl®OLMASCommand. ThaNIMAScommand only has an effect if an analog

input Following master is selected with a subseqgaenMASTommand ANIMAScommand must be issued
before thecFOLMASCommand).

Example

ANIMAS,,,,,4-17 ; Select the first analog input channel in SIM slot 3
; (/0 location 17) of I/O brick 4 to be used for
; master axis 6

FOLMAS62,62 ; Define axes 1 and 2 to be followers of the analog input
; selected for master axis 6

ANIRNG Analog Input Voltage Range

Type Controller Configuration Product Rev
Syntax <I>ANIRNG<.i><=ij> 6K 5.0
Units B = 1/O brick number

1sti = input location on I/O brick “B”
2nd i = voltage range selector number
Range B=1-8
1sti=1-32 (dependent on I/O brick configuration)
2ndi=1 (0to +5VDC),
2 (-5 to +5VDC),
3 (0to +10VDC), or
4 (-10 to +10VDC)

Default 4 (range is set to -10 to +10VDC)
Response 2ANIRNG: *2ANIRNGX,X,X,X,X,X,X,X
44444444

X, X, X, X, X, X, X, X
X, X, X, X, X, X, X, X
2ANIRNG.9: *4

See Also [ANI], ANIEN, ANIFB, JOYCDB, JOYCTR, JOYEDB, [PANI],
SCLA, SCLV, SFB, TANI, TIO, TPANI

Use theANIRNGcommand to select voltage ranges for specific analog inputs on the expansion I/O brick
connected to your 6K product. The default range for all analog inputs -10VDC to +10VDC.

Be aware that changing the analog input voltage range affects these settings:

ANIRNG Voltage Counts/volt resolution Calculation for Calculation for Calculation for
Setting Range (see PANI & TPANI) minimum accel ** maximum accel ** maximum velocity **
1 0to +5vDC 819 0.819 819,000 819,000

SCLA SCLA SCLA
2 -5to +5VDC 410 0.410 410,000 410,000

SCLA SCLA SCLA
3 0 to +10vDC 410 0.410 410,000 410,000

SCLA SCLA SCLA
4 -10 to +10VDC 205 0.205 205,000 205,000

SCLA SCLA SCLA

** These calculations are for servo axes using an analog input as it's position feedback source (see ANIFB and SFB).
Example

2ANIRNG.9=3 ; For the 1st analog input on SIM2 of 1/O brick 2,
; select a voltage range of 0 to +10VDC

42 6K Series Command Reference

[AS] Axis Status

Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [ASX], GOWHEN, INDUST, SMPER, TAS, TASF, TRGFN, TSTAT, VARB

Use theAS operator to assign the axis status bits for a specific axis to a binary variable, or to make a
comparison against a binary or hexadecimal value.

To make a comparison against a binary value, the letter b (b or B) must be placed in front of the value that

the axis status is being compared against. The binary value itself must only contain ones, zeros, or Xs (1, &,
X, X). To make a comparison against a hexadecimal value, the letter h (h or H) must be placed in front of the
value that the axis status is being compared against. The hexadecimal value itself must only contain the letters
A through F, and the numbers @ through 9. When us8)@n axis specifier must always proceed it, or else

it will default to axis 1. Valid axis specifiers are 1, 2, 3, o143 2AS, 3AS, or4AS). The function of each

axis status bit is shown below. Ax'ldentifies products to which the function is applicable.

Bit #
(left to right) Function (1/9)

1 Moving/Not Moving. This bit is set only when motion is commanded on the axis. The motor may still be
“moving” (e.g., due to end-of-move settling).

Negative/positive-direction

Accelerating/Not Accelerating. This bit does not indicate deceleration (bit is set to 0 during decel); to
check if the axis is decelerating, the state of ASbits 1, 3 and 4 should be: AS1x00.

4 At Velocity/Not at Velocity
5 Home Successful (HONI(YES/NO)
6 Absolute/Incremental (MA1/MAQ
7 Continuous/Preset (MC1/MCQ
8 Jog Mode/Not Jog Mode (JOGQ
9 Joystick Mode/Not Joystick Mode (JOY1/JOY0)
10 RESERVED
11 RESERVED
12 Stall Detected (YES/NO). This bit is not usable until Stall Detect is enabled with ESTALL1 command.
13 Drive Shut Down (YES/NO)
14 Drive Fault occurred (YES/NO). A drive fault cannot be detected (this bit is always 0) until the drive fault

input check is enabled with DRFEN1 Note: ASXbit 4 reports the hardware state of the drive fault input,
regardless of DRFENor DRIVE.

15 Positive-direction Hardware Limit Hit (YES/NO)

16 Negative-direction Hardware Limit Hit (YES/NO)

17 Positive-direction Software Limit Hit (YES/NO)

18 Negative-direction Software Limit Hit (YES/NO)

19 RESERVED

20 RESERVED

21 RESERVED

22 RESERVED

23 Position Error Exceeded (SMPER(YES/NO). Servo axes only.

24 In Target Zone (defined with STRGTD& STRGTY (YES/NO). Servo axes only. This bit is set only after

the successful completion of a move (if STRGTDand STRGT \kriteria have been satisfied). This bit is
usable even if the Target Zone mode is not enabled (STRGTEQ.

Command Descriptions 43

Bit #
(left to right) Function (1/9)

25 Target Zone Timeout occurred (STRGTT (YES/NO). Servo axes only.

26 Change in motion is suspended pending GOWHEXNES/NO). This bit is cleared if the GOWHEBbndition
is true, or if STOP(IS) or KILL ('K or ~K) is executed.

27 RESERVED

28 Registration move initiated by trigger since last GOcommand. This bit is cleared with the next GO
command.

29 RESERVED

30 Pre-emptive (OTF) GOor Registration profile not possible

31 RESERVED

32 RESERVED

Syntax: VARBn=aASwheren is the binary variable number aads the axis identifier, 0AS can be used in
an expression such B§1AS=b11@1) , orlF(1AS=h7F) . Ifitis desired to assign only one bit of
the axis status value to a binary variable, instead of all 32, the bit sglegefator can be used.
The bit select, in conjunction with the bit number, is used to specify a specific axis status bit (e.qg.,
VARB1=1AS.12 assigns axis 1 status bit 12 to binary variable 1).

Example:

VARB1=1AS ; Axis status for axis 1 assigned to binary variable 1
VARB2=1AS.12 ; Axis 1 status bit 12 assigned to binary variable 2
VARB2 ; Response, if bit 12 is set to 1, is

§FVARB2=XXXX . XXXXXXXL XXXX . XXXX XXXX XXXX XXXX"
IF(4AS=b111011X11) ; If the axis status for axis 4 contains 1's for

; inputs 1,2,3,5,6,8,and 9, and a 0 for bit location 4,

: do the IF statement

TREV : Transfer revision level
NIF ; End if statement
IF(2AS=h7F00) ; If the axis status for axis 2 contains 1's for

; inputs 1,2,3,5,6,7,and 8, and 0's for every other bit
: location, do the IF statement

TREV : Transfer revision level

NIF ; End if statement

44 6K Series Command Reference

[ASX] Extended Axis Status

Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also EFAIL, TASX, TASXF, [AS], TAS, TASF, VARB

The Extended Axis Statua$X command is used to assign the axis status bits for a specific axis to a binary
variable, or to make a comparison against a binary or hexadecimal value.

To make a comparison against a binary value, the letter b (b or B) must be placed in front of the value that

the axis status is being compared against. The binary value itself must only contain ones, zeros, or Xs (1, &,
X, X). To make a comparison against a hexadecimal value, the letter h (h or H) must be placed in front of the
value that the axis status is being compared against. The hexadecimal value itself must only contain the letters
A through F, and the numbers @ through 9. Ahidentifies products to which the function is applicable.

Bit Assignment
(leftto right) Function (1 =yes, @ = no)

1-3 RESERVED

4 * Drive Fault Input Active

5 ** Encoder Failure

6 Z-channel state (1 = active, @ = inactive)
7-32 RESERVED

* Bit #4 indicates the current hardware state of the drive fault input, even in the factory default power-up state —the drive is
disabled (see DRIVE command) and the drive fault input is disabled (see DRFENcommand).

** Bit #5 requires the Encoder Failure detection be enabled for the particular axis (see EFAIL command); this bit is cleared
with the EFAILZ command.

Syntax: VARBn=ASXwheren is the binary variable number, a8Xcan be used in an expression such as
IF(ASX=b11@@) , orIF(ASX=h7g) . If it is desired to assign only one bit of the axis status value to
a binary variable, instead of all 32, the bit selefioperator can be used. The bit select, in
conjunction with the bit number, is used to specify a specific axis status bitvV&R$1=ASX.3
assigns axis 1 status bit 3 to binary variable 1).

Example:

VARB1=ASX ; Extended Axis status for axis 1 assigned to
; binary variable 1

VARB2=ASX.3 ; Extended Axis 1 status bit 3 assigned to
; binary variable 2

VARB2 ; Response if bit 3 is set to 1:

§VARB2=XXIX . XXXX . XXXX . XXXX . XXXX XXXX XXX XXXX"
IF(ASX=b101XXXXX) ; If the extended axis status for axis 1 contains 1's

; for bits 1 and 3, and a O for bit location 2, do the

. IF statement
TREV : Transfer revision level
NIF ; End if statement

Command Descriptions 45

[ATAN()] ArcTangent

Type Operator (Trigonometric) Product Rev
Units r =real number

Range 0.00000 to 999,999,999

Default none

Response n/a

See Also [=], [COS], [PI], RADIAN, [SIN], [TAN], VAR

<

This Arc TangentATAN operator is used to
calculate the inverse tangent of a real number. If A
“a” and “b” are coordinates of a point on a

circle of radius ", then the angle of measure

“9 i ion: sing=2

0" can be defined by the equation: r
a

6 = arctan— . r b
b o |a cos ="

The result of thaTANcommand will either be b > X

in degrees or radians, depending onRA®IAN tang=4

command. b

To convert radians to degrees, use the formula:
360° = Ztradians.

Syntax: VARI=ATAN(r) wherei is the variable number amnds a real number value. Parenthes@s)
must be used with th&«TANcommandThe result will be specified to 2 decimal places in either
radians or degrees.

Example:

RADIAN1 ; Enable radian mode
VAR1=ATAN(0.75) ; Set variable 1 equal to the inverse tangent of 0.75 radians

AXSDEF Axis Definition

Type Controller Configuration Product Rev
Syntax <I><@>AXSDEF 6K 5.0
Units n/a

Range b = 0 (stepper), 1 (servo), or X (don't change)

Default 1 (servo)

Response AXSDEF: *11111111
See Also DRIVE

The Axis Definition AXSDERF command identifies the type of drive (servo or stepper) to which the controller

axis is connected. The drive must be disabbeI(EQ) for the AXSDEFcommand to function properly. Stepper
drives receive their positioning information via step and direction signals. Servo drives receive their positioning
commands via a10 volt signal. ThéAXSDEFsetting is automatically saved in battery backed RAM.

The value ofAXSDEFdisables command fields that are not appropriate for that type of drive. For example,
an axis configured as a stepper cannot be affected by a Servo ProportionaiGeaaonmand. The
report back of non-applicable commands contairisr the field for that axis.

AXSDEFO— Stepper Only Commands: AXSDEF1— Servo Only Commands:
DRES FMAXA ANIFB KDRIVE PER SFB
ENCCNT FMAXV SGP SGl SGV SGVF
ESDB PULSE SGAF SGILIM SOFFS SMPER
ESK SGSET SGENB STRGTD STRGTE
ESTALL STRGTT STRGTV TFB TGAIN
TPER TSGSET TSTLT

NOTE: If you change the axis definition, be sure to verify or set all motion settings and scaling values to
achieve the expected performance.

46 6K Series Command Reference

BAUD Baud Rate

Type Communication Interface Product Rev
Syntax BAUD<i> 6K 5.0
Units i = Baud rate

Range i = 1200, 2400, 4800, 9600, 19200, 38400, or 115200

Default 9600

Response BAUD *BAUD9600
See Also ADDR, E, PORT

BAUDestablishes the baud rate for the “RS-232" (COML1) or the “RS-232/485" (COM2) serial port, as
selected by the laBtORTcommand. The default is 9600 bagd(D9600). TheBAUDsetting is
automatically saved in battery backed RAMOTE: Changing the baud rate for the currently used port
will result in a loss of communication until the baud rate of the terminal is changed accordingly.

Example:

PORT2 ; Select COM2 ("RS-232/485") port

BAUD38400 : Set the baud rate for COM2 to 38400 baud

BOT Beginning of Transmission Characters

Type Communication Interface Product Rev
Syntax <I>BOT<i><i><i> 6K 50
Units n/a

Range i =0- 256

Default 0,0,0

Response BOT: *BOTO0,0,0

See Also EOT, ERROK, ERRBAD, PORT, DRPCHK,EOL,], [

The Beginning of Transmission Charact&©7) command designates the characters to be placed at the
beginning of every response. Up to 3 characters can be placed before the first line of a multi-line response,
or before all single-line responses. The characters are designated with their ASCII equivalent. For example,
a carriage return is ASCII 13, a line feed is ASCII 10, a Ctrl-Z is ASCII 26, and no terminating character is
designated with a zero. Note that ASCII 256 mea@is transmitted.

For a more complete list of ASCII Equivalents, refer to the ASCII Table in Appendix B.

Example:
BOT13,10,26 ; Place a carriage return, line feed, and Ctrl-Z before
; the first line of a multi-line response, and before
; all single line responses
BP Set a Program Break Point
Type Program Flow Control or Program Debug Tool Product Rev
Syntax <I>BP<i> 6K 5.0
Units i =break point number
Range 1-32
Default n/a
Response n/a
See Also BREAK, C, HALT, K, S, [SS], TSS

The Break Point§P) command allows the programmer to set a place in the program where command
processing will halt and a message will be transmitted to the PC. There are 32 break points ®Fiiltdble,
BP32, all transmitting the messagBREAKPOINTNUMBER<cr> wherex is the break point number.

After halting at a break point, command processing can be resumed by issuing a cofjicoentand.

The break point command is useful for stopping a program at specific locations in order to test status for
debugging or other purposes.

Command Descriptions a7

Example:

DEF progl ; Begin definition of program named progl

D50000,1000 : Set distance to 50000 units on axis 1, and 1000 units on axis 2
MA1100 : Absolute mode for axes 1 and 2

G0O1100 : Initiate motion on axes 1 and 2

IF(1PC>40000) ; Compare axis 1 commanded position to 40000

BP1 ; If the motor position is > 40000 units, set break point #1

NIF : End IF statement

D80000,2000 : Set distance to 80000 units on axis 1, and 2000 units on axis 2
G0O1100 : Initiate motion on axes 1 and 2

BP2 ; Set break point #2

END ; End program definition

RUN progl ; Execute program progl

If the IF statement evaluates true, the mess&REAKPOINTNUMBER. will be transferred out. AC

command must be issued before processing will continue. Once processing has continued, the second break
point command will be encountered, again the mesBREAKPOINTNUMBER will be transferred out,

and processing of commands will pause until a segormbmmand is received.

BREAK Terminate Program Execution

Type Program Flow Control Product Rev
Syntax <I>BREAK 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also BP, C, GOSUB,HALT, K, S

The BREAKcommand terminates program execution when processed. This command allows the user to
terminate a program based upon a condition, or at any other particular point in the program where it is
necessary to end the program. If the program terminated was called from another program, control will be
passed to the calling program. This command is useful when debugging a program.

To terminate all program processing, useHA&T command.

Example:
DEF progl ; Define a program called progl
G0O1000 : Initiate motion on axis 1
GOSUB prog2 ; Gosub to subroutine named prog2
GO0100 : Initiate motion on axis 2
END ; End program definition
DEF prog2 ; Define a program called prog2
GO1110 : Initiate motion on axes 1, 2, and 3
IF(IN=b1XO0) ; IF condition is: status of trigger input 1 is
; active (1) and trigger input 3 is inactive (0)
BREAK ; If condition is true break out of program
ELSE ; Else part of if condition
TPE ; If condition does not come true, transfer position of
: all encoders
NIF : End If statement
END ; End program definition
RUN progl ; Execute program progl

; Upon completion of motion on axis 1, subroutine prog2 is called. If inputs 1
;and 3 are in the correct state when the subroutine is entered, the subroutine
; will be terminated and returned to progl, where motion on axis 2 will be

; initiated.

48 6K Series Command Reference

C Continue Command Execution

Type Program Flow Control Product Rev
Syntax IC 6K 5.0
Units n/a
Range n/a
Default n/a
Response n/a

See Also BP, COMEXRCOMEXSINFNC, PS, S

The Continue!€C) command ends a pause st@®8)(a break pointgP) condition, or a stopped)

condition. When the controller is in a paused state or at a break point, no commands from the command
buffer are executed. All immediate commands, however, are still processed. By seddicgranand,
command processing will resume, starting with the first command afteisstbemmand or thaP

command. If a stops] command has been issued, motion and command processing can be resumed by
issuing aC command, only iCOMEX$as been enabled.

Example:

PS ; Stop execution of command buffer until !\C command
MAOXXX ; Incremental mode for axis 1

D10000 ; Set distance to 10000 units on axis 1

G01000 ; Initiate motion on axis 1

D,20000 ; Set distance to 20000 units on axis 2

GO00100 ; Initiate motion on axis 2

No buffered commands after tB6 command will be executed untit@ command is received.

IC ; Restart execution of command buffer

DEF progl ; Begin definition of program named progl

D50000,1000 ; Set distance to 50000 units on axis 1, & 1000 units on axis 2
MAOQO ; Set axes 1 and 2 to the incremental mode

GO11 ; Initiate motion on axes 1 and 2

IF(VAR1>6) ; Compare VAR1>6

BP1 ; If the motor position is > 50000 units, set break point #1
NIF : End IF statement

GO11 ; Initiate motion on axes 1 and 2

BP2 ; Set break point #2

END ; End program definition

RUN progl ; Execute program progl

If the IF statement evaluates true, the mes&RPAKPOINTNUMBER will be transferred out. AC

command must be issued before processing will continue. Once processing has continued, the second break
point command will be encountered, again the mesBRGaKPOINTNUMBER will be transferred out, and
processing of commands will pause until a sedéndommand is received.

COMEXS1 ; Enable command processing on stop

D50000,1000 ; Set distance to 50000 units on axis 1, & 1000 units on axis 2
GO1100 ; Initiate motion on axes 1 and 2

IS ; Stop motion on all axes

When the 6K Series product processedsheommand, motion on all axes will be stopped. If the desired
distance has not been reached, motion can be resumed by issuthgdmemand. If motion and command
processing are to stop, a Kilk() command can be issued.

Command Descriptions 49

CMDDIR Commanded Direction Polarity

Type Controller Configuration Product Rev
Syntax <@><a>CMDDIR 6K 5.0
Units b = polarity bit

Range 0 (normal polarity), 1 (reverse polarity) or X(don't change)

Default 0

Response CMDDIR *CMDDIR0000_0000
1CMDDIR *1CMDDIRO

See Also [AS], DRIVE, ENCPOL, [FB], [PANI], [PCE], [PE],
[PER], PSET, SFB, TAS, TFB, TPANI, TPCE, TPE, TPER

The CMDDIRcommand allows you to reverse the direction that the controller considers to be the “positive”
direction; this also reverses the polarity of the counts from the feedback devices. Thus, Gimgle

command, you can reverse the referenced direction of motion without the need to (a) change the
connections to the drive and the feedback device, or (b) change the sign of all the motion-related commands
in your program.

NOTES |

« SERVO AXES: Before changing the commanded direction polarity, make sure there is
a direct correlation between the commanded direction and the direction of the
feedback source counts (i.e., a positive commanded direction from the controller must
result in positive counts from the feedback device). Refer to the ENCPOLcommand
description for information on changing encoder polarity.

¢ Once you change the commanded direction polarity, you should swap the end-of-
travel limit connections to maintain a positive correlation with the commanded
direction.

The CMDDIRcommand is automatically saved in non-volatile memory.

The CMDDIRcommand cannot be executed while motion is in progress or while the drive/valve is
enabled.For example, you could wait for motion to be complete (indicated whdiit #1 is a zero) and then
use theDRIVE command to disable the appropriate axis before executirgvub®IRcommand.

COMEXC Continuous Command Processing Mode

Type Command Buffer Control Product Rev
Syntax <I>COMEXC 6K 5.0
Units b=0,1o0rX

Range 0 = Disable, 1 = Enable, X = don't change

Default 0

Response COMEXC: *COMEXCO

See Also [1], A, AA, AD, ADA, COMEXL, COMEXS, D, ERRORP, FOLRD,

FOLRN, GO, GOWHEN, MA, MC, V

This command enableSQMEXQ)Lor disables@OMEXC@Continuous Command Execution Mode.

Normally, when a motion command is received, command processing is temporarily paused until the motion
is complete. In continuous command execution mode, however, command processing continues while
motion is taking place.NOTE: Command processing will be slower esmnemotion parameters cannot

be changed while motion is in progress; for a complete list of motion parameters that cannot be changed
while motion is in progress, refer to the Restricted Commands During Motion section in Chapter 1 of the
Programmer's Guide

50 6K Series Command Reference

The Continuous Command Processing Mode is useful in the following situations:

» When trying to check the status of inputs while the 6K Series product is commanding motion.

» Performing calculations ahead of time, possibly decreasing cycle time.

» Executing buffered on-the-fly acceleration AA), and deceleratiorAD, ADA), distance), positioning

mode WA& MQ, Following ratio FOLRD& FOLRN, and velocity YY) changes. (The buffered AA, AD,
ADA D, FOLRD FOLRN MA MG orV change can be executed only with a buffered@® ¢ommand.)

For more information about on-the-fly motion changes, refer t®@tbhgrammer's Guide

» Pre-processing the next move while the current move is in progress (see CAUTION note below). This

reduces the processing time for the subsequent move to only a few microseconds.

CAUTION: Avoid Executing Moves Prematurely

With continuous command execution enabled (COMEXQ) if you wish motion to stop before
executing the subsequent move, place a WAIT(AS.1=bd) statement before the subsequent
GOcommand. If you wish to ensure the load settles adequately before the next move, use the
WAIT(AS.24=b1) command instead (this requires you to define end-of-move settling criteria
— see STRGTEcommand or Programmer's Guide for details).

Example:

VAR1=2000 : Set variable 1 = 2000

VAR2=0 : Set variable 2=0

COMEXC1 : Enable continuous command execution mode

L50 ; Loop 50 times

D50000,(VAR1) : Set distance to 50000 units for axis 1, VAR1 value for axis 2
G0O1100 : Initiate motion on axes 1 and 2

; Normally at this point, the 6K controller would wait for the motion on axes

; 1 & 2 to complete before processing the next command. However, with continuous
; command execution enabled (COMEXC1), processing will continue with the

: statements that follow.

REPEAT ; Beginning of REPEAT..UNTIL() expression

IF(IN.1=b1) ; Check for onboard input #1 (trigger A for axis 1)
; becoming active

VAR1=VAR1+10 ; If it does, increase variable 1 by 10

VAR2=1 ; Variable 2 is used as a flag

NIF : End IF statement

UNTIL(MOV=b0 OR VAR2=5) ; Exit REPEAT loop if variable 2 equals 5 or if
; motion is complete on axis 1

VAR2=0 ; Reset flag value, variable 2 =0

LN ; End loop

COMEXCO : Disable continuous command mode

On-the-fly Velocity, Acceleration and Deceleration Change Example:

DEF vsteps ; Begin definition of program vsteps
COMEXC1 : Enable continuous command execution mode
MC1 : Set axis 1 mode to continuous
A10 ; Set axis 1 acceleration to 10 rev/sec/sec
V1 ; Set axis 1 velocity to 1 rps
GO1 ; Initiate axis 1 move (Go)
WAIT(1VEL=1) ; Wait for motor to reach continuous velocity
; Time delay of 3 seconds
A50 ; Set axis 1 acceleration to 50 rev/sec/sec
V10 ; Set axis 1 velocity to 10 rps
GO1 ; Initiate axis 1 move (Go)
T5 ; Time delay of 5 seconds
S1 ; Initiate stop of axis 1 move
WAIT(MOV=b0) ; Wait for motion to completely stop on axis 1
COMEXCO : Disable continuous command execution mode
END ; End definition of program vsteps

Command Descriptions

51

COMEXL Continue Execution on Limit

Type Command Buffer Control Product Rev
Syntax <I><@><a>COMEXL<h> 6K 5.0
Units b=0,1o0rX

Range 0 = Disable, 1 = Enable, X = don't change

Default 0

Response COMEXL: *COMEXL0000_0000
1COMEXL: *1COMEXLO

See Also COMEXC, COMEXS, ERROR, LH, LHLVL, LS

This command determines whether the command buffer will be saved upon hitting a hardware end-of-travel
limit (LH), or a soft limit (S). If save command buffer on limit is enablexDMEXL}, then all commands
following the command currently being executed will remain in the command buffer when a limit is hit. If
save command buffer on limit is disabl&DMEXLE then every command in the buffer will be discarded,

and program execution will be terminated.

Example:
COMEXL0010 ; Save the command buffer only if the limit on axis 3 is hit.
; Hitting a limit on any other axis will dump the command buffer.

COMEXR Continue Motion on Pause/Continue Input

Type Command Buffer Control Product Rev
Syntax <I>COMEXR 6K 5.0
Units b=0,1o0rX

Range 0 =disable, 1 = enable, X = don't change

Default 0

Response COMEXR: *COMEXRO

See Also C, COMEXS, INFNC, LIMFNC

The Continue Motion on Pause/Contin@®MEXRcommand determines the functionality of programmable
inputs defined as pause/continue inputs withitNCi-E or LIMFNCI-E command. In both cases, when the
input is activated (exception: an axis-specific step input will not dump the buffer), the current command being
processed will be allowed to finish executing.

COMEXR@ Upon receiving a pause input, only program execution is paused; any motion in progress will
continue to its predetermined destination. Releasing the pause input or issliogramand
will resume program execution.

COMEXR1 Upon receiving a pause input, both motion and program execution will be paused; the motion
stop function is used to halt motiokfter motion stopsyou can release the pause input or issue
a!C command to resume motion and program execution.

Example:

COMEXR1 ; Allow both motion and program execution to be paused upon
; receiving a pause input

2INFNC1-E ; Define input 1 on I/O brick 2 as a pause/continue input

52 6K Series Command Reference

COMEXS Continue Execution on Stop

Type
Syntax
Units
Range
Default
Response

See Also

Command Buffer Control Product Rev
_<!>COMEX_S<i>. . 6K 5.0
i = function identifier

0,1,0r2

0

COMEXS: *COMEXSO0
COMEXC, COMEXL, COMEXR, INFNC, LIMFNC, S

The Continue Execution on Stop@MEXBcommand determines whether the command buffer will be
saved upon receiving a Stop commaiisdg@r !S1111) or an external stop inpuNFNCi-D or
LIMFNCI-D).

COMEXS@ Upon receiving a stop input or Stop command, motion will decelerate at the AlD&gRA

value, every command in the buffer will be discarded (exception: an axis-specific stop input
will not dump the buffer), and program execution will be terminated.

COMEXS1 Upon receiving a stop input or Stdg (or !S1111) command, motion will decelerate at the

presetADADAvalue, command execution will be paused, and all commands following the
command currently being executed will remain in the command buffer.
Resuming program executioonly after motion is stoppgd
» Whether stopping as a result of a stop input or S®m@(!S1111) command, you can
resume program execution by issuing an immediate Conti@)ee¢mmand or by activating
a pause/resume input (a programmable input configured witNFNEi-E or LIMFNCI-E
command).
 If you are resuming after a stop inputi®t111 command, the move in progress witlt be saved.

* If you are resuming after'& command, you will resume the move in progress at the point
in which the!lS command was received by the processor.

COMEXS2 Upon receiving a stop input or Stop command, motion will decelerate at the AlDEsEA

Example:

COMEXS1

value, every command in the buffer will be discarded, and program execution will be
terminated, but thiNSELP value is retained. This allows external program selection, via inputs
defined with theNFNCi-B (or LIMFNCI-B) or INFNCi-iP (or LIMFNCi-iP) commands, to
continue.

; Save the command buffer upon a stop input or stop command

Command Descriptions 53

[COS()] Cosine

Type Operator (Trigonometric) Product Rev
Syntax COS(r) (see below) 6K 5.0
Units r =radians or degrees (depending on RADIANcommand)
Range r =0.00000 - £17500
Default n/a
Response n/a
See Also [ATAN], [PI'], RADIAN, [SIN], [TAN], VAR
Use this operator to calculate the y
cosine of a number given in radians or A
degrees (seRADIAN command). If &”
and ‘'b” are coordinates of a point on a _ a
circle of radius I, then the angle of sin 6= T
measure 8” can be defined by the r
equation: o |a cos 8 :%
: . . X
cos 6 = b (see illustration at right) b >

' tan @ :%
If a value is given in radians and a
conversion is needed to degrees, or
vice-versa, use the formula:
360° = 21tradians.

y = Cos x

The graph to the right v axs)
shows the amplitude of

Amplitude

y on the unit circle for 007 — —

different values ok.

Syntax

N A
e
=
P
15
NIPAN
13

-0.707

T
21

P
15

Radians
(x axis)

2TTRadians = 360 Degrees

VARi=COS(r) wherei is the variable number amds a value in either radians or degrees

depending on thRADIAN command. Parenthese§ () must be placed around tb®Soperand.

The result will be specified to 5 decimal places.

Example:
VAR1=5* COS(PI/4) ; Set variable 1 equal to 5 times the cosine of

54

; Tudivided by 4

6K Series Command Reference

D Distance

Type Motion Product Rev
Syntax <I><@><a>D<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r> 6K 5.0
Units r = distance units (scalable by SCLD)

Range +999,999,999.99999

Default 4000

Response D: *D+4000,+4000,+4000,+4000 ...
1D: *1D+4000

See Also [D], GO, MA, MC, PSET, SCLD, TSTAT

The Distancel§) command defines either the number of units the motor will move or the absolute position
it will seek after asOcommand. In the incremental modea@, the distance value represents the total

number of units you wish the motor to move. In the absolute maa# the distance value represents the
absolute position the motor will end up at; the actual distance traveled will vary depending on the absolute
position of the motor before the move is initiated.

In the incremental mod&@g, you can specify a negative distance by placing a dash or hyphen (-) in front
of the distance value (e.@;10000). Otherwise, the direction is considered positive. You can change
direction without changing the distance value by usingthe or ~ operators (e.gd+,+,+ , orD-,-,- , Or
D~,~,~); the tilde ¢) is a means of toggling the direction.

The distance remains set until you change it with a subsequent distance command. Distances outside the valid
range are flagged as an error, returning the megpégeLID DATA-FIELD x, wherex is the field number.

| UNITS OF MEASURE andSCALING : refer to page 16. |

ON-THE-FLY CHANGES : You can change distanoe the fly(while motion is in progress) in two ways.
One way is to send an immediate distance commarddllowed by an immediate go commang®).

The other way is to enable the continuous command execution ROMEKCland execute a buffered
distance commana) followed by a buffered go comman@dq.

Example:

DEL proga ; Delete program called proga

DEF proga ; Begin definition of program called proga

MAO0000 : Incremental index mode for all axes

MCO0000 : Preset index mode for all axes

A10,12,1,2 : Set the acceleration to 10, 12, 1, and 2 units/sec/sec for
;axes 1, 2, 3 and 4, respectively

AD1,1,1,2 : Set the deceleration to 1, 1, 1, and 2 units/sec/sec for
;axes 1, 2, 3 and 4, respectively

v1,1,1,2 ; Set the velocity to 1, 1, 1, and 2 units/sec for

;axes 1, 2, 3 and 4, respectively
D100000,1000,10,100 ; Set the distance to 100000, 1000, 10, and 100 units
; for axes 1, 2, 3 and 4, respectively
G0O1100 : Initiate motion on axes 1 and 2, 3 and 4 do not move
END ; End definition of program called proga

Command Descriptions 55

[D] Distance Assignment

Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units distance units (scalable by SCLD)

Range +999,999,999.99999

Default n/a

Response n/a

See Also D, GO, MA, MC, PSET, SCLD

The distance assignmemi command is used to compare the programmed distance value to another value
or variable, or to assign the current programmed distance to a variable.

Syntax: VARn=aDwheren is the variable number, aads the axis number,] can be used in an
expression such a5(1D<25@@d) . When assigning the distance value to a variable, an axis
specifier must always precede theommand (e.gVAR1=1D or it will default to axis 1. When
making a comparison to the programmed distance, an axis specifier must also be used (e.g.,
IF(1D<2@@@d)). TheD value used in any comparison, or in any assignment statement is the
programmed value. If the actual position information is required, refer taPtbeommand for
steppers, or thee or ANI commands for servos.

UNITS OF MEASURE andSCALING : refer to page 16.

Example:
IF(2D<25000) ; If the programmed distance on axis 2 is less than 25000 units,
: then do the statements between the IF and NIF
VAR1=2D*2 ; Variable 1 = programmed distance of axis 2 times 2
D,(VAR1) : Set the distance on axis 2 to the value of variable 1
NIF : End the IF statement
[DAC] Value of DAC Output
Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units Volts
Range -10.000 to +10.000
Default n/a
Response n/a
See Also DACLIM, SOFFS, TDAC

Use theDACcommand to compare the value of the DAC (commanded analog control signal output) to
another value or variable, or to assign the value of the DAC to a variable.

Syntax: VARn=aDAOwhere ‘h” is the variable number, and™is the axis number, dbACcan be used in
an expression such B§1DAC<6) . An axis specifier must precede thaCcommand, or it will
default to axis 1 (e.g¥AR1=1DACIF(1DAC<2) , etc.).

Example:

VAR6=2DAC ; Set variable #6 equal to the DAC voltage output to axis #2
IF(2DAC>5.0) ; If the DAC voltage to axis #2 is > 5V, do the IF statement.
TDAC : Transfer the current DAC values

NIF : End IF statement

56 6K Series Command Reference

DACLIM Digital-to-Analog Converter (DAC) Limit

Type Servo; Controller Setup Product Rev
Syntax <I><@><a>DACLIM<r>,<r>,<r>,<r>,<r>,<r> <r> <r> 6K 50
Units r = volts

Range 0.000 to 10.000

Default 10.000

Response DACLIM: *DACLIM10.000,10.000,10.000,10.000 ...
1DACLIM: *1DACLIM10.00

See Also [DAC], SOFFS, TDAC

This command sets the maximum absolute value the commanded analog control signal output can achieve.
For example, setting the DAC limit to 8.0000ACLIM8.2@d will clamp the DAC output range from

-8.000 to +8.000. Use thie®dACcommand to verify the voltage being commanded at the servo controller's
analog output.

Example:
DACLIM7.000,9.000 ; Axis #1 DAC output is limited to -7.000 to +7.000 volts;
; Axis #2 DAC output is limited to -9.000 to +9.000 volts

[DAT] Data Assignment
Type Data Storage Product Rev
Units i = data program #
Range 1-50
Default n/a
Response n/a
See Also DATA, [DATP], DATPTR,DATRST, DATTCH

The Data Assignmenb@T) command recalls data from the data prograair@. The data is loaded into a
command field, or into a variableAR). As the data is loaded, the internal data pointer to#w®Pdata
increments and points to the next datum for the béftcommand.

Syntax: VARn=DATi where ‘h” is the variable nhumber, andl™is the data program number,
or DATcan be used as a command argument suatDag1),5,4,10

If the data is to be loaded into a command field th& command must be placed within parentheses (e.g.,
AD(DAT2),3,4,5). If the data is loaded into a variable, parentheses are not required/ABD=DAT).

Rule of Thumb for command value substitutions: If the command syntax shows that the command field
requires a real number (denoteddpy) or and integer value (denoted &y), you can use theAT
substitution (e.gHOMV2,1,(DAT1)).

The DATcommand cannot be used in an expression, SUE(DEST2 < 5) or VAR1=1+ DAT3.

Example: Refer to the Reset Data Pointer (DATRST command example.

DATA Data Statement

Type Data Storage Product Rev
Syntax <I>DATA=<r><r><r>,<r> 6K 50
Units r = data value

Range +999,999,999.99999999

Default n/a

Response n/a

See Also [DAT], [DATP], DATPTR, DATRST, DATTCH, MEMORY

The Data StatemenDATA command is used only in the data prograb¥sT@ to identify the data
statements. TheATAcommand is followed by an equal sigf),(@nd a maximum of four data values. The
maximum number of data statements is limited only by the amount of memory available.

Example: Refer to the Reset Data Pointer (DATRST command example.

Command Descriptions 57

[DATP] Data Program

Type Data Storage Product Rev
Units i = data program #

Range 1-50

Default n/a

Response n/a

See Also [DAT], DATA, DATPTR, DATRST, DATSIZ, DATTCH, MEMORY

DATPis not a command, but is the name of the program that is the default for storing data. Fifty such data
programs can be createndTP1- DATP5@ The program is defined with tllEEF command, just as any other
program would be, but only tiATAandENDcommands are allowed within the program definit@ATPi

will contain the array of data to be recalled by miadi command. Upon completion of the definition, the
internal data pointer is pointing to the first datum in the data program.

Example:

DEFDATP5 ; Define data program 5

DATA=1,2,3,4 ; Enter data

DATA=5.62,6.52,7.12,8.47 ; Enter data

END ; End program definition

A(DATS5) ; Load data from data program 5 and store in axis 1 acceleration.
; Axis 1 acceleration = 1

V(DAT5) ; Load data from data program 5 and store in axis 1 velocity.
; Axis 1 velocity = 2

D(DAT5) ; Load data from data program 5 and store in axis 1 distance.
; Axis 1 distance = 3

A,(DAT5) ; Load data from data program 5 and store in axis 2 acceleration.
; AXis 2 acceleration = 4

A,,(DAT5) ; Load data from data program 5 and store in axis 3 acceleration.

; AXis 3 acceleration = 5.62

DATPTR Set Data Pointer

Type Data Storage Product Rev
Syntax <I>DATPTRI,i,i 6K 5.0
Units n/a

Range 1sti= program # 1 to 50

2nd i = data element # 1 to 6500
3rd i = increment setting of 1 to 100

Default 1,11
Response n/a
See Also [DAT], DATA, [DATP], DATSIZ, DATTCH, [DPTR], TDPTR

The Set Data PointeDATPTR command moves the internal data pointer to a specific data element in the
specified data progranDATPi). This command also establishes the number of data elements by which the
pointer increments after writing each data element fr@a@ CHcommand, or after recalling a data

element with th®AT command.

The data program selected with the first integer irblwePTRcommand becomes the active data program.
SubsequerATTCH TDPTR andDPTRcommands will reference the active data program. You can use the
TDPTRcommand to ascertain the current active data program, as well as the current location of the data
pointer and the increment setting (3@ TRcommand description for details).

TheDPTRcommand can be used to compare the current pointer location (the number of the data element to
which the data pointer is pointing) against another value or variable, or to assign the pointer location
number to a variable.

As an example, suppose data programBATP]) is configured to hold 15 data elemem#{SIz1,15),

the data pointer is configured to start at the first data element and increment 1 data element after every
DATTCHvalue is storeddATPTR1,1,1), and the values of numeric variables #1 through #4 are already
assigned\(AR1=2 VAR2=4, VAR3=8 VAR4=64). If you then enter thBATTCH1,2,3,4 command, the

values ofvAR1throughvAR4will be assigned respectively to the first four data elements in the data
program and the pointer will stop at data element #5. The responser®RIbEDATP1command would be

58 6K Series Command Reference

as depicted below (the text is highlighted to illustrate the location of the data pointer after the
DATTCH1,2,3,4 command is executed). The response ta heTRcommand would b&TDPTR1,5,1.
*DATA=2.0,4.0,8.0,64.0

*DATA=0.0,0.0,0.0,0.0

*DATA=0.0,0.0,0.0,0.0
*DATA=0.0,0.0,0.0

Once you have stored (taught) the variables to the data program, you canDssePthRcommand to point

to the data elements and then usedth&data assignment command to read the stored variables to your
motion program.

During the process of writing datBATTCH or recalling dataffAT), if the pointer reaches the last data
element in the program, it automatically wraps around to the first datum in the program and a warning
message is displayetdNARNING: POINTERHASWRAPPEBROUNLIOIODATAPOINT 1). This warning will
not interrupt command execution.

Example: (See Also: DATSIZ command)

DELDATP5 ; Delete data program #5 (DATP5)

DEFDATP5 ; Define data program #5 (DATP5)

DATA=1,2,3,4 : Enter data

DATA=5.62,6.52,7.12,8.47 ; Enter data

END ; End program definition

A(DAT5) ; Load data from DATP5 and store in axis 1 acceleration.
: Axis 1 acceleration = 1

V(DAT5) ; Load data from DATP5 and store in axis 1 velocity.
; Axis 1 velocity = 2

D(DAT5) ; Load data from DATP5 and store in axis 1 distance.
: Axis 1 distance = 3

DATPTR5,1,1 ; Set the data pointer to datum 1 in DATP5; increment the
; pointer by one after each DAT command

A,(DAT5) : Load data from DATP5 and store in axis 2 acceleration.
: Axis 2 acceleration = 1

A,,(DAT5) : Load data from DATP5 and store in axis 3 acceleration.

: Axis 3 acceleration = 2

DATRST Reset Data Pointer

Type Data Storage Product Rev
Syntax <I>DATRST<i><i> 6K 5.0
Units n/a

Range 1sti= program # 1 to 50, 2nd i = data element # 1 to 6500

Default n/a

Response n/a

See Also [DAT], DATA, [DATP |

The Reset Data PointdDATRS) command sets the internal data pointer to a specific data element in a data
program DATP<i>). As data is recalled from a data program withh& command, the pointer

automatically increments to the next data element. If the pointer reaches the end of the program, it
automatically wraps around to the first data element in the progranRSTallows the pointer to be set to

any location within the data prograATP.

Example :

DEFDATP5 ; Define data program 5

DATA=1,2,3,4 ; Enter data

DATA=5.62,6.52,7.12,8.47 ; Enter data

END ; End program definition

A(DATS5) ; Load data from data program 5 and store in axis 1 acceleration.
; Axis 1 acceleration = 1

V(DAT5) ; Load data from data program 5 and store in axis 1 velocity.
; Axis 1 velocity = 2

D(DAT5) ; Load data from data program 5 and store in axis 1 distance.
; Axis 1 distance = 3

DATRST5,1 ; Set the data pointer to datum 1 in data program 5

A,(DAT5) ; Load data from data program 5 and store in axis 2 acceleration.
; AXxis 2 acceleration = 1

A,,(DAT5) ; Load data from data program 5 and store in axis 3 acceleration.

; Axis 3 acceleration = 2

Command Descriptions 59

DATSIZ Data Program Size

Type Data Storage Product Rev
Syntax <I>DATSIZi<,i> 6K 5.0
Units n/a
Range 1sti= program # 0 - 50 (0 = disable)
2nd i = data element # 1 - 6500
Default 0,1
Response n/a
See Also [DAT], DATPTR, [DATP], DATTCH

The Data Program Siz®&ATSIZ) command creates a new data prograir® and establishes the number
of data elements the data program contains.

The DATSIZ command syntax iBATSIZi<,i> . The first integeri() represents the number of the data

program (1- 50). You can create up to 50 separate data programs. The data program is automatically given
a specific program nameATPi). If the program numbedis selected, then thieATTCHcommand is

disabled. Before creating a new data program, be sure to delete the existing data program that has the same
name. For example, if you wish to create data program #5 withAhsiz5,1,144 command an®ATP5

already exists, first dele@ATP5with theDEL DATP5command and then issue thAaTSIZ5,1,144

command.

The second integer represents the total number of data elements (up to 6,500) you want in the data program.
Upon issuing th®ATSIZ command, the data program is created with all the data elements initialized with a
value of zero. (Th®ATSIZ command is equivalent to creatin@AaTPprogram and filling it with
DATA=0.0,0.9,80.0,3.8 commands up to the size indicated in the second integer.)

Each data statement, which contains four data elements, uses 43 bytes of memory. This amount of memory
is subtracted from the memory allocated for user programs/@d©Rgommand). Use theDIR
command to determine the amount of remaining memory for user program storage.

The data program has a tabular structure, where the data elements are stored 4 to a line. Each line of data
elements is called data statemenEach element is numbered in sequential order from left to right (1 - 4)

and top to bottom (1 - 4,5 -8, 9 - 12, etc.). You can useRRO@ATPi command ('" represents the

number of the data program) to display all the data elements of the data program. For example, if you issue
theDATSIZ1,13 command, data program #1 (caldTP]) is created with 13 data elements initialized to

zero. The response to thieRO@ATP1command is depicted below. Each lidata statemetegins with

DATAS and each data element is separated with a comma.

*DATA=0.9,0.9,8.0,8.0

*DATA=0.0,0.9,

*DATA=0.0,0.0
*DATA=0.0

2.9,0.0
2.9,2.9

TheDATSIZ, DATTCH andDAT commands will typically be used as a teach mode in this manner:
1. Issue th®ATSIZ command to create (or recall) the data program.
2. Store variable data (e.g., position, acceleration, velocity, etc.) to numeric vanatses (

3. UseDATTCHcommands to store the data from the numeric variables into the data program. You can use
the data pointemYATPTR command to select any data element in the data program, and to determine
the number by which the pointer increments after each value frobAthECHcommand is stored.

NOTE: If theDATTCHcommand is issued without having issuedDA&S/Z command, an error will
result.

4. Use theDATcommands to read the stored data from the data program into the variable parameters of
your motion program. You can use thaTPTRcommand to select any data element in the data
program, and to determine the number by which the pointer increments afte&xAdammand.

Any use of thedDATTCHandDAT commands will reference the current active data progbemA specified
by the first integer of the laBATSIZ or DATPTRcommand. If you want to use tbaTSIZ command to
recall a data programand not create onespecify only the first integer and not the second integer. For
exampleDATSIZ7 recalls data program #DATP?) as the active data program.

60 6K Series Command Reference

Example (for 4 axes):

DELDATP5 ; Delete existing data program #5 (DATP5)
DATSIZ5,200 ; Create data program #5 (DATP5) with 200 data elements
DEFTEACH ; Begin definition of program called TEACH
COMEXCO : Disable continuous command execution mode
MA1111 ; Enable the absolute positioning mode for all axes
HOM1111 ; Home all axes (absolute position counter set to zero after homing)
DATPTR5,1,1 ; Set data pointer to data element #1 in DATP5, and increment the

; pointer by one element after every DATTCH value or DAT command
REPEAT ; Set up a loop for teaching the positions
JOY1111 ; Enable joystick mode on all axes so that you can start moving the

; axes into position with the joystick. Command processing stops
; here until you activate trigger input TRG-A1 (IN.2) to disable the
; joystick mode and execute the rest of the commands in the

; repeat/until loop (assign the motor positions to the variables and
; then store the positions from the variables to the data program).

VAR1=1PM ; Store the current position of axis #1 in variable #1
VAR2=2PM ; Store the current position of axis #2 in variable #2
VAR3=3PM ; Store the current position of axis #3 in variable #3
VAR4=4PM ; Store the current position of axis #4 in variable #4

DATTCH1,2,3,4 : Store variables #1 - #4 into consecutive data elements
WAIT(IN.2=b0) ; Wait for the "joystick release" input (TRG-A1) to be de-activated
UNTIL(DPTR=1) ; Repeat loop until the data pointer wraps around to data element #1

HOM1111 ; Home all axes (absolute position counter set to zero after homing)

DATPTR5,1,1 ; Set data pointer to data element #1, read one data element at a time

REPEAT ; Set up a repeat/until loop to read all data elements

D(DAT5),(DAT5),(DATS5),(DATS) ; Read position data from the data program to the
: distance command

GO1111 ; Make the move to the positions that were taught

T.2 : Wait 0.2 seconds

UNTIL(DPTR=1) ; Repeat loop until the data pointer wraps around to data element #1

END ; End definition of program called TEACH

DATTCH Data Teach

Type Data Storage Product Rev
Syntax <!>DATTCHi<,i,i,i> 6K 5.0
Units i = number of a numeric variable

Range i =1 - maximum number of numeric variables

Default n/a

Response n/a

See Also [DAT], [DATP], DATPTR, DATSIZ, DATTCH, VAR

The Data TeaclDATTCH command stores the values from the specified numeric varia#gsifto the
currently active data program (i.e., the data program specified with the BATSIZ or DATPTR
command). The value that is in the specified variable at the tinAfiECHcommand is executed is the
value that is stored in the data program.

If the DATTCHcommand is issued without having first issueddh&SIz command, an error will result. If a
zero is entered in the first integer of haTSIZ command (e.gDATSIZE), theDATTCHcommand is
disabled.

As indicated by the number of integers in the syntax, the maximum number of variables that can be stored in
the data program p&ATTCHcommand is 4. The variables are stored in the data program, starting at the
current location of the data pointer. The data pointer's position can be moved to any data element in any
data program by use of tiATPTRcommand. After each successiv&TTCHvalue is stored, the data

pointer will increment by the number specified in the third integer ob&®PTRcommand. Any data

element in the data program can be edited by setting the data pointer to that element and then issuing the
DATTCHcommand.

As an example, suppose data programBATP]) is configured to hold 15 data elemem#{SIz1,15),

the data pointer is configured to start at the first data element and increment 1 data element after every
DATTCHvalue is storeddATPTR1,1,1), and the values of numeric variables #1 through #4 are already
assigned\(AR1=2 VAR2=4, VAR3=8 VAR4=64). If you then enter thBATTCH1,2,3,4 command, the

values ofvAR1throughvAR4will be assigned respectively to the first four data elements in the data

Command Descriptions 61

program and the pointer will stop at data element #5. The responsear®RIDEDATP1command would be
as follows (the text is highlighted to illustrate the location of the data pointer afleATTe€H1,2,3,4
command is executed).

*DATA=2.0,4.9,8.8,64.0

*DATA=0.0,0.0,0.9,8.9

*DATA=0.9,9.0,0.9,8.0
*DATA=0.9,0.9,0.D

Example: Refer to the DATSIZ command.

DCLEAR Clear Display

Type Display (RP240) Interface Product Rev
Syntax <I>DCLEARI 6K 5.0
Units n/a

Range i =0 (clear all lines), 1 (clear line 1), or 2 (clear line 2)

Default n/a

Response n/a

See Also DLED, DPASS, DPCUR, DSTP, DVAR, DVARB, DVARI, DWRITE

The Clear DisplaydCLEAR command clears lines (as specified viijtof the RP240 display. After clearing a
line, the cursor will be reset to the beginning of that line (or to the beginning of line 1 if all lines are cleared).

DEF Begin Program/Subroutine/Path Definition

Type Program or Subroutine Definition Product Rev
Syntax <I>DEF<t> 6K 5.0
Units t = alpha text string (name of a program)

Range text string of 6 characters or less

Default n/a

Response n/a

See Also $, DEL, END, ERASE, GOBUF, GOSUB, GOTO, MEMORY, PCOMP, PLCP,

PRUN, RUN, [SS], TDIR, TMEM, TPROG, TSS, TSTAT

The Define a Program/Subroutir@HF) command is the beginning of a program, path contour, or subroutine
definition. The syntax for the commandigFfollowed by 6 or fewer alpha-numeric characters. The first
character may not be a number. Refer taMB®IOREommand description for information on program size
restriction and total number of programs possible per product.

All programs are stored in a binary fashion within the 6K Series products. A program transferred back out
(TPROG after it has been defineDER, may not look identical to the program defined. However, the
program is functionally identical.

| NOTE

When defining a program and the memory limitation is exceeded, an error message will
be generated, and bit 11 of the system status register will be set (SSor TSS). The
program will be stored up to the point where the memory limitation was exceeded.

There is no actual difference in the definition of, or execution of a program versus the definition, or
execution of a subroutine. Both a program and a subroutine are defined as the set of commands between a
DEF<t> and arENDcommand. If an invalid program/subroutine name is entered, an error message will be
generated. An invalid program/subroutine name is any name that is also a current command (An example of
an invalid name would bBEFhomx because it is impossible for the operating system to distinguish the

homx subroutine call from thEOMx111go home command.). A subroutine/program definition cannot be
assigned the nam€LR’ and cannot contain any of the following characters:
L—#$,%%,&*, () H -, =G\ L, <>, 2.

TheRUNcommand can be used to start executing a program/subroutine. The program name by itself can
also be used to start executing a program/subroutine. A compiled profile (contour or compiled motion
profile) must be compiled with tteCOMRommand before it can be executed withRR&Ncommand; and

a compiled PLCKLCP) program must be compiled witCOMmMefore is can be executed with B@ANP

or PRUNcommand.

62 6K Series Command Reference

TheGOTGandGOSUB:-ommands can be used within a program/subroutine to go to another
program/subroutine.

NOTE: Program, compiled profile, or subroutine names must be dele&til ljefore they can be
redefined.

Example:

DEL pick ; Delete program named pick

DEF pick ; Begin definition of program named pick

G0O1100 ; Initiate motion on axes 1 and 2, not on axes 3 and 4

END ; End program definition

RUN pick ; Execute program pick

DEL Delete a Program/Subroutine/Path

Type Program or Subroutine Definition Product Rev
Syntax <I>DEL<t> 6K 5.0
Units t = alpha text string (hame of a program)

Range text string of 6 characters or less

Default n/a

Response n/a

See Also $, DEF, END, ERASE, GOSUB, GOTO, RUN

The Delete a Program/Subroutii¥E() command removes a program, path contour, or subroutine definition.
The syntax for the commandDL followed by 6 or fewer alpha-numeric characters. To delete all programs
refer to theERASEcommand. Th®EL command can be placed inside a program (e.g., to debterR

program).

To edit an existing program, you must first delete itThe DEL command will not delete a labe)(

Example:

DEFpick ; Begin definition of program named pick

G01100 ; Initiate motion on axes 1 and 2

END ; End program definition

RUNpick ; Execute program pick

DEL pick ; Deletes program named pick

DJOG Enable RP240 Jog Mode

Type Display (RP240) Interface Product Rev
Syntax <I>DJOG 6K 5.0
Units b=0or1l

Range 0 = disable, 1 = enable

Default 0

Response DJOG: *DJOGO
See Also JOG, JOGA, JOGAA, JOGAD, JOGADA, JOGVH, JOGVL

The DJOGcommand allows you to branch into the RP240 front panel jog mode from within your user-
defined program, adjust the position of the axes, and then return to program execution.

TheDJOG1command enables the RP240 jog mode on all axes. Once the RP240 jog mode is enabled, you
can use the RP240 arrow keys to jog individual axes. Unlikedlzeommand, command processing is
suspended after tiJOG1lcommand is issued. Jogging acceleration and deceleration are performed with
the parameters set with the Jog Accelerati@G@ and Jog Deceleratiod@GAD commands. Jogging

velocities are set with the Jog Velocity HigloGVvH and the Jog Velocity LowOGVL) commands. Once

in the RP240 Jog Mode, you can switch between low and high jog velocities for any axis, and you can also
modify the two jog velocities using the RP24ébs key.

To disable the RP240 jog mode, pressmia RecaLL key or issue the immediat@JOG@command.
Upon exiting the RP240 jog mode, the RP240's display is cleared.

To have the jog mode continually enabled during program execution, you must use jog inputg@gd the
command.

Command Descriptions 63

[DKEY] Value of RP240 Key

Type Display (RP240) Interface; Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also DCLEAR, DPCUR, [DREAD], DREADF, DREADI, DVAR, DWRITE

The DKEYoperator allows you to read the current state of the RP240 key-pad and use it in comparison
commands (e.glF , WHILE, etc.) or variable assignmentdOTE: If two or more keys are pressed
simultaneouslyDKEY will report -1.

Syntax: VARn=DKEYwhere ‘h” is the variable number,
or DKEYcan be used in an expression suchF@sKEY=-1)

The value reported by thteEKEYcommand is defined by the following table:

Value of DKEY Key currently active
-1 None or multiple keys
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 .

11 +/-

12 C/E

13 ENTER

14 Menu Recall
15 STOP

16 PAUSE

17 CONTINUE
21 F1

22 F2

23 F3

24 F4

25 F5

26 F6

64 6K Series Command Reference

DLED Turn RP240 Display LEDs On/Off

Type Display (RP240) Interface Product Rev
Syntax <I>DLED 6K 5.0
Units n/a

Range b =0 (off) or 1 (on)

Default n/a

Response DLED: *DLED1101_0001

See Also DCLEAR, DPASS, DPCUR, DSTP, DVAR, DVARB, DVARI, DWRITE

TheDLEDcommand controls the state of the 8 programmable LEDs on the RPi248gal to substitute a
binary variable (/AR for the DLEDcommand.

Example:

DLED11XXXX01 : Turn on LEDs 1, 2, and 8; turn off LED 7; leave LEDs 3,4,5,
; and 6 unchanged

VARB1=b10101010 ; Set bits 1, 3, 5 & 7 low, and hits 2, 4, 6, & 8 high

DLED(VARB1) ; Turnon LEDs 1, 3,5 & 7; turn off LEDs 2, 4, 6, & 8

DPASS Change RP240 Password

Type Display (RP240) Interface Product Rev
Syntax <I>DPASS<i> 6K 5.0
Units i = integer of up to 9 characters

Range 1-9999

Default For the 6K: DPASS6850

Response DPASS: *DPASS6850
See Also DCLEAR, DLED, DPCUR, DSTP, DVAR, DVARB, DVARI, DWRITE

TheDPASScommand changes the RP240 password. If the default password is not changed by the user, then
there will be no password protection.

Example:
DPASS2001 ; New password = 2001

DPCUR Position Cursor

Type Display (RP240) Interface Product Rev
Syntax <I>DPCURI,i 6K 5.0
Units 1st i =line number, 2nd i =column

Range line number =1or 2, column =0- 39

Default n/a

Response n/a

See Also DCLEAR, DLED, DPASS, DREADI, DSTP, DVAR, DVARI, DVARB, DWRITE

The Position CursoDPCURcommand changes the location of the cursor on the RP240 display. The RP240
lines are numbered from top to bottom, 1 to 2. The columns are numbered left to right, O to 39.

0j1(2]3 7‘ HQ H10|11|12H13H14H15|16H17H18“19|20|21‘F2“23|24|25‘%6H27‘#8

| | esbofeaoeeefosoferle

8
‘8 H HlO|11|12H13H14H15|16H17‘ ‘19|ZO|21‘P ‘23|24|25‘F H27“28 29‘% ‘31‘# |33|34H35‘ |37|38‘39‘

4%4%4#@@@

F2 FS

0j1(2(3

47

Example:
DPCUR2,15 : Position cursor on line 2, column 15

Command Descriptions 65

[DPTR] Data Pointer Location

Type Data Storage; Assignment or Comparison Product Rev
Syntax see below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [DAT], DATA, [DATP], DATPTR, DATSIZ, TDPTR

TheDPTRcommand can be used to compare the current pointer location (the number of the data element to
which the data pointer is pointing) against another value or numeric variable, or to assign the pointer location
number to a variable. The current data pointer location is referenced to the current active data program
specified in the first integer of the |asATSIZ or DATPTRcommand.

Syntax: VARn=DPTRwhere ‘h” is the variable number,
or DPTRcan be used in an expression suchF@PTR=1)

Example :
DATSIZ4,200 ; Create data program called DATP4 with 200 data elements
DATPTRA4,20,2 ; Set the data pointer to data element #20 in DATP4 and set the

; increment to 2 (DATP4 becomes the current active data program)
VAR1=DPTR ; Assign the number of the pointer location in DATP4 to numeric

: variable #1
VAR1 ; Response is *VAR1=20. Indicates that the data pointer is

; pointing to data element #20.

[DREAD] Read RP240 Data

Type Display (RP240) Interface Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [DREADF], DREADI, DVAR, DWRITE, [SS], TSS, VAR

The Read RP240 DatBREAD command allows you to store numeric data entered in from the RP240's
keypad into a variable. As the user presses RP240 numeric keys, the data will be displayed on the RP240
starting at the location equal to the current cursor location + 1 (for a sign bit):

VAR1=DREAD Wait for RP240 numeric entry (terminated with therer key), then set
VAR1equal to that value

Additionally theDREADcommand can be used as a variable assignment within another command that is
expecting numeric data (Rule of Thumb: If the command syntax shows that the command field requires a
real number (denoted By>) or and integer value (denoted 4iy), you can use thBeREADsubstitution.):

A(DREAD),5.0 Wait for RP240 numeric entry (terminated with therer key), then set axis
#1 acceleration to that value and set axis #2 acceleration to 5.0.

The DREADcommand cannot be used in an expression su¢ARB=4+DREAD IF(DREAD=1) .

66 6K Series Command Reference

[DREADF] Read RP240 Function Key

Type Display (RP240) Interface Product Rev
Syntax See below 6K 5.0
Units n/a
Range n/a
Default n/a

Response n/a
See Also [DREAD], DREADI, DVAR, DWRITE, [SS], TSS, VAR, VARI

The Read RP240 Function K&yREADF command allows you to store numeric data entered in from a
RP240 function key into a variable. Function key1l) € 1,F2 = 2, etc., anMENU RECALL (F0) = 0.

Rule of Thumb for command value substitutions: If the command syntax shows that the command field
requires a real number (denoted<ny) or and integer value (denoted 4y), you can use theREADF
substitution (e.gy2,(DREADF)).

Example:
VAR1=DREADF ; Wait for RP240 function key entry, then set VAR1 equal to that
:value
IF(VAR1=5) ; If function key 5 was hit then ...
GOx1 : Start motion on axis #2
NIF : End if statement
DREADI RP240 Data Read Immediate Mode
Type Display (RP240) Interface Product Rev
Syntax <I>DREADI 6K 5.0
Units n/a
Range 1 (enable) or O (disable)
Default 0

Response DREADI: *DREADIO
See Also DPCUR, [DREAD], [DREADF], VAR, VARI

The DREADI1 command allows continual numeric or function key data entry from the RP240 (when used in
conjunction with thedREADand/orDREADFcommands). In this immediate mode, program execution is not
paused (waiting for data entry) wheDREADor DREADFcommand is encountered.

| NOTES |

* While in the Data Read Immediate Mode (DREADIY), data is read into VARand VARI variables only
(e.g., A(DREAD) or V(DREAD) substitutions are not valid).

» This feature is not designed to be used in conjunction with the RP240's standard menus (see
Programmer's Guide for menu structure); the RUN and JOG menus will disable the DREADImode.

« After the RP240's ENTER key is pressed (to enter numeric data), the value is displayed on the
RP240 display at the 1,30 location (showing 10 significant digits).

« Do not assign the same variable to read numeric data and function key data—pick only one.

Simple Numeric Data Entry (example):

VAR1=25000 ; Initialize variable #1

DCLEARO ; Clear entire RP240 display

DWRITE"ENTERVALUE> " ; Send message to RP240 display starting at location 1,0
DREADI1 ; Enable RP240 data read immediate mode

VAR1=DREAD ; Set variable #1 (VAR1) to receive data entered on the RP240.

; Current VAR1 data will be displayed at cursor location 1,30
; (fixed). New data will be displayed at current cursor location
; as defined by the previous DCLEAR, DWRITE and DPCUR commands—

; this is the home cursor location for subsequent data entries.
L77 ; Start loop of 77 repetitions
D(VAR1) ; Set distance equal to the current (last entered) RP240 data
GO1 ; Initiate move on axis one
LN ; End loop
DREADIO ; Exit RP240 data read immediate mode

Command Descriptions 67

; As the loop is running, the user may enter in a new distance value

; (which must be terminated with the ENTER key) via the RP240 numeric keypad.
; The numeric keystrokes cause the digits to be displayed on the RP240

; starting at the home cursor location (see VAR1=DREAD description in the

; example above). When the ENTER key is pressed, the variable is updated;

; the most significant 10 digits (total, including sign & decimal point

; if appropriate) of this variable are displayed at cursor location 1,30;

; and then the data entry field (starting at home) is cleared.

; The 6K controller is ready to accept new data.

Numeric Data & Function Key Entry (example):

VAR1=25000 ; Initialize variable #1

VAR2=1 ; Initialize variable #2

DCLEARO ; Clear the RP240 display

DPCUR2,0 ; Place RP240 cursor on line 2, column 0 (bottom left corner of
; display)

DWRITE" SLOWFAST" ; Send message to RP240 display starting at location 2,0

DPCUR1,0 ; Place RP240 cursor on line 1, column O (top left corner)

DWRITE"ENTERVALUE> " ; Send message to RP240 display starting at location 1,0

DREADI1 ; Enable RP240 data read immediate mode

VAR1=DREAD ; Set variable #1 (VARL1) to receive numeric data entered on the
; RP240's keypad

VAR2=DREADF ; Set VAR2 to receive RP240 function key input

L ; Begin loop

IF(VAR2=1) ; If function key 1 was last pressed, do the IF statement
; (slow velocity)

V3.6 ; Set velocity to 3.6 units per second

NIF ; End IF statement

IF(VAR2=2) ; If function key 2 was last pressed, do the IF statement
; (fast velocity)

V6.4 ; Set velocity to 6.4 units per second

NIF ; End IF statement

D(VAR1) ; Set distance equal to the current (last entered) RP240 numeric
; data

GO1 ; Initiate the move on axis one

LN ; End loop

; As the loop is running, the user may enter in a new distance value and/or
; choose between two different preset velocities. The display does not change
; when a function key is pressed.

Multiple Numeric Data Entry (example):

VAR2=0 ; Initialize variable #2 (VAR2)

VAR3=99 ; Initialize variable #3 (VAR3)

VAR4=10 ; Initialize variable #4 (VAR4)

VAR5=25000 ; Initialize variable #5 (VARD)

DCLEARO ; Clear the entire RP240 display

DPCUR2,0 ; Place RP240 cursor on line 2, column 0 (bottom left corner)
DWRITE"ACCELVEL DIST" ; Send message to RP240 display starting at location 2,0
DREADI1 : Enable RP240 data read immediate mode
VAR2=DREADF ; VAR2 will capture function key entries (0 - 6)

L ; Begin loop

IF(VAR2<>0) ; If a new function key is pressed, do the following code:
DCLEAR1 ; Clear line one of the RP240 display (top line)

IF(VAR2=1) ; If function key 1 is pressed, do the IF statement

; (input acceleration)
DWRITE"ENTERACCELVALUE>" ; Send message to RP240 display starting at location 1,0

VAR3=DREAD ; Set VAR3 equal to the numeric data entered on the RP240's keypad
NIF : End IF statement

IF(VAR2=2) ; If function key 2 is pressed, do the IF statement (input velocity)
DWRITE"ENTERVEL VALUE>" ; Send message to RP240 display starting at location 1,0
VAR4=DREAD ; Set VAR4 equal to the numeric data entered on the RP240's keypad
NIF : End IF statement

IF(VAR2=3) ; If function key 3 is pressed, do the IF statement (input distance)
DWRITE"ENTERDIST VALUE>"; Send message to RP240 display starting at location 1,0
VAR5=DREAD ; Set VAR5 equal to the numeric data entered on the RP240's keypad
NIF : End IF statement

VAR2=0 ; Prohibit repeated execution of this code

VAR2=DREADF ; Re-enable VAR2 to capture new function key entry

NIF : End IF statement

A(VAR3) ; Set acceleration equal to the numeric value of VAR3

68 6K Series Command Reference

V(VAR4) ; Set velocity equal to the numeric value of VAR4

D(VARS5) ; Set distance equal to the numeric value of VAR5
GO1 : Initiate the move on axis one
LN ; End loop

; As the loop is running, the user may select among the three variables he wants

; to enter data into. These three variables correspond with acceleration,

; velocity, and distance. Each time the function key variable changes from 0

; (to 1, 2 or 3), then a new message is displayed and the VARi=DREAD command

; will put the current value of that variable in location 1,30 (upper right hand

; corner of the display). For example, the user can choose VEL (F2) and then
; repeatedly change VAR4 by entering a value on the RP240 numeric keypad and

; pressing the ENTERkey. Each time through the loop, the VAR4 data is loaded

: into the V command.

DRES Drive Resolution

Type Drive Configuration Product Rev
Syntax <I><@><a>DRES<i><i> <i> <i> <> <i> <i> <i> 6K 5.0
Units i = steps/rev

Range 200-1024000 (app“cable 0n|y to
Default 4000 stepper axes)

Response DRES: *DRES4000,4000,4000,4000 ...
1DRES: *1DRES4000

See Also DRFEN, DRFLVL, DRIVE, ERES, PULSE, SCALE, TSTAT

The Drive ResolutionRES command is used to match the controller resolution to that of the motor/drive
to which it is attached. This command is necessary in order to accurately calculate motor drive accelerations
and velocities whether scaling is disable@ALE®, or enabled§CALEJ).

Example:
DRES200,10000,25000,25000 ; Set drive res. for axis 1 to 200 steps/rev, axis 2
; t0 10000 steps/rev, and axes 3 & 4 to 25000 steps/rev

DRFEN Enable/Disable Checking the Drive Fault Input

Type Drive Configuration Product Rev
Syntax <I><@><a>DRFEN<bh> 6K 50
Units b = enable bit

Range b =1 (check the state of the drive fault input),

0 (don't check the state of the drive fault input), or
x (don't change)
Default 0 (disabled)
Response DRFEN: *DRFENO0000_0000
1DRFEN: *1DRFENO

See Also DRFLVL, DRIVE, [AS], [ASX], [ER], ERROR, TAS, TASX, TER

Use theDRFENcommand to enable or disable checking the state of the drive fault input for each axis. The
default condition is that the drive fault input is not checl@ERIFENQ; therefore, a drive fault would not be
detectable. Even withRFENenabled PRFEN}), the controller will not respond to a drive fault cond

ition until the respective axis is enabled with BrRIVE1 command.

DRFENL1is required before you can use these functions (remember that the default power-upREESIjs

* AS, TAS, andTASF (axis status) bit #14 reports if a drive fault occurred.

* ERRORIt #4 enables checking for the occurrence of a drive fault, and when is does, to branch to the
ERRORProgram.

e ER TER andTERF(error status) bit #4 reports if a drive fault occurred@ROPbIt #4 is enabled).

» An output assigned the “Fault Indicator” functidblTFNCi-F) will turn on when a drive fault
occurs or a user fault inpuNENCI-F or LIMFNCI-F) is activated.

Regardless of the state of thRFENcommandASX TASX andTASXF (extended axis status) bit #4 will
accurately report the hardware state of the drive fault input.

The DRFENcommand setting is not saved in the controller’s battery backed RAM.

Command Descriptions 69

DRFLVL Drive Fault Level

Type Drive Configuration Product Rev
Syntax <I><@><a>DRFLVL 6K 5.0
Units n/a

Range b =0 (active low), 1 (active high), or X (don't change)

Default 1

Response DRFLVL *DRFLVL1111 1111
1DRFLVL *1DRFLVL1

See Also [AS], [ASX], DRIVE, DRES, DRFEN, [ER], TAS, TASX, TER

The Drive Fault Level@RFLVL command is used to individually set the fault input level for each axis. To
enable the drive fault inputs for each axis, useblREENcommand (default power-up state is disabled).
Use the following table for setting the drive fault level for Compumotor drives.

Compumotor Product Drive Fault Level
GEMINI, APEX, Dynaserv, LN, OEM Series, S, TQ, ZETA Active High (DRFLVLI)
SV, BLH, L, LE, PDS, PK130 Active Low (DRFLVLG

The drive fault input schematic is shown in your productsallation Guide

Drive Fault Input Status:

Use bit #14 in th&AS, TASF, or AScommands to check the status of the drive fault input (if the drive is
enabled and the drive fault input is enabled). Bit #4 ofk&X TASXF, andASXcommands reports the
statuseven if the drive and the drive fault input are disabled

Drive Fault Level (DRFLVL) Status of device driving the Fault input ASbit #14 and ASXbit #4
DRFLVL1 (active high) OFF or not connected (not sinking current) 1 (drive fault has occurred)
ON (sinking current) a
DRFLVLZ(active low) OFF or not connected (not sinking current) (/]
ON (sinking current) 1 (drive fault has occurred)

When a drive fault occurs, motion will be stopped on all axes (stoppedLatAb& LHADAdeceleration
values) and program execution will be terminated.

Example:
DRFLVL0101 : Set drive fault level to be active low on axes 1 & 3,
; active high on axes 2 & 4
DRIVE Drive Enable
Type Drive Configuration Product Rev
Syntax <I><@><a>DRIVE 6K 5.0
Units n/a
Range b = 0 (shutdown), 1 (enable), or X (don't change)
Default 0 (shutdown)

Response DRIVE *DRIVE1111_1111
1DRIVE *1DRIVE1

See Also [AS], [ASS], AXSDEF, DRFEN, DRFLVL, DRES, KDRIVE, TAS,
TASX, TER

The Drive Enable command energizBRIVE1) or de-energizeDRIVE® a Compumotor motor/drive
combination. The internal shutdown output circuit is illustrated in the prodinstsglation Guide

NOTE: If the Disable Drive on KillKDRIVE) mode is enabled, the drive will be disabled in the event of a
kill command or kill input.

70 6K Series Command Reference

Steppers DRIVE1 energizes the motor driveHutdown+ sinks current an@hutdown- sources current).
DRIVE@de-energizes the motor drivéh(tdown+ sources current arshutdown- Sinks current).

Servos DRIVE1 energizes the motor drive (t8&ITNO relay output is connected ¢mM, and thesSHTNC
relay output is disconnected frarom). DRIVE@de-energizes the motor drive (theTNO relay
output is disconnected frooom, and thesHTNC relay output is connected ¢@m). DRIVEL
also sets the commanded positioR@) equal to the actual positiomKE).

NOTE: TheDRIVE@command will not de-energize a motor drive during motion.

Example:
DRIVE1110 ; Energize drives 1 through 3, de-energize drive 4

DRPCHK RP240 Check

Type Communication Interface; Display (RP240) Interface Product Rev
Syntax <I>DRPCHK<i> 6K 5.0
Units n/a

Range 0-3

Default 0 for port COM1, 3 for port COM2 (PORT command setting

determines which COM port's DRPCHK setting is checked)
Response DRPCHK *DRPCHK3

See Also LOCK, PORT, XONXOFF

The Remote COM Port CheckRPCHKcommand is used to indicate whether a port is to be used with an
RP240 or with 6K language commands. DRPCHkcommand affects the COM port selected with the last
PORTcommand. Th®RPCHKommand value is automatically saved in battery-backed RAM.

NOTE: COML1 is the connector labeled “RS-232" and COM2 is the connector labeled “RS-232/485.”

DRPCHK@....... The serial port will be used for 6K language commands. This is the default setting for
COML1, and if using RS-485 half duplex on COM2. Power-up messages appear on all ports
set toDRPCHK@ If you ordered the FieldBus version of the 6K product, COM2 is factory-
set toDRPCHK@

DRPCHK1....... A check for the presence of an RP240 will be performed at power-up/reset. If an RP240 is
present, the 6K product will initialize the RP240. If an RP240 is not present, the port may
be used for 6K language commands. Note that RP240 commands will be sent at power-up
and reset.

DRPCHK2....... A status check for the presence of an RP240 will be periodically performed (every 5-6
seconds). If an RP240 is plugged in, the 6K product will initialize the RP240. Press F6 on
the RP240 periodically until the 6K product recognizes the RP240. (The RP240 indicates
that it has been recognized by beeping when F6 is pressed.)

DRPCHK3....... A status check for the presence of an RP240 will be performed at power-up/reset. If an
RP240 is present, the 6K product will initialize the RP240. If an RP240 is not present, no
commands exce@WRITEwill have any effect for that port and the COM port will ignore
received characters. This is the default setting for COM2, unless you are using RS-485
multi-drop communication (in which case the default changBRRCHKP

Each port has its owbRPCHHKalue, but only one may be setDBPCHK2r DRPCHK3t any time.

RS-485 Communication: If you are using RS-485 communication in a multi-drop (requires you to change
an internal DIP switch to select half duplex), the default setting for COMRREHKZ If the internal DIP
switch setting is left at full duplex, the default setting for COMRRSCHK3

FieldBus Option: If you ordered the FieldBus version of the 6K product, COM2 is factoryes@® GHKJ

Default values are used uriRPCHHKs set for the first timeDRPCHKalues are automatically saved in non-
volatile memory. They do not change until you set new values. It may be advisable to inclDdE @K
command in your start-up program to ensure that it powers up in the correct setting for your current
application.

Command Descriptions 71

DSTP Enable/Disable RP240 Stop Key

Type Display (RP240) Interface Product Rev
Syntax <I>DSTP 6K 5.0
Units b = enable bit

Range b =1 (enable) or O (disable)

Default 1 (enable)

Response DSTP *DSTP1

See Also DLED, [DREAD], [DREADF |

Use theDSTPcommand to enable or disable the stop key on the RP240 panel.

DVAR Display Variable on RP240

Type Display (RP240) Interface Product Rev
Syntax <I>DVARI,<i> <i>,<i> 6K 50
Units See below

Range n/a

Default See below

Response n/a

See Also [DREAD], [DREADF], DVARB, DVARI, DWRITE, VAR

The Display Variable on RP240YAR command is used to display a numeric variable on the RP240's
LCD at the current cursor location:

1Sti = Variable number [Range 1-225]

2ndj = Number of whole digits displayed (left of decimal point) [Range 0-9]
3di = Number of fractional digits displayed (right of decimal point) [Range 0-8]
athy = Sign bit: 0 = no sign displayed, 1 = display + or -

Example :

VAR2=542.14 ; Assign the value 542.14 to variable #2

DVAR2,6,3,1 ; Display variable #2 as +000542.140

DVAR2,3,1,0 ; Display variable #2 as 542.1

DVAR2,3,,1 ; Display variable #2 as +542

72 6K Series Command Reference

DVARB Display Binary Variable on RP240

Type Display (RP240) Interface Product Rev
Syntax <I>DVARBI,<i> 6K 5.0
Units See below

Range n/a

Default See below

Response n/a

See Also DVAR, DVARI, DWRITE, VARB

The Display Binary Variable on RP24DV(ARB command is used to display a binary variable on the
RP240’s LCD at the current cursor location:

1*i = Variable number [Range 1-125]

2% = Number of bits displayed [Range 1-32]

Example

VARB2=p11001X11 ; Assign the value 11001X11 to binary variable #2

DVARB2,6 ; Display binary variable #2 as 1100_1X

DVARB2,3 ; Display binary variable #2 as 110

DVARB2,1 ; Display binary variable #2 as 1

DVARI Display Integer Variable on RP240

Type Display (RP240) Interface Product Rev
Syntax <I>DVARIi,<i>,<i> 6K 5.0
Units See below

Range n/a

Default See below

Response n/a

See Also DVAR, DVARB, DWRITE, VARI

The Display Integer Variable on RP240MARI) command is used to display an integer variable on the
RP240’s LCD at the current cursor location:

1*i = Variable number [Range 1-225]

2"i = Number of whole digits displayed [Range 0-9]

39i = Sign bit: 0=no sign displayed, 1=display + or - sign
Example

VARI2=542 ; Assign the value 542 to integer variable #2
DVARI2,6,1 ; Display integer variable #2 as +000542
DVARI2,3,1 ; Display integer variable #2 as =+542

Command Descriptions 73

DWRITE Write Text on RP240

Type Display (RP240) Interface Product Rev
Syntax <I>DWRITE"message" 6K 5.0
Units n/a

Range Message can be <80 characters (may not use characters ", \,* or)

Default See below

Response n/a

See Also DCLEAR, DLED, DPASS, DPCUR, DVAR, DVARB, DVARI, PORT

The Write Text on RP24®MWRITE command displays a message on the RP240's LCD starting at the
current cursor location. A message is a character string of up to 80 characters in length. The characters
within the string may be any characters except qugtédackslash\(), asterisk{(), and colon:(). Strings

that have lower-case letters will be converted to upper case prior to display (see example).

The following graphic shows the location of the RP240's two-line, 40-character display. It also shows the
characters in relation to the function keys.

o[u[z]e o s o [[e[o hofapeliaparshelhehopofespalospaleselerpfespoffefaapafospefereles

o[1 [z s s [o [oo pofusperahehrspefrhohspoesefapefspefrsfaeiofsapefsapafospoforpols

RO TSRS,

F1 | F2 F3 ' F4 | F5 F6

HINT: If you do not have an RP240 and wish to send (only) characters out the serial port to another serial
device, you may use this command. Place a backslash (\) before non-alphanumeric characters.
Example:DWRITE"HOMING SUCCESSFUL\13" = send message plus <CR>

Example :

DCLEARO ; Clear RP240 display

DPCUR1,12 ; Move cursor to line 1, column 12
DWRITE"Enter Number of Parts"; RP240 will display: ENTER NUMBER OF PARTS
VAR1=DREAD ; RP240 waiting for data entry

74 6K Series Command Reference

E Enable Communication

Type Communication Interface Product Rev
Syntax <i_><I>E 6K 50
Units i = unit number set by the ADDR command
Range i=0-99;

b =0 (serial communication off) or 1 (serial communication on)
Default b=1
Response 0_E: *E1

See Also ADDR, BAUD, DRPCHK, ECHO, LOCK, PORT, XONOFF

TheE command allows you to enable and disable serial ports on your 6K controller. To enable all units in
the RS-232 daisy-chain or RS-485 multi-drop at one time, you can uge doenmand. Th@ORT
command determines which COM port is affected byethemmand.

Example:
PORT1 ; Next command affects the COML1 serial port on the 6K product
0_E1 ; Enable serial port for unit with device address 0
ECHO Communication Echo Enable
Type Communication Interface Product Rev
Syntax <I>ECHO 6K 5.0
Units n/a
Range b = 0 (disable), 1 (enable), 2 (echo through other COM port),
3 (echo through both COM ports), or X (don't change)
Default 1
Response ECHO: *ECHOO
See Also 1, [, BAUD, EOL, EOT, ERRLVL, PORT, [SS], TSS

The Communication Echo EnableqH® command enables command edhawer-case letters are
converted to upper case and then echd®Hen echo is enabled, commands are echoed character by
character.

In a terminal emulator mode, you may not see the echoed characters on your display when issuing
commands that have a response, because the echoed characters may be overwritten by the response.

ThePORTcommand determines which COM port is affected byethieOCcommand.

The purpose of thECHO2andECHO3options is to accommodate an RS-485 multi-drop configuration in

which a host computer communicates to the “master” 6K controller over RS-232 (COML1 port) and the
master 6K controller communicates over RS-485 (COM2 port) to the rest of the units on the multi-drop. For
this configuration, the echo setup should be configured by sending to the master the following commands
executed in the order shown. In this example, it is assumed that the master's device address is set to 1.
Hence, each command is prefixed with * to address only the master unit.

1 PORT2 Subsequent command affects COM2, the RS-485 port

1 ECHO2 Echo characters back through the other port, COM1

1 PORT1 Subsequent command affects COM1, the RS-232 port

1 ECHO3 Echo characters back through both ports, COM1 and COM2

Command Descriptions 75

EFAIL Encoder Failure Detect

Type Encoder Configuration Product Rev
Syntax <I><@>EFAIL 6K 5.0
Units n/a

Range b =0 (disable), 1 (enable), or X (don’t change)

Default 0

Response EFAIL: *EFAILO000_0000
1EFAIL: *1EFAILO

See Also [ASX], [ER], ERROR, ERRORP, TASX, TER

The Encoder Failure Dete@RAIL) command enables (1) or disables (0) the monitoring of the encoder
signals to determine if the encoder is functioning properly. If there is no active signal on either Phase A or
Phase B of an axis encoder (i.e., encoder is fully disconnected), this will be detected and can elicit an
appropriate response by programming the unit to monitor and recognize the encoder failure.

If EFAIL is enabled for an axis, and an encoder error is detected, then bit 5 of the extended axis status
register (reported witMASX TASXFandASX) is set to 1. WheBRRORit 17 is set to 1, an encoder failure
occurring on any axis will initiate a jump to the error prograRRORJP

ELSE Else Condition of IF Statement

Type Program Flow Control Product Rev
Syntax <I>ELSE 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also IF, NIF

This command is used in conjunction with tReandNIF commands to provide conditional branching. If
the expression contained within the parentheses dftltemmand evaluates true, then the commands
between thér and theELSE are executed. The commands afterBb8E until theNIF are ignored. If the
expression evaluates false, the commands betwe@&h #ieand theNIF are executed. The commands
betweernF andELSE are ignored. ThELSE command i®ptional and does not have to be included in the
IF statementiF()...ELSE..NIF commands can be nested up to 16 levels deep.

Programming order: IF(expressiop ...commands.ELSE ...commands.NIF
Example:
IF(IN.1=b1) ; Specify condition: if onboard input #1 is on
T5 : If condition evaluates true, wait 5 seconds
ELSE ; Else part of IF condition
TPE ; If condition does not evaluate true transfer position of
: all encoders
NIF : End IF statement

76 6K Series Command Reference

ENCCNT Encoder Count Reference Enable

Type Encoder; Controller Configuration Product Rev

Syntax <I><@><a>ENCCNT 6K 50

Units b = enable bit

Range 0 (reference the commanded position), (applicable only to
1 (reference the encoder position) or X (don't change) stepper axes)

Default 0 (reference the commanded position)

Response ENCCNT *ENCCNTO0000_0000
1ENCCNT *1ENCCNTO

See Also AXSDEF, INFNC, LIMFNC, OUTP, [PCC], [PCE], [PCME],
[PE], TPCC, TPCE, TPCME, TPE, TVELA, [VELA]

UseENCCNTo configure stepper axes to reference either the encoder position or the commanded position
when capturing the position (sB&NCi-H) and checking the encoder positi®E @ndTPE). When

checking the actual velocityELA andTVELA), ENCCNTdetermines whether the velocity, in units of

revs/sec, is derived with the encoder resolutERE9 or the drive resolutiorDRES. The default setting
(ENCCNTY references the commanded position.

Example:

AXSDEFO00 ; Axes 1 & 2 as steppers; axis 1 has encoder, but axis 2 does not.
INFNC1-H ; Configure trigger 1A as a position capture input for axis 1
INFNC3-H ; Configure trigger 2A as a position capture input for axis 2
ENCCNT10 ; Capture axis 1's encoder position when trigger 1A is activated,

; Capture axis 2's commanded position when trigger 2A is activated.

ENCPOL Encoder Polarity

Type Encoder; Controller Configuration Product Rev
Syntax <I><@><a>ENCPOL 6K 50
Units b = polarity bit

Range 0 (normal polarity), 1 (reverse polarity) or X(don't change)

Default 0

Response ENCPOL *ENCPOLO0000000
1ENCPOL *1ENCPOLO

See Also CMDDIR, EFAIL,[FB], FOLMAS, MEPOL,[PCE],[PE],[PER],
PSET, SFB, TFB, TPE, TPCE, TPER

Servo stability requires a direct correlation between the commanded direction and the direction of the
encoder counts (i.e., a positive commanded direction from the controller must result in positive counts from
the encoder).

If the encoder input is counting in the wrong direction, you may reverse the polarity wiRarOL

command (see programming example below). This allows you to reverse the counting direction without
having to change the actual wiring to the encoder input. For example, if the encoder on axis 2 counted in the
wrong direction, you could issue tB&ICPOLx1command to correct the polarity.

Immediately after issuing ttENCPOLcommand, the encoder will start counting in the opposite direction
(including all encoder position registers). For servo axes, the polarity is immediately changed whether or
not encoder feedback is currently selected witts#F@command.

| NOTE |

Changing the feedback polarity effectively invalidates any existing offset position (PSET)
setting; therefore, you will have to re-establish the PSET position.

TheENCPOLcommand is automatically saved in non-volatile RAM.

NOTE: ENCPOLdoes not affect the Master Encoder (the encoder connected to the “Master Encoder”
connector). To change the polarity of the Master Encoder, uséeth@L.command.

If you wish to reverse the commanded direction of motion, first make sure there is a direct correlation between
commanded direction and encoder direction, then issue the appr@Miai#Rcommand to reverse both the
commanded direction and the encoder direction¢s&@DIRcommand description for full details).

Command Descriptions 77

Example (servo axis):

SFB1

SMPER100

PSETO
1TPE
MAO
D+8000
GO1

1TPE

ENCPOL1
PSETO
DRIVE1

D+8000
GO1
1TPE

: Select encoder feedback for axis 1

; Set maximum position error to 100 units on axis 1

; Define current position of axis 1 as position zero

; *ITPE+O (response indicates encoder #1 is at position zero)

; Select incremental positioning mode
; Set distance to 8,000 units in the positive direction

; Move axis 1. If the encoder polarity is incorrect, the axis will be
; unstable and will stop (drive disabled) as soon as the maximum
; position error of 100 units is reached.

; *1ITPE-100 (response should show that encoder #1 is approximately at
; position -100; the minus sign indicates that the encoder is
; counting in the wrong direction)

; Reverse encoder polarity on axis 1

; Define current position of axis 1 as position zero
; Enable the drive (drive was disabled when the SMPER value was
; exceeded)
; Set distance to 8,000 units in the positive direction

: Move axis 1

; *ITPE+8000 (response shows encoder #1 has moved 8,000 units in the
; positive direction, indicating that the encoder is now counting in
; the correct direction)

ENCSND Encoder Step and Direction Mode

Type
Syntax
Units
Range
Default
Response

See Also

Encoder; Counter Product Rev
<I><@><a>ENCSND<bh> 6K 5.0
n/a '
b = 0 (quadrature signal), 1 (step &direction) or X(don't care)

0

ENCSND: *ENCSNDO0000_0000
1ENCSND: *1ENCSNDO

MESND, [PE], SFB, TPE

Use theENCSNommand to change the functionality of one or more of the encoder connectors to accept a
counting source from a step and direction signal, instead of from an encoder quadrature signal. The counter
is reported byPE andTPE If the axis is a servo axis, the step and direction count source is used even

though the feedback source seleci®fel] is an “encoder.”

ENCSNDQ.... (default setting) accept a quadrature signal from an encoder.
ENCSNDL....Accept step and direction signals. The count is registered on a positive edge of a

transition for a signal measured on encoder channel A+ and A- connections. The
direction of the count is specified by the signal on encoder channel B+ and B-
connections. Therefore, you should connect your step and direction input device as
follows: Connect Step+ to A+, Step- to A-, Direction+ to B+, and Direction- to B-.

END

Type
Syntax
Units
Range
Default
Response

See Also

End Program/Subroutine/Path Definition

Program or Subroutine Definition Product Rev
<I>END 6K 5.0
n/a
n/a
n/a
n/a

$, DEF, DEL, ERASE, GOBUF, GOSUB, GOTO, RUN

TheENDcommand marks the ending point of a program/subroutine/path contour definition. All commands
between th®EFand theENDstatement will be considered in a program, subroutine, or path contour.

Example:
DEF pick
GO01100
END
pick

; Begin definition of program named pick
; Initiate motion on axes 1 and 2
; End program definition

; Execute program named pick

78 6K Series Command Reference

EOL End of Line Terminating Characters

Type Communication Interface Product Rev
Syntax <I>EQOL<i>,<i><i> 6K 5.0
Units n/a

Range i =0- 256

Default 13,10,0

Response EOL: *EOL13,10,0

See Also 1, [, BOT, EOT, ERRLVL, PORT, WRITE, XONOFF

The End of Line Terminating CharacteED() command designates the characters to be placed at the end

of each line, but not the last line, in a multi-line response. The last line of a multi-line responseelds the
characters. Up to 3 characters can be placed at the end of each line. The characters are designated with their
ASCII equivalent (no character that has a value of zero [J] will be output). For example, a carriage return is
ASCII 13, a line feed is ASCII 10, and no terminating character is designated with a zero.

ThePORTcommand determines which COM port is affected byethecommand.

NOTE: Although you may issue a single command, 1&g AT, each line of the response will have the
EOL characters. The last line in the response will havE@wcharacters. If the response is only
one line long, th&OTcharacters will be placed after the response, na@theharacters.

Character ASCII Equivalent
Line Feed 10
Carriage Return 13
Ctrl-Z 26

For a more complete list of ASCII Equivalents, refer to the ASCII Table in Appendix B.

Example:

EOL13,0,0 ; Place a carriage return after each line of a response

EOT End of Transmission Characters

Type Communication Interface Product Rev
Syntax <!>EOT<i>,<i>,<i> 6K 5.0
Units n/a

Range i =0- 256

Default 13,0,0

Response EOT: *EOT13,0,0

See Also], [, BOT, EOL, ERRLVL, PORT, WRITE

The End of Transmission Terminating CharacteE@&T command designates the characters to be placed at
the end of every response. Up to 3 characters can be placed after the last line of a multi-line response, or
after all single-line responses. The characters are designated with their ASCII equivalent (no character that
has a value of zero [@] will be output). For example, a carriage return is ASCII 13, a line feed is ASCII 10,
a Ctrl-Z is ASCII 26, and no terminating character is designated with a zero.

ThePORTcommand determines which COM port is affected byeth&command.

NOTE: Although you may issue a single command, kAT, each line of the response will have the
EOLcharacters. The last line in the response will hav&@icharacters. If the response is only
one line long, th&OTcharacters will be placed after the response, na@@heharacters.

Character ASCII Equivalent
Line Feed 10
Carriage Return 13
Ctrl-Z 26

For a more complete list of ASCII Equivalents, refer to the ASCII Table in Appendix B.

Example :
EOT13,10,26 ; Place a carriage return, line feed, and Ctrl-Z after the last line
; of a multi-line response, and after all single line responses

Command Descriptions 79

[ER] Error Status

Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [ASX], DRFEN, DRFLVL, EFAIL, ERROR, ERRORP, ESTALL, GOWHEN,

INFNC, K, LH, LIMFNC, LS, S, SMPER, STRGTT, TASX, TER, TERF

The Error Statusg§R) command is used to assign the error status bits to a binary variable, or to make a
comparison against a binary or hexadecimal value. To make a comparison against a binary value, the letter b
(b or B) must be placed in front of the value. The binary value itself must only contain ones, zeros, or Xs (1,
@, X, xX). To make a comparison against a hexadecimal value, the letter h (h or H) must be placed in front of
the value. The hexadecimal value itself must only contain the letters A through F, or the numbers @ through 9.

Syntax: VARBn=<i%>ERwheren is the binary variable number, BRcan be used in an expression such
asIF(ER=b11@1) , orIF(ER=h7F) . NOTE: If you are using multi-tasking, be aware that each
task has its own error status register. If you wish to check the error status of a external task (a task
other than the task that is executing Eeoperator), then you must prefix tB® operator to
address the targeted task (e2goERfor the error status of Task 2).

The bit select operator), in conjunction with the bit number, can be used to specify a specific
error bit. ExamplesVARB1=ER.2 assigns error bit 2 to binary variablelA(ER.2=b1) isa
conditional statement that is true if error bit 2 is set to 1.

The specific error-checking bits must be enabled by the Error-Checking EBEBRBI®R command before
theERcommand will provide an error response — see programming example below.

Multi-Tasking : If you are using multi-tasking, each task has its own error checkingBIROR error status
register ER TER TERF), andERRORMProgram. Regarding axis-related error conditions (e.g., drive fault, end-
of-travel limit, etc.), only errors on the task’s associal&8kKAX axes are detected in its error status register.

The function of each error status bit is shown below.

Bit # Function (1 = Yes; @=No)

1* Stall Detected: Functions when stall detection has been enabled (ESTALL).
2 Hard Limit Hit: Functions when hard limits are enabled (LH).
3 Soft Limit Hit: Functions when soft limits are enabled (LS).
4 Drive Fault: Detected only if the drive is enabled (DRIVE), the drive fault input is enabled (DRFEN, and the drive
fault level is set correctly (DRFLVL.
5 RESERVED (refer to the ERRORommand)
6 Kill Input: When an input is defined as a Kill input INFNCi-C or LIMFNCI-C), and that input becomes active.
7 User Fault Input: When an input is defined as a User Fault input (INFNCi-F or LIMFNCI-F), and that input
becomes active.
8 Stop Input: When an input is defined as a Stop input (INFNCi-D or LIMFNCI-D), and that input becomes active.
9 Enable input is activated (not grounded).
10 Pre-emptive (on-the-fly) GOor registration move profile not possible.
11 ** Target Zone Settling Timeout Period (set with the STRGTTcommand) is exceeded.
12 ** Maximum Position Error (set with the SMPER-ommand) is exceeded.
13 RESERVED
14 Position relationship in GOWHEAIready true when GQ GOL FSHFC or FSHFDwas executed.
15 RESERVED
16 Bad command detected (bit is cleared with TCMDERommand).
17 Encoder failure (EFAIL1 must be enabled before error can be detected; error is cleared by sending EFAILD to
the affected axis).
18 Cable to an expansion /O brick is disconnected, or power to the 1/O brick is lost; error is cleared by reconnecting

the 1/0O brick and issuing the ERROR.18-0 command and then the ERROR.18-1 command.
19-32 RESERVED

* Stepper axes only
** Servo axes only

80 6K Series Command Reference

Example:
ERROR111101101
VARB1=ER
VARB2=ER.4
VARB2

IF(ER=b1110X11X1)
TREV

NIF
IF(ER=hF600)

; Enable error-checking bits 1-4, 6, 7, and 9
; Error status assigned to binary variable 1
; Error status bit 4 assigned to binary variable 2
; Response if bit 4 is set to 1:
T FVARB2=XXX1 XXXX_ XXXX XXXX_ XXXX_ XXXX_ XXXX_ XXXX
: If the error status contains 1's for bit locations 1, 2, 3,
16,7, and 9, and a O for bit location 4, do the IF statement
: Transfer revision level
: End if statement
: If the error status contains 1's for bit locations 1, 2, 3,
; 4,6, and 7, and 0's for every other bit location, do the
. IF statement

TREV : Transfer revision level

NIF : End if statement

ERASE Erase All Programs

Type Subroutine or Program Definition Product Rev
Syntax <I>ERASE 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [DATP], DEF, DEL, RESET

The Erase All Program&RASE command deletes all programs created wittbiBecommand, including
all data program®ATB. If you do not want to erase all the programs, you can ugzftheommand to
selectively delete programs. TRESETcommand will erase all programs (only in bus-based controllers)
and reset all values to factory defaults.

ERES Encoder Resolution
Type Encoder Configuration Product Rev
Syntax <I><@><a>ERES<i> <i><i> <i> <i>,<i> <i>,<i> 6K 5.0
Units i = counts/rev
Range 1- 65535 (stepper axes); 200 - 1024000 (servo axes)
Default 4000
Response ERES: *ERES4000,4000,4000,4000,4000,4000,4000,4000
1ERES: *1ERES4000
See Also DRES, EFAIL, ENCCNT, ESTALL, TSTAT

Stepper Axes TheEREScommand establishes the number of encoder counts received for a move equal to
the distance set in the drive resoluti@®RES command. If the motor/drive resolution equals
25000 steps/rev, and a 1 revolution move is performed (with sc8id®_g disabled), the
number of encoder counts received back would be the encoder resolutiore®ige A standard
1000-line per revolution encoder gives 4000 counts post-quadrature. If the encoder is coupled to
the back of a motor, tHeERESvalue will be 4000. This value, along with the drive resolution value
(DRES are important for the motion algorithm to correctly interpret move distances, move
velocities, and move accelerations.

Servo Axes The servo system's resolution is determined by the resolution of the encoder used with the
servo drive/motor system. TEEREScommand establishes the number of stepsponts(post
guadrature), per unit of travel. For example, Compumotor’s SM and NeoMetric Series motors with
the “E” encoder option use 1,000-line encoders, and therefore have a 4,000 count/rev post-
guadrature resolution (requirERES4@dW If the encoder is mounted directly to the motor, then to
ensure that the motor will move according to the programmed distance and velocity, the
controller's resolutionHRESvalue) must match the encoder's resolution.

Command Descriptions 81

Resolutions for Compumotor Encoders:

Stepper axes:
¢ -RE, -RC, -EC, and -E Series Encoder&£RES4000
¢ -HJ Series ENcoders:ccccvvvvvvnnnnnnns ERES2048
Servo axes:
¢ SM, N or J Series Servo Motors................ SM/N/IxxxxD-xxERES2000

SM/N/IxxxXE-xxxx: ERES4000
Dynaserv (stepper or servo):

© DRIOXXB....ooovoiiiiiiiiiiciiiiic e ERES507904
e DRIXXXE......ccooiiiiiiiiiii, ERES614400
e DRIXXXA.....ooooiiiiiiii ERES819200
¢ DRSXXXB...oooiiiiiiiiiiiiiid ERES278528
e DROSXXXA.....oooiiiiii ERES425894
¢ DMIOXXB....ooiiiiiiiiiiiicc ERES655360
¢ DMIXXXA...iiiiiiiiiiie ERES1024000
¢ DMIOO0AX ...vvieeiiriieeiiiie e ERES655360

Example (axis 1 is stepper axis, axis 2 is servo axis):
SCALEO ; Disable scaling

DEL proga ; Delete program called proga
DEF proga ; Begin definition of program called proga
DRES25000 ; Motor/drive resolution set to 25000 steps/rev on axis 1
; (DRES is used for stepper axes only)
ERES4000,4000 ; Encoder resolution set to 4000 post-quadrature counts/rev on
; axes 1 & 2 (encoder on axis 1 is for stall detection only)
ESTALL1 ; Enable stall detection for the stepper axis (axis 1)
MAOO ; Incremental mode for axes 1 and 2
MCO00 ; Preset mode for axes 1 and 2
A10,12 ; Set the acceleration to 10 and 12 units/sec/sec for axes 1 & 2
V1,1 ; Set the velocity to 1 unit/sec for axes 1 and 2
D100000,80000 ; Set the distance to 100000 and 1000 units for axes 1 and 2
GO11 ; Initiate motion on axes 1 and 2:
; Axis 1 will move 100,000 commanded counts (4 revs).
; Axis 2 will move 80,000 encoder counts (20 revs)
END ; End definition of proga
ERRBAD Error Prompt
Type Communication Interface Product Rev
Syntax <I><@>ERRBAD<i><i><i><i> 6K 5.0
Units n/a
Range i =0- 256
Default 13,10,63,32
Response ERRBAD: *ERRBAD13,10,63,32
See Also BOT, EOT, ERRDEF, ERRLVL, ERROK, PORT, TCMDER

The Error PromptERRBAD command designates the characters to be placed into the output buffer after an
erroneous command has been entered. Up to 4 characters can be placed in the output buffer. These characters
serve as a prompt for the next command. The characters are designated with their ASCII equivalent. For
example, a carriage return is ASCII 13, a line feed is ASCII 10, a question mark is ASCII 63, a space is ASCII

32, and no terminating character is designated with a zero.

ThePORTcommand determines which COM port is affected byElRRBAD:ommand.

For a more complete list of ASCII equivalents, refer to the ASCII Table in Appendix B.

Example:
ERRBAD13,0,0,0 ; Place a carriage return only in the output buffer after
; processing an erroneous command

82 6K Series Command Reference

ERRDEF Program Definition Prompt

Type Communication Interface Product Rev
Syntax <I><@>ERRDEF<i><i><i><i> 6K 5.0
Units n/a

Range i =0- 256

Default 13,10,45,32

Response ERRDEF: *ERRDEF13,10,45,32

See Also ERRBAD,ERRLVL, ERROK, PORT, XONOFF

The Program Definition PrompERRDEF command designates the characters to be placed into the output
buffer after aEFcommand has been entered. These characters will continue to be placed into the output
buffer after each command until taRBiIDcommand is processed. Up to 4 characters can be placed in the
output buffer. These characters serve as a prompt while defining a program. The characters are designated
with their ASCII equivalent. For example, a carriage return is ASCII 13, a line feed is ASCII 10, a hyphen

is ASCII 45, a space is ASCII 32, and no terminating character is designated with a zero. For a more
complete list of ASCII equivalents, refer to the ASCII Table in Appendix B.

ThePORTcommand determines which COM port is affected byElRRDEFcommand.

Example:
ERRDEF13,0,0,0 ; Place a carriage return only in the output buffer after each
; command in the program definition

ERRLVL Error Detection Level

Type Error Handling Product Rev
Syntax <I>ERRLVL<i> 6K 5.0
Units i - error level settings

Range i=0,1, 2 3, or4

Default 4 if COM port is set up for RS-232C;

0 if COM port is set up for RS-485
Response ERRLVL: *ERRLVL4

See Also EOT, ERRBAD,ERRDEF,ERROK, PORT

The Error Detection LeveERRLVL command specifies the format for etlsponse feedback and error
messages (error messages are listed on page 9 of this manual, and in the Troubleshooting chapter of the
Programmer's Guide Error level 4 is the default error detection level.

ThePORTcommand determines which COM port is affected byERRLVLcommand.

Error Level Description

ERRLVL4 All responses are returned as shown in the Response field of the corresponding command, followed by
the EOTcharacters and the ERROKcharacters. Error conditions return an error message corresponding
to the error condition followed by the EOTcharacters and the ERRBAxharacters. Program definitions
beginning with the DEFcommand and ending with the ENDcommand place the ERRDEFcharacters in
the output buffer after each command is processed.

ERRLVL3 All responses are returned as shown in the Response field of the corresponding command, followed by
the EOTcharacters and the ERROKcharacters. Error conditions return only the ERRBAxharacters.
Program definitions beginning with the DEFcommand and ending with the ENDcommand place the
ERRDEFRharacters in the output buffer after each command is processed.

ERRLVL2 All responses are returned as shown in the Response field of the corresponding command, followed by
the EOTcharacters. There are no ERROKcharacters and no error responses.

ERRLVL1 All responses are returned as shown in the Response field of the corresponding command, minus the
command itself, followed by the EOTcharacters. There is no error response.

ERRLVLQD All responses are returned as shown in the Response field of the corresponding command, minus the
command itself and the asterisk, followed by the EOTcharacters. There is no error response.

Command Descriptions 83

ERROK Good Prompt

Type Communication Interface Product Rev
Syntax <I><@>ERROK<i><i><i><i> 6K 50
Units n/a

Range i =0- 256

Default 13,10,62,32

Response ERROK: *ERROK13,10,62,32

See Also ERRBAD,ERRDEF,ERRLVL, PORT, XONOFF

The Good PrompHRROK command designates the characters to be placed into the output buffer after a
command has been entered correctly. Up to 4 characters can be placed in the output buffer. These
characters serve as a prompt for the next command. The characters are designated with their ASCII
equivalent. For example, a carriage return is ASCII 13, a line feed is ASCII 10, a greater than symbol is
ASCII 62, a space is ASCII 32, and no terminating character is designated with a zero. For a more complete
list of ASCII equivalents, refer to the ASCII Table in Appendix B.

ThePORTcommand determines which COM port is affected byelRROKkcommand.

Example:
ERROK13,0,0,0 ; Place a carriage return only in the output buffer after
; processing a valid command

ERROR Error-Checking Enable
Type Error Handling Product Rev
Syntax <I><%>ERROR... (32 bits) 6K 50
Units n/a
Range b = 0 (disable), 1 (enable), or X(don't change)
Default 0
Response ERROR: *ERRORO0000_0000_0000_0000_0000_0000_0000_0000
bit 11— it 32

See Also [ASX], DRFEN, DRFLVL, EFAIL, [ER], ERRORP, ESTALL, GOWHEN,
INFNC, K, LH, LIMFNC, LS, S, TASX, TER, TRGFN

When an error-checking bit is enabl&RROR11...11), the operating system will respond to a specific
execution error by doing a GOSUB or a GOTO to the error program defined witRR@Rrommand

(see table below). Each bit corresponds to a different error condition. To enable or disable a specific bit, the
syntax iISERROR.n-b, where " is the error bit number and” is eitherl to enable o@to disable.

| MULTI-TASKING |

If you are operating multiple tasks, be aware that you must enable error conditions (ERRORand
specify an error program (ERRORJfor each task (e.g., 2%ERROR.2-1and 2%ERRORHRFIX for
Task 2). Each task has its own error status register (reported with ER TER and TERBP.
Regarding axis-related error conditions (e.g., drive fault, end-of-travel limit, etc.), only errors on
the task’s associated (TSKAX axes will cause a branch to the task's ERRORRrogram.

Bit # Function (Error bits #13, #15, and #18 - #32 are reserved.) Branch Type
1* Stall Detected: Functions when stall detection has been enabled (ESTALL). GOSUB
ESK must be enabled .

2 Hard Limit Hit: Functions when hard limits are enabled (LH). GOTO if COMEXL@
GOSUB if COMEXL1

3 Soft Limit Hit: Functions when soft limits are enabled (LS). GOTO if COMEXL@
GOSUB if COMEXL1

4 Drive Fault: Detected only if the drive is enabled (DRIVE), the drive fault input is GOTO

enabled (DRFEN, and the drive fault level is set correctly (DRFLVL).

5 Commanded Kill or Commanded Stop (a K, K, <ctrl>K , S, or IS command is sent). 'K = GOTO;
IS = GOTO if COMEXS®J

NOTE IS = GOSUB if
If you want the program to stop, you must issue the HALT command. .COMEXS]butIneed o

84 6K Series Command Reference

Bit # Function (Error bits #13, #15, and #18 - #32 are reserved.) Branch Type

6 Input Kill: When an input is defined as a KILL input (INFNCi-C or LIMFNCI-C), and GOTO
that input becomes active.

7 User Fault Input: When an input is defined as a user fault input (INFNCi-F or GOTO
LIMFNCI-F), and that input becomes active.

8 Stop Input: When an input is defined as a stop input (INFNCi-D or LIMFNCi-D),and GOTO
that input becomes active.

9 Enable input is activated (not grounded). GOTO

10 Pre-emptive (on-the-fly) GOor registration move profile not possible at the time of GOSUB
attempted execution.

11 ** Target Zone Settling Timeout Period (set with the STRGTTcommand) is exceeded. GOSUB

12 ** Maximum Position Error (set with the SMPERcommand) is exceeded. GOSUB

14 GOWHEBbnNdition already true when a subsequent GQ GOL, FSHFG or FSHFD GOSUB
command is executed.

16 Bad command detected (bit is cleared with TCMDERommand). GOSUB

17 Encoder failure (EFAIL1 must be enabled before error can be detected; GOSUB

error is cleared by sending EFAILD to the affected axis).

18 Cable to an expansion I/O brick is disconnected, or power to the I/O brick is lost; GOTO
error is cleared by reconnecting the 1/O brick (or restore power to the 1/O brick) and
issuing the ERROR.18-0 command and then the ERROR.18-1 command.

* Stepper axes only; ** Servo axes only
NOTE: Error bits 13, 15, and 19-32 are reserved.

ERRORP Error Program Assignment

Type Error Handling Product Rev
Syntax <I><%>ERRORP<t> 6K 5.0
Units t = text (name of error program)

Range Text name of 6 characters or less

Default n/a

Response ERRORP: *ERRORPerrl
See Also [ER], ERRLVL, ERROR,TER

Using theERRORR-ommand, you can assign any previously defined program as the error program. For
example, to assign a previously defined program nabR#dsHas the error program, enter tieRRORP CRASH
command. If you later decide not to have an error program, isS&ERR@RP CLREommand; after thERRORP
CLRcommand, no error program will be called until you assign a new one.

The purpose of the error program is to provide a programmed response to certain error conditions (see table
below) that may occur during the operation of your system. Programmed responses typically include actions
such as shutting down the drive(s), activating or de-activating outputs, etc. To detect and respond to the
error conditions, the corresponding error-checking bit(s) must be enabled witRRIEcommand (refer

to theERROR Bit #£olumn in the table below). It is the programmer's responsibility to determine the cause

of the error, and take action based on the error. The error condition can be determined &8ing the

evaluation in anF statement (e.glE(ER=b1X)). An error program set-up example is provided in the
Programmer's Guide

When an error condition occurs and the associated error-checking bit has been enabledERRiOthe
command, the 6K controller will branch to the error program. Depending on the error condition, the branch
be either a GOTO or GOSUB. If the error condition calls for a GOSUB, then afteRER@RPprogram is
executed, program control returns to the point at which the error occurred. If you do not want to return to
the point at which the error occurred, you can uséithel command to end program execution or you can
use theGOTCcommand to go to a different program. If the error condition calls for a GOTO, there is no
way to return to the point at which the error occurred.

Command Descriptions 85

| MULTI-TASKING |

If you are operating multiple tasks, be aware that you must enable error conditions (ERROIRand
specify an error program (ERRORJfor each task (e.g., 2%ERROR.2-1and 2%ERRORHRFIX for
Task 2). Each task has its own error status register (reported with ER TER and TERF).
Regarding axis-related error conditions (e.qg., drive fault, end-of-travel limit, etc.), only errors on
the task’s associated (TSKAX axes will cause a branch to the task's ERRORRrogram.

The ERRORRssignment is not saved in battery-backed RAM. To ensure tHeERR®@RRSSIgNMent is
retained when you cycle power or issURESETcommang put theERRORFRommand in thetartupprogram
assigned with th6 TARTPcommand.

WHEN TO BRANCH

If you wish the branch to the error program to occur at the time the error condition is
detected, use the continuous command execution mode (COMEXQC) Otherwise, the
branch will not occur until motion on all axes has stopped.

Canceling the Branch to the Error Program:The error program will be continuously called/repeated

until you cancel the branch to the error program. (This is true for all cases except error condition #9, enable
input activated, in which case the error program is called only once.) There are three ways to cancel the
branch:

+ Disable the error-checking bit with tlEBRROR.n-0 command, wheren™ is the number of the error-
checking bit you wish to disable. For example, to disable error checking for the kill input activation (bit
#6), issue thERROR.6-0 command. To re-enable the error-checking bit, isSUERROR.n-1 command.

» Delete the program assigned asERRORProgram DEL <name of program>).
« Satisfy theHow to Remedy the Erraequirement identified in the table below.

| NOTE

In addition to canceling the branch to the error program, you must also remedy the
cause of the error; otherwise, the error program will be called again when you resume
operation. Refer to the How to Remedy the Error column in the table below for details.

ERROR
Bit # Cause of the Error Branch Typeto ERRORP How to Remedy the Error

1 Stepper axes only: Gosub Issue a GOcommand.
Stall detected (Stall Detection
and Kill On Stall must be
enabled first—see ESTALL
and ESK respectively)

2 Hard Limit Hit (hard limits must If COMEXL&hen Goto; Change direction & issue GOcommand on the
be enabled first—see LH) If COMEXL1then Gosub axis that hit the limit; or issue LH@

3 Soft Limit Hit (soft limits must If COMEXL@hen Goto; Change direction & issue GOcommand on the
be enabled first—see LS) If COMEXL1then Gosub axis that hit the limit; or issue LS@

4 Drive Fault (Detected only if drive Goto Clear the fault condition at the drive, & issue a
enabled — DRIVE, drive fault input DRIVE1 command for the faulted axis.
enabled — DRFEN and drive fault
level correct — DRFLVL).

5 Commanded Stop or Kill If IK, then Goto; No fault condition is present—there is no error
(whenever a K, IK, <ctrl>K 'S, If!S & COMEXS@ to clear.
or!S command is sent) then Goto;

— See “Commanded Kill or If IS & COMEXS1then If you want the program to stop, you must
Stop” note below. Gosub, but need IC issue the 'HALT command.
6 Kill Input Activated Goto Deactivate the kill input.

(see INFNCi-C or LIMFNCI-C)

86 6K Series Command Reference

ERROR

Bit # Cause of the Error Branch Typeto ERRORP How to Remedy the Error

7 User Fault Input Activated Goto Deactivate the user fault input, or disable it by
(see INFNCIi-F or LIMFNCI-F) assigning it a different function.

8 Stop Input Activated Goto Deactivate the stop input, or disable it by
(see INFNCi-D or LIMFNCI-D) assigning it a different function.

9 Enable input not grounded Goto Re-ground the enable input, and issue a

@DRIVEIcommand.

10 Pre-emptive (on-the-fly) GOor Gosub Issue another GOcommand.
registration move profile not
possible at the time of attempted
execution.

11 Servo Axes Only: Gosub Issue these commands in this order:

Target Zone Timeout (STRGTT STRGTE®Z,DY, GO, STRGTE1
value has been exceeded).

12 Servo Axes Only: Gosub Issue a DRIVE1 command to the axis that
Exceeded Max. Allowable exceeded the allowable position error. Verify
Position Error (set with the that feedback device is working properly.
SMPERommand).

14 GOWHEBbndition already true Goto Issue another GOWHEBbmmand; or issue a
when GQ GOL, FSHFC or IK command and check the program logic
FSHFDexecuted. (use the TRACEand STEPfeatures if

necessary).

16 Bad command detected. Gosub Issue the TCMDERommand.

17 Encoder failure (EFAIL1 must be Gosub Send the EFAIL®Z command to the affected
enabled before error can be axis.
detected).

18 Expansion I/O brick disconnected, Goto Reconnect I/O brick or restore power. Then
or lost power. issue ERROR.18-0 and then ERROR.18-1.

Reserved Bits : Bits 13, 15, and 19-32 are reserved.

Branching Types : If the error condition calls for a GOSUB, then after the ERRORRrogram is executed, program control
returns to the point at which the error occurred. If you do not want to return to the point at which the error occurred, you
can use the HALT command to end program execution or you can use the GOTGcommand to go to a different program. If
the error condition calls for a GOTO, there is no way to return to the point at which the error occurred.

Commanded Kill or Stop : When ERROPit 5 is enabled (ERROR.5-1), a Stop (Sor !S) or aKill (K, K or <ctrl>K)
command will cause the controller to branch to the error program. Note, however, that this error condition does not set an
error bit (ER), because there is no way to clear the error condition upon leaving the error program. Therefore, you should
use the IF(ER=b00000000000000000000000000000000) statement in your error program to determine if the cause
of the error was a commanded kill or stop (i.e., if no error bits are set).

Example:

DEF errl ; Define error program errl

IF(ER=b01) ; If the error is a hard limit, send a message & stop program
: execution

WRITE"Hard Limit Hit" ; Write Hard Limit Hit message

HALT ; Terminate program execution

NIF : End IF statement

IF(ER=b0X1) : If the error is a soft limit, back off the soft limit,
; reset position, & continue

D~,~~,~ ; Change direction in preparation to back off the soft limit

D1,1,11 ; Set distance to 1 step (just far enough to back off the soft
; limit)

GO1111 ; Initiate the 1-step move to back off the soft limit

PSETO0,0,0,0 ; Reset the position to zero

NIF : End IF statement

END ; End definition of error program errl

ERRORP errl ; Set error program to errl. Branch to errl upon receiving a hard
; or soft limit

ERROR01100000 : Set error condition bits to look for hard limit or a soft limit

Command Descriptions 87

ESDB Stall Backlash Deadband

Type Encoder Configuration Product Rev
Syntax <I><@><a>ESDB<i> <i><i> <i> <i>,<i> <i> <i> 6K 5.0
Units i =encoder steps

Range 0- 99,999,999 (applicable only to
Default 0 stepper axes)

Response ESDB: *ESDBO0,0,0,0,0,0,0,0
1ESDB: *1ESDBO

See Also [AS], DRES, EFAIL, ERES, ESK, ESTALL, TAS

The Stall Backlash DeadbangSDB command establishes the maximum number of encoder steps that a
move can fall behind after a change in direction before stall detection is initiated. If there is no change in
direction, the stall backlash deadband value will not be used to determine if there is a stall condition. To use
the stall backlash deadband, stall detecti#EsTALL) must be enabled.

A stall condition will be recorded by bit 12 of the axis status registerTABeommand can be used to get
the axis status response.

Example : Refer to the enable stall detect (ESTALL) command example.

ESK Kill on Stall
Type Encoder Configuration Product Rev
Syntax <I><@><a>ESK<bh> 6K 5.0
Units n/a '
Range b =0 (disable), 1 (enable), or X(don't change) (applicable only to
Default 0 stepper axes)
Response ESK: *ESK0000_0000

1ESK: *1ESKO
See Also DRES, EFAIL, ERES, ESDB, ESTALL

The Kill on Stall ESK) command will immediately stop pulses from being sent to an axis when a stall has
been detected. Stall deteES[ALL) must also be enabled before E&K command will have any affect.

Example : Refer to the enable stall detect (ESTALL) command example.

ESTALL Enable Stall Detect

Type Encoder Configuration Product Rev
Syntax <I><@><a>ESTALL 6K 5.0
Units n/a

Range b =0 (disable), 1 (enable), or X (don't change) (applicable only to
Default 0 stepper axes)

Response ESTALL: *ESTALLOO00_0000
1ESTALL: *1ESTALLO

See Also [AS], DRES, EFAIL, ENCCNT, [ER], ERES, ESDB, ESK, TAS, TER

The Enable Stall DetecE§TALL) command determines if stall conditions will be checked.

A stall condition will occur if the actual number of encoder counts received is less than expected for each
motor step output segment. The number of encoder counts expected is determined by dividing the encoder
resolution ERE9 by 100. The motor step output segment is determined by dividing the drive resolution
(DRES by 50.

For example, given an encoder resolutiBRES of 4000 and a drive resolutiobRES of 25000, the
number of encoder counts expected for each motor step output segﬁlﬂ(%htzzo. The motor step
output segment 3% =500. Therefore, during a move, after every 500 motor steps are sent out, the

controller checks to see if it received 40 encoder counts. If it did, then everything is O.K. If not, then a
stall condition exists.

When a stall condition occurs, it is reported in bit 12 inAB@andTAS axis status commands.
To accurately detect a stall, the drive resolutbRES and the encoder resolutioBRES must be properly set.

88 6K Series Command Reference

Example:

SCALEO ; Disable scaling
DEL proga ; Delete program called proga
DEF proga ; Begin definition of program called proga

DRES25000,25000 ; Motor/drive resolution set to 25000 steps/rev on axes 1 and 2
ERES4000,4000 ; Encoder resolution is 4000 post-quadrature counts/rev, both axes

ENCCNT11 : Use encoder count references for axes 1 and 2

ESDB10,10 ; Stall backlash set to 10 commanded counts on axes 1 and 2
ESTALL11 : Enable stall detection on axes 1 and 2

ESK11 : Enable kill on stall for axes 1 and 2

MAQO ; Incremental positioning mode for axes 1 and 2

MCO00 ; Preset positioning mode for axes 1 and 2

A10,12 : Set the acceleration to 10 and 12 units/sec/sec for axes 1 and 2
V1,1 ; Set the velocity to 1 unit/sec for axes 1 and 2

D100000,250000 ; Set the distance to 100000 and 1000 units for axes 1 and 2
G011 : Initiate motion on axes 1 and 2:

; Axis 1 will move 100000 commanded counts (4 revs)

; Axis 2 will move 250000 commanded counts (10 revs)

; (If, at any time during the above moves any of the actual

; encoder counts fall behind, a stall condition will be flagged,
; and motion will stop on the appropriate axis.)

END ; End definition of proga

EXE Execute a Program From a Compiled Program

Type PLC Scan Program Product Rev

Syntax I%EXEt

Units i = Task Number oK 50
t = Program Name (6 characters or less)

Range i=1-10

Default n/a

Response n/a

See Also INSELP, PCOMP, PEXE, PLCP, SCANP

Use theEXEcommand to start a standard (non-compiled) program from within a corrpitetpbrogram. The
EXEcommand specifies the name of the program, and the task in which it will be launched. The program
named in th&XEcommand need not be defined at the timePth@P program is compiled; however, the
program must be defined before 8@ANPor PRUNis issued. If no task number is assigned withpaefix,

then the task in which tHeLCP program is compiledPCOMPwill be the task that runs the program. Note,
however, that theXE program cannot be executed in the Task Supervisor (task 0).

ThePLCPprogram will ignore th&XEcommand if a currently running program is detected within the specified
task; therefore, thEXEcommand can essentially only be used to initiate a new task with the program it is
launching. Like theNSELP command, the program launched by Ex& command will not interrupt a currently
running program, nor will it interrupt WAIT or T command.

CAUTION : Using theSCANPcommand to run BLCP program in Scan mode will cause #ieCP program

to execute as often as every system update period (2 mgxXEgommand used withinRLCP program

running in Scan mode could therefore attempt to launch a program in the specified task as often as every 2
ms. This may not allow enough time for the program launched in the specified taskeEl¥ ttenmand to
complete before the sarBXE command is issued again. As stated pibeP program will ignore th&€XE
command if a currently running program is detected, so timing must be considered when launching
programs with th&XE command.

To execute a compiled program from within a compite@P program, use theEXEcommand.

Example:

DEF PLCP1 ; Define PLC program PLCP1

IF(IN.1=b1) ; Ifinput 1 is active

3%EXE PROG1 ; Launch program PROG1 in Task 3

ELSE

2%EXE PROG2 ; Otherwise launch program PROG2 in Task 2
NIF

END

PCOMP PLCP1 ; Compile PLCP1

SCANP PLCP1 ; Scan with program PLCP1

Command Descriptions 89

[FB] Value of Current Feedback Device

Type Servo; Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units See below

Range See below

Default n/a

Response n/a

See Also [ANI], ANIFB, ANIRNG, CMDDIR, ENCPOL, GOWHEN, [PANI |,

[PE], PSET, SCALE, SCLD, SFB, TFB, TPANI

Use theFB operator to assign the value of one of the current feedback devices to a variable or to make a
comparison. Depending on the configuration of3AB command, the feedback device could be an encoder
or an analog input

If you issue @SETcommand, the feedback device position value will be offset bp$Ed command value.

If scaling isnot enabled, the position values returned will be encoder or ANI counts. If scaling is enabled
(SCALEY)), the encoder and ANI values will be scaled bysfieDvalue. For more information on scaling,
refer to page 16.

Syntax: VARn=aFBwheren is the variable number, aads the axis number, &B can be used in an
expression such a5(1FB<6) . An axis specifier must precede #@operator, or it will default
to axis 1 (e.g.YAR1=1FB IF(1FB<2@@J@, etc.).

Example:

SFB1 ; Feedback for axis 1 is encoder #1

VAR6=1FB ; Assign position (scalable) of encoder #1 (axis 1) to variable #6
IF(1FB<500) ; If position (scalable) of encoder #1 (axis 1) is less than 500,

; do the commands following the IF statement until the NIF command
VAR4=1FB+1000 ; Set variable #4 equal to current position of encoder plus 1,000

NIF ; End of IF statement

FFILT Following Filter

Type Following Product Rev
Syntax <I><@><a>FFILT<i> <i>,<i>,<i>,<i> <> <i> <i> 6K 5.0
Units i = filtering level

Range i =01, 2 3, 0r4

Default 0

Response FFILT *FFILTO,0,0,0,0,0,0,0
1FFILT *1FFILTO

See Also FMAXA, FMAXV, FPPEN

TheFFILT command specifies the bandwidth of the low pass filter applied to the measurements of master
position. This command is to be used in these situations:

« Measurement of master position is contaminated by either electrical noise (when analog input is
the master) or mechanical vibration.

« Measurement noise is minimal, but the motion that occurs on the master input is oscillatory. In
this case, using the filter can prevent the oscillatory signal from propagating into the follower
axis (i.e., ensuring smoother motion on the follower axis).

The table below shows how the value of LT command specifies the low pass filter's bandwidth:

FFILT Setting Low pass Filter Bandwidth

o (no filtering) — default setting
120 Hz

80 Hz

50 Hz

20 Hz

A WNPEFLO

Example:
FFILT1,2 ; Set filtering bandwidth to 120 Hz for axis 1, and 80 Hz for axis 2

90 6K Series Command Reference

FGADV

Following Geared Advance

Type Following Product Rev
Syntax <I><@><a>FGADV<I>,<r>,<r>,<r>,<r> <r> <r>,<r> 6K 50
Units r = advance distance (scalable)

Range 0.00000-999,999,999 (scalable with SCLD)

Default n/a

Response n/a

See Also FOLMD, FOLRD, FOLRN, [FS], FSHFD, GOWHEN, SCLD, TFS

The FGADVcommand provides the ability to super-impose an advance or retard on Following motion. This
is the same ability provided by tR€HFDcommand, except that the super-imposed motion is also geared to
master motion. ThEGADVcommand has the positive or negative “advance” distance as a parameter, but it
initiates motion instead of simply setting up the distance. The shape of the super-imposed profile is
determined by thEOLMDFOLRN andFOLRDcommands (just as a normal preset Following move).

The FGADVcommand profile may be delayed with tat@WHENommand.

A FGADVmove may be performed only while the conditions below exist (Following status bit #23, reported

with theFS, TFS, andTFSF commands, indicates that it i©K to do FGADV move "):
» Master is specified with BOLMAScommand
* Following is enabled with theOLENcommand
» The follower axis is either not moving, or moving at constant ratio in continuous made (

A FGADVmove may not be performed:
e During a presetMCQ move
* In a compiled profile or program

Following StatusgsS, TFS, andTFSF) bit #24 reports if aFGADV move is underway ”.

Example:
COMEXC1
FOLRN25
FOLRD10
FOLMD1000
MC1

D+

FOLEN1

GO
FOLMD500
FOLRN13
WAIT(FS.23=B1)

FGAVD400
WAIT (FS.23=B1)

FGADV-400

; All command processing during motion
; Set numerator of follower-to-master Following ratio
; Set denominator of follower-to-master Following ratio
; Set master distance to 1000 units
; Enable continuous positioning mode
; Set direction to positive
; Enable Following
; Ramp up to a 2.5 to 1 ratio over 1000 master distance units
; Set master distance to 500 units
; Superimposed ratio will be 1.3 (added to 2.5 = 3.8 total)
; Wait for OK to do geared advance
; (in this case, ramp is complete)
; Advance the follower axis 400 counts over a distance
; of 500 master counts
; Wait for OK to do geared advance
; (in this case, FGADV400 super-imposed profile is complete)
; Retard the follower axis 400 counts over a distance of
; 500 master counts (2.5 - 1.3 = 1.2 net ratio)

Command Descriptions 91

FMAXA Follower Axis Maximum Acceleration

Type Following Product Rev
Syntax <I><@><a>FMAXA<I>,<r>,<r>,<r><r> <r> <r>,<r> 6K 5.0
Units r = units/sec/sec

Range r=0.00001 - 39,999,998 (scalable with SCLA) (applicable only to
Default 0.00 (no limit imposed) stepper axes)

Response FMAXA *FMAXA0.0000,0.0000,0.0000,0.0000 ...
1IFMAXA *FMAXAO0.0000

See Also FFILT, FMAXV, FPPEN, SCLA

TheFMAXAcommand sets the maximum acceleration for follower axesFMAAcommand is scaled by
the SCLAparameter.

As part of a ramp to new ratio, or simply following an accelerating master at constant ratio, a follower may be
required to accelerate. If the required acceleration is largeFWaRrA the follower will begin falling behind

its commanded position. The 6K controller will attempt to make up this position error as soon as the
commanded accel falls beld1AXA In stepper controllers, an error correction velocity is added to that

implied by the commanded ratio.

As with FMAXY FMAXAshould be determined and defined early in the development stage of an application
to prevent any damage to the load on the follower axis when unexpectedly high accelerations are
commanded. The torque available from the follower motor will also be a determining factor in this
parameter in order to prevent motor stalls.

Example:

FMAXA75,100 ;Set axis 1 maximum follower acceleration to 75 user units and axis 2
: maximum acceleration to 100 user units.

FMAXV Follower Axis Maximum Velocity

Type Following Product Rev
Syntax <I><@><a>FMAXV<r>,<r>,<r>,<r>,<r> <r> <r>,<r> 6K 5.0
Units r = units/sec (scalable with SCLV)

Range r = 0.000000-1600000.000000 (applicable only to
Default 0.00 (no limit imposed) stepper axes)

Response FMAXV *FMAXV0.0000,0.0000,0.0000,0.0000 ...
1IFMAXV *FMAXV0.0000

See Also FFILT, FMAXA, FPPEN, SCLV

The FMAXVcommand sets the maximum velocity at which follower axes may traveEMAg\vcommand
accepts numeric variablegAR as an argument and is scaled by3beVparameter.

Normally in a Following application, the follower velocities will be known based on the normal speed of the
master and the commanded Following ratlBLRNandFOLRD. In some cases, however, the master speed
may be higher than normal, the follower may be commanded to perform a shift move, or some other event
may occur which will cause the follower to travel at a velocity higher than expected. In these cases, the 6K
controller will increase the speed of the follower as necessary to perform the required move, but only up to
theFMAXWalue.

If the commanded speed is higher tiFamXy the follower axis will start falling behind its commanded

position. The 6K controller will attempt to make up this position error as soon as the commanded speed falls
belowFMAXV In stepper controllers, an error correction velocity is automatically added to that implied by the
commanded ratio.

TheFMAXWalue should be determined and defined early in the development stage of an application to
prevent any damage to the load on the follower axis when unexpectedly high velocities are commanded.

Example:
FMAXV15,20 ;Set the axis 1 follower maximum velocity to 15 user units and
; axis 2 follower maximum velocity to 20 user units.

92 6K Series Command Reference

FMCLEN Master Cycle Length

Type Following Product Rev
Syntax <I><@><a>FMCLEN<r>,<r>,<r>,<r> <r> <r> <r>,<r> 6K 50
Units r = master distance units (scalable)

Range r = 0-999,999,999 (scalable with SCLMAS)

Default 0

Response FMCLEN *FMCLENO,0,0,0,0,0,0,0
1FMCLEN *1FMCLENO

See Also FMCNEW, FMCP, FOLEN, [FS], GOWHEN, [PMAS], SCLMAS, TFS,
TPMAS, WAIT

The FMCLENcommand defines the length of the master cycle in user units. This value is scalegtiyMhS
parameter. Numeric variablegAR can be used with this command. The initial valueefdCLENS zero
(FMCLEN{ which means that the default master cycle length is the maximum internal size (4,294,967,296).

The concept of a master cycle may be useful when moves or other events must be initiated at certain master
positions in a repetitive cycle. By specifying a master cycle length, periodic actions may be programmed in

a loop or with subroutines which refer to cycle positions, even if the master runs continuously. It is possible
to program the 6K controller to suspend program operation or delay moves until specified master cycle
positions. The master cycle lengenMCLENshould be defined before the functions which wait for periodic
master cycle positions are used. An axis need not be in Following FOMEN?) to utilize the concept of a

master cycle. Howevemaster positions will not be measured until a master has been assigned with

the FOLMATommand.

Example (refer also to FOLENexample #2):
SCLMAS4000,16000 ; Set the master scale factors: axis 1 = 4000; axis 2 = 16000
FMCLENS,(VAR2) ; Set axis 1 master cycle length to 3 user units, and axis 2

: to the value of variable 2 times the SCLMAS value

FMCNEW Restart Master Cycle Counting

Type Following Product Rev
Syntax <I><@><a>FMCNEW 6K 5.0
Units n/a

Range b =0 (do not restart), 1 (restart immediately), or X(don't change)

Default n/a

Response n/a

See Also FMCLEN, FMCP, GOWHEN, [NMCY], [PMAS], TPMAS, TRGFN, WAIT

The FMCNEWeommand restarts master cycle counting. This sets the master cycle pesidsht¢ the
value most recently specified wiMCPR and sets the master cycle numiwCY to zero. The master cycle
position and the master cycle number are set immediately, and program flow continues normally.

The function of theMCNEWtommand can be initiated with a trigger input by specifying@@rFNcx1
command. If th&eMCNEWEommand is used, master cycle counting is restarted immediateRGHNcx1

is used, the 6K controller will record the instruction to set the master cycle position when the specified
trigger occurs. In this case, the master cycle counting is restarted when the specified trigger is activated,
even though commands continue to execute and the master cycle counting continues.

FMCNEW@r FMCNEWWill remove the status of master cycle restart pending a trigger INRGFNcx1). In

the case oFMCNEW@ 0 restart will occur, and the specified trigger will not cause a new cycle restart.
Furthermore, if there is a trigger-based restart pending on axis X, and on ag@®WHERondition is
specified based dPMASof axis X, then issuing aMCNEW®GN axis X will clear the pending trigger on axis
X and will also clear the pendirfgOWHERNN axis Y.

A new cycle automatically occurs (i.e., the master cycle position is set to zero, RgCihelue), when
the master cycle lengtRNICLEN is reached, even if reMCNEWommand has been executed.

Example:

TPMAS ; Display master position: response is *TPMAS12.2,0.5
FMCNEW11 ; Start new master cycle for axes 1 and 2

TPMAS ; Display master position: response is *0,0

Command Descriptions 93

FMCP Initial Master Cycle Position

Type Following Product Rev
Syntax <I><@><a>FMCP<r>,<r>,<r>,<r>,<r>,<r>,<r> <r> 6K 50
Units r = master position in scalable steps

Range r =+999,999,999 (scalable with SCLMAS)

Default 0

Response FMCP *FMCP+0,+0,+0,+0,+0,+0,+0,+0
1FMCP *1FMCPO

See Also FMCNEW, FOLMAS, [FS], GOWHEN, SCLMAS, TFS, WAIT

TheFMCPcommand defines the initial master cycle position in user units. The initial master cycle position
is assigned as the current master cycle position each time master cycle counting is restarted with the
FMCNEWTr TRGFNcx1command. This value is scaled by 8@ MAJarameter. Numeric variablegAR

can be used with this command. The default valuENGZPis zero EMCP@ which means that the master
cycle position will be zero when master cycle counting is restarted{sesEYY

The concept of an initial master cycle position may be useful if a new master cycle position counting must
be restarted at a master position which is different from what needs to be considered the “zero position” of a
periodic cycle. The initial position defined witMCPapplies to the first cycle only. When a master cycle is
complete, the master cycle position rolls over to zero. A negative value would be used if some master travel
were desired before master cycle position was zero. A positive value would be used if it was necessary to
enter the first master cycle at a position greater than zero.

For example, suppos®ICLEN~vas set to 20 ariMCPwas set to 7. When master cycle position counting is
restarted, either viBMCNEWa®r the specified triggeMRGFNcx1), the initial master cycle position will be 7.
Rollover will occur after the master travels 13 more units, and the master cycle position would go to zero.

Example:
FMCP-2,7 ; Set the initial master cycle position to -2 for axis 1
: and to 7 for axis 2
FOLEN Following Mode Enable
Type Following Product Rev
Syntax <I><@><a>FOLEN 6K 50
Units n/a
Range b =0 (disable), 1 (enable) or X (don't change)
Default 0

Response FOLEN: *FOLENO00O_0000
1FOLEN: *1FOLENO

See Also FGADV, FOLK, FOLMAS, FOLRD, FOLRN, FOLRNF, [FS], FSHFC,
FSHFD, GOWHEN, JOG, JOY, TFS

The FOLENcommand indicates whether subsequent moves on the specified axes will be following a master
(FOLENY or normal time-based moveBQLENQ. The termFollowing modemeans thatOLEN1has been

given, and that the motion of the follower is dependent on the motion of the master at all tifoe&EN©O

is given, the motion of the master is still monitored, but the motion of the follower is independent of the
master.

To move in the Following mode, the master must be previously specified with tIF®LMATommand.

Enabling the Following modé&QOLENJ) will set the net position shift value (reportedt3SHFandPSHR
to zero. This is true even if the follower is already in Following mode.

S-Curve profiling is not operational during Following moves.

RESTRICTIONS ON USING FOLEN |

The FOLENcommand may not be executed during certain conditions (results in the error
message “NOT VALID DURING RAMP”).
« You may not enable Following (FOLENJ) on an axis that is in motion, waiting for a
GOWHERondition, or operating in the Joystick mode (JOY1) or Jog mode (JOGY).
¢ You may not disable Following (FOLENQ on an axis that is in motion (unless moving at
ratio in continuous mode, MC1 and not shifting) or waiting for a GOWHERondition.

94 6K Series Command Reference

FOLENExamples

Example #1:

The 6K product is controlling a rotary drive, the master is a 1000-line incremental encoder mounted on the
back of an externally controlled motor, and programming units are to be revs/second (rps).

Stepper Products:

The follower will start ramping to a ratio of 1:1 when trigger #1 (TRG-1A) goes active. This
means the actual step ratio of follower to master is 25000 to 4000, or 6.25 follower steps for
every master. After 25 master revolutions, the follower will decelerate to a 0.5:1 ratio (3.125
follower steps for every master). After a total of 75 master revolutions, the follower will ramp to
zero ratio (i.e., stop) and repeat the cycle when trigger #1 is activated. All ramps to new ratios,
including zero ratio, take place over one master revolution.

Scaling Set Up:(prior to defining program)

SCALE1 ; Enable scaling

SCLD25000 ; Set follower distance scale factor to 25,000 steps/rev
; (assumes a motor/drive res of 25,000 steps/rev)

SCLMAS4000 ; Set master scale factor to 4000 steps/rev

Servo Products:

The follower will start ramping to a ratio of 1:1 when trigger #1 (TRG-1A) goes active. This
means the actual step ratio of follower to master is 4000 to 4000, or 1 follower steps for every
master. After 25 master revolutions, the follower will decelerate to a 0.5:1 ratio (0.5 follower
steps for every master). After a total of 75 master revolutions, the follower will ramp to zero
ratio (i.e., stop) and repeat the cycle when trigger #1 is activated. All ramps to new ratios,
including zero ratio, take place over one master revolution.

Scaling Set Up:(prior to defining program)

SCALE1 ; Enable scaling

SCLD4000 ; Set follower distance scale factor to 4,000 steps/rev
; (@assumes an encoder resolution of 4,000 steps/rev)

SCLMAS4000 ; Set master scale factor to 4000 steps/rev

The application program is defined as follows:

DEL FOLTST ; Delete program called FOLTST
DEF FOLTST ; Begin definition of program called FOLTST
INFNC1-H ; Set input #1 (TRG-1A) to be "trigger interrupt" (used with GOWHEN later)
COMEXC1 ; Select continuous command processing mode
MC1 ; Select continuous positioning mode
FOLMAS31 ; Assign encoder input #3 as master for axis #1
FOLMD1 ; Follower should change ratios over 1 master revolution
FMCLEN100 ; Set master cycle length to 100 revs
FOLRD1 ; Set follower-to-master Following ratio denominator to 1
; (applies to all subsequent FOLRN commands)
FOLEN1 ; Enable Following on axis #1
D+ ; Set motion to the positive- direction
$STRMV ; Label to repeat move
1TRGFNA1 ; Suspend execution of next move until trigger (TRG-1A) is active
1TRGFNAXx1 ; Begin new master cycle (counter at 0) when trigger (TRG-1A) is active
FOLRN1 ; Set follower-to-master Following ratio numerator to 1 (ratio set to 1:1)
GO1 ; Start continuous Following move (when TRG-1A is active)

WAIT(1AS.26=b0 AND FS.4=b1) ; Wait for profile to actually start

; (when TRG-1A is active) and be at ratio
GOWHEN(1PMAS>=25) ; Suspend execution of next move until master position >= 25
FOLRNO.5 ; Set Following ratio numerator to 0.5 (ratio set to 0.5:1)
GO1 ; Initiate new move according to new Following ratio

; (when master position >= 25)
WAIT(1AS.26=b0 AND FS.4=b1) ; Wait for profile to actually start

; (when master position >= 25) and be at ratio
GOWHEN(1PMAS>=75) ; Suspend execution of next move until master position >= 75

FOLRNO ; Set Following ratio numerator to zero
; (ratio causes follower to ramp to stop)
GO1 ; Initiate new move with new Following ratio (when master pos. >= 75)

WAIT(1AS.26=b0 AND FS.1=b0) ; Wait for profile to actually start

; (when master position >= 75) and the follower is not moving
JUMP STRMV ; Repeat the cycle
END ; End of program

Command Descriptions 95

Example #2:

96

Stepper Axes:
The master is an encoder mounted to gearing on a conveyor line. The gearing results in 16,000
encoder steps per conveyor inch. The follower on axis one is a 25,000 step/rev microstepper on a
36" long, 4-pitch leadscrew. The follower waits for the product to be sensed on the conveyor,
accelerates to a 1-to-1 ratio, waits for a safe location to actuate the stamping equipment, then
applies an inked stamp to the product at the correct location. After the stamp is placed, the
follower quickly moves back to the starting position and waits for the next product. Note that this
example illustrates how th&AIT command can be used to wait for master cycle positions in order
to coordinate motion.

Scaling Set Up:(prior to defining program)

SCALE1 ; Enable scaling

SCLA100000 ; Set accel scaling: 100,000 steps/inch

SCLV100000 ; Set velocity scaling: 100,000 steps/inch

SCLD100000 ; Set follower distance scaling: 100,000 steps/inch

SCLMAS16000 ; Set master scale factor to 16000 steps/inch to program in inches
Servo Axes:

The master is an encoder mounted to gearing on a conveyor line. The gearing results in 16,000
encoder steps per conveyor inch. The follower on axis one is a 4,000 step/rev servo on a 36" long,
4-pitch leadscrew. The follower waits for the product to be sensed on the conveyor, accelerates to
a 1-to-1 ratio, waits for a safe location to actuate the stamping equipment, then applies an inked
stamp to the product at the correct location. After the stamp is placed, the follower quickly moves
back to the starting position and waits for the next product. Note that this example illustrates how
theWAIT command can be used to wait for master cycle positions in order to coordinate motion.

Scaling Set Up:(prior to defining program)

SCALE1 ; Enable scaling

SCLA16000 ; Set accel scaling: 16,000 steps/inch

SCLV16000 ; Set velocity scaling: 16,000 steps/inch

SCLD16000 ; Set follower distance scaling: 16,000 steps/inch

SCLMAS16000 ; Set master scale factor to 16,000 steps/inch to program in inches

The application program is defined as follows:

DEF STAMPR ; Begin definition of program called STAMPR
COMEXS1 ; Continue command execution after Stop
COMEXC1 ; Continue command execution during motion
SCALE1 ; Enable parameter scaling
10UTFNC1-A ; Configure onboard output #1 as a general-purpose prog. output
1INFNC2-H ; Define TRG-1B as trigger interrupt (use as GOWHEN input)
A10 ; Acceleration = 10 inches/sec/sec
V5 ; Velocity = 5 inches/sec (non-Following moves)
MA1 ; Enable absolute positioning mode for axis 1
FOLMAS21 ; Assign encoder input #2 as master for axis 1
FOLRN1 ; Set follower-to-master Following ratio numerator to 1
FOLRD1 ; Set follower-to-master Following ratio denominator to 1 (ratio is 1:1)
FOLMD1 ; Accel the follower over 1 master inch for Following moves
FMCLEN40 ; Master cycle length is 40 inches
$INKON ; Label to repeat inking process
FOLEN1 ; Enable Following on axis #1
1TRGFNBx1 ; Begin new master cycle when TRG-1B goes active
; (product sensed on conveyor)
1TRGFNB1 ; Start next move when TRG-1B is active
D+ ; Set to positive-direction
MC1 ; Select continuous positioning mode
GO1 ; Start continuous follower move on trigger #2

WAIT(1PMAS>=10.5) ; Wait until master position is 10.5 inches - this is when the
; stamping device can be actuated without mechanical damage
; to the leadscrew assembly

10UT.1-1 ; Turn on actuator (output #1) to place ink stamp on product

T.1 ; Wait for the ink stamp to be pressed in place by a
; stationary stamper

10UT.1-0 ; Turn off actuator (output #1)

S1 ; Stop follower move

WAIT(1AS.1=b0) ; Wait until the axis is not moving

FOLENO ; Disable Following on axis #1

DO ; Set distance (position) to zero

MCO ; Select preset positioning mode

GO1 ; Move back to zero (the home position)

WAIT(MOV=b0) ; Wait until the axis is not moving

JUMP INKON ; Begin cycle again on trigger #2

END ; End of program

6K Series Command Reference

FOLK Following Kill

Type Following Product Rev
Syntax <I>FOLK 6K 5.0
Units n/a

Range b= 0 (disable) or 1 (enable)

Default 0

Response FOLK *FOLKO0000_0000

See Also DRIVE,[ER], ERROR, FOLEN, FOLRD, FOLRN, FOLMAS, FOLMD,

FSHFC, FSHFD, INFNC, K, [PSHF], SMPER, TER

Under default operatiorFOLK0), certain error conditions (i.e., drive fault input active, or max. position
error limit exceeded) will cause the 6K controller to disable the drive and kill the Following profile
(follower's commanded position loses synchronization with the master).

If you enable Following Kill FOLK1), these error conditions will still disable the driz&R(VEO), but will

not kill the Following profile. Because the Following profile is still running, the controller keeps track of
what the follower’s position should be in the Following trajectory. To resume Following operation, resolve
the error condition (drive fault, excessive position error), enable the @iRigE1), and command the

controller to impose a shift to compensate for the lapse/shift that occurred while the drive was disabled and
the follower was not moving. To impose the shift, assign the negative of the internally monitored shift value
(PSHA to a variable (e.g¥AR1 =-1*PSHF) and command the shift using a variable substitution in the
FSHFDcommand (e.gFSHFD(VARL)).

The FOLKcommand only preserves Following profiles; normal velocity-based profiles will be killed
regardless of thEOLK command.

FOLMAS Assignment of Master to Follower

Type Following Product Rev
Syntax <I><@><a>FOLMAS<gii> < tii> < fii> < #ii> < fii> < #i>< ti> < #ii> 6K 5.0
Units 1st i = master axis #;

2nd i = master count source;
+ sets direction of master counts relative to direction of
actual master count source
Range 1sti= 1-8 (axis);
2nd i = 1 (encoder),
2 (analog input),
4 (commanded position)
5 (internal count source), or
6 (internal sine wave source).
NOTE: “1”, by itself, selects the master encoder.
“0", by itself, disables the axis from being a follower
Default +0 (disable from being a follower axis)
Response FOLMAS *FOLMAS+0,+0,+0,+0, +0,+0,+0,+0
1FOLMAS *1FOLMAS+0

See Also ANIMAS, FGADV, FOLEN, FOLK, FOLMD, FOLRD, FOLRN, FOLRNF,
[FS], FYMACC, FVMFRQ, SINAMP, SINANG, SINGO, TFS

UseFOLMASto assign or un-assign a master to a follower axis. Each datatfie)dconfigures that axis

as a follower following the specified master count source. In the syntax for each followetiiaXishe

sign bit sets the direction of master counting relative to the actual direction of the counts as received from
the master count source. The firstelects the axis number of the master you are assigning to the follower,
and the second i selects the count source of that master axis.

Exceptions to the syntax:

« If aone () is place int he data fieldi(), that axis will follow the counts from the Master Encoder
(the separate encoder label@thSTER ENCODER”).
 If a zero @ is placed in the data fieldi{), that axis becomes a normal non-Following axis.

Command Descriptions 97

Virtual Master . There are two “Virtual Master” options (an internal count source and an internal sine
wave) for applications that require the synchronization features of Following, but have no external master.
For a detailed description virtual master features, see “Virtual Master” Prtdggammer’s Guide

» Master Source Option 5 (e.FOLMASi5) selects the internal count source as master. The frequency
and acceleration of the internal count source are established withiNtaCG@GndFVMFRQ
commands, respectively.

» Master Source Option 6 (e.FOLMASi6) selects the internal sine wave as master. The angle and
amplitude of the sine wave are established witlStNaNGandSINAMP commands, respectively. To
start and stop the internal sine wave generator, usaNi@O command.

If scaling is enabled3SCALEJ), the measurement of the master is scaled bg@#ASvalue. For more
information on scaling, refer to page 16 or to$le MASCcommand description.

NOTES

« A follower axis cannot use its own feedback device or commanded position as the
master input.

« Multiple axes may follow the same count source (e.g., encoder) from the same
master. However, multiple axes may not follow different count sources (e.g., encoder
and commanded position) from the same master.

« Before you can use an analog input as a master count source, you must first use the
ANIMAScommand to assign the analog input to a master axis number. Then you can
user the FOLMASommand to assign the analog input as a master counting source
for a specific follower axis.

As an example, theOLMAS+31,-12,, command sets up these parameters:
» Follower axis #1 is set up as follows3(): Encoder #3 is assigned as the master to follower axis #1.
The positive sign bit indicates that master counts will count in the same direction as encoder #3.

» Follower axis #2 is set up as followdZ): Master analog input #1 is assigned as the master to
follower axis #2. The negative sign bit indicates that the master counts will count in the opposite
direction of the sign of the voltage change on the analog input.

» Axes 3 and 4 are not affected.

NOTE

The FOLMASommand configures an axis to be a follower, but does not automatically
enable Following. To enable Following use the FOLEN1command. To enable follower
motion, enable Following (FOLENY), issue a ratio (FOLRNand FOLRD), and issue the GO
command.

As soon as the master is specified withRbMASCommand, a continuously updated relationship is
maintained between the follower's position and the master's position. Also, master velocity is continuously
measuredFor steppers only the configuration of the follower axis is used in the implementation of the

step output, so several commands need to be executed BefdASthey areDRES ERES andPULSE

Notice that the master axis number does not need to be the same as the follower axis number. (For example,
givenFOLMAS21,44,,31 , axis 1 is follower to the encoder input on axis #2, axis #2 is follower to the
commanded output of axis #4, axis #3 is not configured as a follower, and axis 4 is follower to the encoder
input of axis #3.)

There are several applications in which a minus sign ifrth&1ASTommand is used. A minus sign should

be used whenever the master is moving in the desired positive direction and yet the 6K controller actually
perceives the master to be moving in the negative direction. For example, this can occur when the master
input device is mounted on the opposite side of a conveyor. Putting a minus sign in front of the master
parameter specification in tiF®LMASTommand causes the incoming master signal to be negated before it
is used by the follower. The temmaster countefers to the count after negation, if any.

For preset follower moves, the direction the follower travels depends on the mode of operation (absolute or
incremental) and the commanded position. However, once a preset follower move is commanded, it will

98 6K Series Command Reference

only start moving if the master is moving in the positive direction. This is true no matter the commanded
direction of the follower move.

For continuous follower moves, the master count direction has a different effect. If the commanded move is
positive in direction and the master is counting up, the actual follower travel direction will be positive. If the
commanded move is positive in direction and the master is counting down, the actual follower travel
direction will be negative. Similar cases exist for follower moves commanded in the negative direction.

Example: (refer to the FOLENexamples)

FOLMD Master Distance

Type Following Product Rev
Syntax <I><@><a>FOLMD<r>,<r>,<r>,<r><r>,<r> <r> <r> 6K 50
Units i = distance in counts

Range 0 - 999,999,999 (scalable by SCLMAS)

Default 0

Response FOLMD *FOLMDO0,0,0,0,0,0,0,0
1FOLMD *FOLMDO

See Also ANIMAS, FGADV, FOLEN, FOLK, FOLRN, FOLRNF, FOLRD, MC,
[PMAS], SCLMAS, TPMAS

If a follower is in continuous positioning modd), FOLMDs the master distance over which acceleration
or deceleration from the current ratio to the new ratio takes place. Or, if a follower is in preset positioning
mode MCg, theFOLMDcommand indicates the master distance over which the next preset move will take
place.

If scaling is enabledSCALEJ), theFOLMDvalue is specified in user units and is scaled byBGIeMAS
parameter (for more detail on scaling, refer to page 16 or ®abRASTcommand description). Numeric
variables YAR can be used with this command (eFpLMD12,(VARG),3,6).

By carefully specifying accurate master distances for each ramp of a follower's move profile, a precise
position relationship between master and follower will be maintained during all phases of the profile. The
“Master and Follower Distance Calculatiosgction in the Following chapter of tReogrammer's Guide
discusses the relationship between ratio changes and the corresponding master and follower distances.

HINT: If a follower is in continuous mode (MCJ and the master is starting from rest, setting FOLMDo @will
ensure precise tracking of the master's acceleration ramp. This is how the trackball application
example is written in the Following chapter of the Programmer's Guide.

Examples: (refer also to FOLENexample #2)

SCALE1 ; Enable parameter scaling

SCLMAS4000 ; Master scale factor is 4000 steps/rev

SCLD4000 ; Follower scale factor is 4000 steps/rev

DEL progx ; Delete program called progx

DEF progx ; Begin definition of program called progx

FOLMAS31 ; Axis 3 encoder is the master for axis 1

FOLMDO ; Assign Following acceleration distance to 0 master revs
; (i.e., instantaneous)

FOLRN1 ; Set follower-to-master Following ratio numerator to 1

FOLRD1 ; Set follower-to-master Following ratio denominator to 1
; Ratio set to 1:1

FOLEN1 ; Enable Following on axis #1

D- ; Set direction to opposite direction of the master

GO1 ; Begin following master. If the master is not moving, follower

; will remain at rest until master moves, at which time the
; follower will track the master precisely, but in the opposite
; direction as the master.

END ; End definition of progx

Command Descriptions 99

FOLRD Denominator of Follower-to-Master Ratio

Type Following Product Rev
Syntax <I><@><a>FOLRD<r>,<r>,<r> <r> <r>,<r>,<r>,<r> 6K 50
Units r = master distance in counts

Range r = 1.00000 - 999,999,999 (scalable by SCLMAS)

Default 1

Response FOLRD *FOLRD1,1,1,1,1,1,1,1
1FOLRD *FOLRD1

See Also COMEXC, FGADV, FOLEN, FOLK, FOLMAS, FOLRN, FOLRNF, SCLMAS

TheFOLRDcommand establishes the denominator of a ratio between follower and master travel. (Ratios are
always specified as positive, similar to velocity.) For a preset mo@gi (it is the maximum allowed ratio,

and for a continuous mov®IC), it is the final ratio reached by the follower. The actual follower direction

will depend on commanded moves+(or D-) and master direction.

If no FOLRDparameter is specified, it is assumed to be 1.

If scaling is enabledSCALEY), theFOLRDvalue is scaled by tr&CLMASvalue. For more detail on scaling,
refer to page 16 or to ttf&CLMASCommand description.

Numeric variablesAR can be used with this command for master parametersR@LRD(VARS),5).

Each timeFOLRNor FOLRDare given, the 6K controller divides the scaled numerator and denominator to
calculate the ratio, but roundoff errors are eliminated by measuring both master and follower over a large
distance. After scaling, the maximum magnitude of the ratio is 127 follower steps for every master step.

ON-THE-FLY CHANGES : You can change Following ratam the fly(while motion is in progress) in
two ways. One way is to send an immediate commi@l.RD) followed by an immediate go command
('GO). The other way is to enable the continuous command execution @OMEKCland execute a
buffered command=OLRD followed by a buffered go commandq.

Example: (refer also to the FOLENexamples)

SCLD25000 ; Set follower scaling factor to 25,000
SCLMAS4000 ; Set master scaling factor to 4,000

SCALE1 ; Enable scaling

FOLRN5 ; Set ratio numerator to 5 (5 * 25,000 = 125,000)
FOLRD3 ; Set ratio denominator to 3 (3 * 4,000 = 12,000)

; (Resulting ratio is 125 follower steps to every 12 master steps.)

FOLRN Numerator of Follower-to-Master Ratio

Type Following Product Rev
Syntax <I><@><a>FOLRN<r>,<r>,<r> <r> <r>,<r>,<r>,<r> 6K 50
Units r = follower distance in steps

Range r =0.00000 - 999,999,999.99999 (scalable by SCLD)

Default 1

Response FOLRN *FOLRN1,1,1,1,1,1,1,1
1FOLRN *FOLRN1

See Also FGADV, FOLEN, FOLK, FOLMAS, FOLRNF, FOLRD, SCLD

TheFOLRNcommand establishes the numerator of a ratio between follower and master travel. (Ratios are
always specified as positive, similar to velocity.) For a preset mw@gi (it is the maximum allowed ratio,

and for a continuous mov®IC), it is the final ratio reached by the follower. The actual follower direction
will depend on commanded moves+(or D-) and master direction.

If no FOLRNparameter is specified, it is assumed to be 1.

If scaling is enabledSCALEJ), theFOLRNvalue is scaled by th&CLDvalue. For more detail on scaling,
refer to page 16 or to ttf&CLDcommand description.

Numeric variablesAR can be used with this command for follower parameters EOgRN(VAR2),5).

Each timeFOLRNor FOLRDare given, the 6K controller divides the scaled numerator and denominator to
calculate the ratio, but roundoff errors are eliminated by measuring both master and follower over a large
distance. After scaling, the maximum magnitude of the ratio is 127 follower steps for every master step.

100 6K Series Command Reference

ON-THE-FLY CHANGES : You can change Following ratam the fly(while motion is in progress) in
two ways. One way is to send an immediate commi@@l_RN) followed by an immediate go command
('GO). The other way is to enable the continuous command execution @OMEKCland execute a
buffered command=OLRN followed by a buffered go commandq.

Example : refer to the FOLRDand FOLENexamples

FOLRNF Numerator of Final Follower-to-Master Ratio, Preset Moves

Type Following; Compiled Motion Product Rev
Syntax <I><@><a>FOLRNF<r>,<r>,<r>,<r> <r>,<r>,<r>,<r> 6K 5.0
Units r = follower distance in steps

Range 0.00000

Default 0

Response FOLRNF *FOLRNFO0,0,0,0,0,0,0,0
1FOLRNF *1FOLRNFO

See Also FGADV, FOLEN, FOLRD, FOLRN, FOLMD, SCLD

The Numerator of Final Follower-to-Master Ratio, Preset MoF@RNF command establishes the
numerator of the final ratio between follower and master travel. (Ratios are always specified as positive,
similar to velocity.) Th&=FOLRNFcommand designates that the motor will move the load the distance
designated in a preseDBURsegment, completing the move at a final ratio of zE@L.RNFapplies only to

the first subseque®@OBUFwhich marks an intermediate “end of move” within a following profileLRNFis
used only in conjunction with tt@OBUFcommand. Normal preseomoves always finish with zeOLRNFE

If scaling is enabledSCALEY), theFOLRNFvalue is scaled by th&CLDvalue. For more detail on scaling,
refer to page 16 or to tt®CLDcommand description.

NOTE: The only allowable value fa(fOLRNFis &, and it may only be used with compiled preset Following
moves (a non-zermOLRNFvalue will result in an immediate error messageLRNFis allowed for a

segment only if the starting ratio is also zero (i.e., it must be the first segment, or the previous segment must
have ended in zero ratio).

With compiled preset Following moves wh&@LRNFhas not been given, the final ratio is given VAGLRN
and the shape of the intermediate profile will be constrained to be within the starting and ending ratios.

For more information on using tl®LRNFcommand, refer to the Custom Profiling chapter in the
Programmer's Guide

FPPEN Master Position Prediction Enable

Type Following Product Rev
Syntax <I><@><a>FPPEN 6K 50
Units n/a

Range b = 0 (disable), 1 (enable) or X(don't change)

Default 1

Response FPPEN *FPPEN1111_1111
1FPPEN *1FPPEN1

See Also [FS], TFS

TheFPPENcommand enables or disables Master Position Prediction in the 6K controller Following algorithm.
Master Position Prediction is enabled by default, but can be disabled as desired RfPRRECOMMand.

The 6K controller measures master position oncg@sition sample periodnd calculates a corresponding
follower commanded position. This calculation, and achieving the subsequent follower commanded position,
requires 2 sample periods (4 milliseconds).

Enabling Master Position PredictioRRPENJ) eliminates any lag in follower position which would be
dependent on master speed. It may be desirable to disable Master Position Pregietiniywhen
maximum follower smoothness is important and minor phase delays can be accommodated. A detailed
discussion of Master Position Prediction is given in the Following chapter Bfdlggammer's Guide.

Example:
FPPEN11 : Enable Master Position Prediction for axis 1 and 2.

Command Descriptions 101

[FS] Following Status

Type Following; Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a
Range n/a
Default n/a

Response n/a

See Also FGADV, FMCLEN, FMCP, FOLEN, FOLMAS, FPPEN, FSHFC, FSHFD, MC,
[NMCY], [PMAS], TFS, TFSF, VARB

The Following StatusHS) command is used to assign the Following status bits for a specific axis to a
binary variable, or to make a comparison against a binary or hexadecimal value. The function of each status
bit is shown below.

Bit Assignment
(left to right) Function (YES=1;NO=0Q)

1 Follower in Ratio Move A Following move is in progress.
2 Ratio is Negative The current ratio is negative (i.e., the follower counts are counting in the
opposite direction from the master counts).
3 Follower Ratio Changing The follower is ramping from one ratio to another (including a ramp to or
from zero ratio).
4 Follower At Ratio The follower is at constant non-zero ratio.
*5 FOLMASActive A master is specified with the FOLMASommand.
*6 FOLENActive Following has been enabled with the FOLENcommand.
*7 Master is Moving The specified master is currently in motion.
8 Master Dir Neg The current master direction is negative. (bit must be cleared to allow

Following move in preset mode-MC@

9 OK to Shift Conditions are valid to issue shift commands (FSHFDor FSHFQ.
10 Shifting now A shift move is in progress.
11 Shift is Continuous An FSHFGbased shift move is in progress.
12 Shift Dir is Neg The direction of the shift move in progress is negative.
13 Master Cyc Trig Pend A master cycle restart is pending the occurrence of the specified trigger.
14 Mas Cyc Len Given A non-zero master cycle length has been specified with the FMCLEN
command.
15 Master Cyc Pos Neg The current master cycle position (PMAS is negative. This could be by

caused by a negative initial master cycle position (FMCR, or if the master
is moving in the negative direction.

16 Master Cyc Num >0 The master position (PMAS has exceeded the master cycle length
(FMCLEN at least once, causing the master cycle number (NMCYto
increment.

17 Mas Pos Prediction On Master position prediction has been enabled (FPPEN.

18 Mas Filtering On A non-zero value for master position filtering (FFILT) is in effect.
19 RESERVED

20 RESERVED

21 RESERVED
22 RESERVED

23 OK to do FGADVmove OK to do Geared Advance move (master assigned with FOLMAS
Following enabled with FOLEN and follower axis is either not moving, or
moving at constant ratio in continuous mode).

24 FGADVmove underway Geared Advance move profile is in progress.

* All these conditions must be true before Following motion will occur.

102 6K Series Command Reference

Syntax: VARBn=aFSwheren is the binary variable number aads the axis identifier, oFS can be used
in an expression such B{1FS=b11@1) , orlF(1FS=h7F) . TheFS command must be used
with an axis specifier, or it will default to axis 1.

To make a comparison against a binary value, place the letter b (b or B) in front of the value that
the Following status is being compared against. The binary value itself must only contain ones,
zeros, or Xs (1, g, X, x). To make a comparison against a hexadecimal value, the letter h (h or H)
must be placed in front of the value that the Following status is being compared against. The
hexadecimal value itself must only contain the letters A through F, and the numbers @ through 9.

If you wish to assign only one bit of the Following status to a binary variable, instead of all 32,
the bit select.() operator can be used. The bit select, in conjunction with the bit number, is used
to specify a specific Following status bit (e\MjARB1=1FS.12 assigns axis 1 status bit 12 to

binary variable 1).

Example:

VARB1=1FS ; Following status for axis 1 assigned to binary variable 1
VARB2=1FS.12 ; Axis 1 Following status bit 12 assigned to binary variable 2
VARB2 ; Response if bit 12 is set to 1 should be:

T FVARB2=X XXX XXXX XXXL XXXX_ XXXX_ XXXX_ XXXX_ XXXX
IF(4FS=b111011X11) ; If the Following status for axis 4 contains 1's for
;inputs 1, 2, 3, 5, 6, 8, and 9, and a 0 for bit location 4,
: do the IF statement
TREV : Transfer revision level
NIF : End if statement
IF(2FS=h7F00) ; If the Following status for axis 2 contains 1's for inputs 1,
;2,3,5,6, 7, and 8, and 0's for every other bit location,
: do the IF statement

TREV : Transfer revision level
NIF : End if statement
FSHFC Continuous Shift
Type Following Product Rev
Syntax <I><@><a>FSHFC<i> <i><i>,<i>,<i> <> <i> <i> 6K 5.0
Units i = shift feature to implement
Range i =0 (stop), 1 (positive-direction), 2 (negative-direction),
or 3 (kill)
Default n/a

Response n/a

See Also FGADV, FOLEN, FOLK, FOLRN, FOLRNF, FOLRD, [FS], FSHFD, MC,
[PSHF], TFS, TPSHF

The FSHFCcommand allows time-based follower moves to be superimposed on continuous Following
moves. This results inshift (change in phase) between the master position and the follower position.
Continuous shift moves in the positive- or negative-direction may be commanded only while the follower is
in the Following modeROLENY)).

Steppers only: An FSHFCmove may be performed only when the follower is in the continuous
positioning modeNIC) and performing a Following move at a constant ratio.

The most recently commanded velocky &nd acceleratiomy] for the follower axis will determine the
speed at which theSHFCmove takes place. The velocity and direction ofRBEFCshift is independently
superimposed on whatever velocity and direction results from the ratio and motion of the master. The
FSHFCshift is not a change in ratio; rather, it is a velocity added to a ratio. The velocity commanded is
added to the present speed at which the follower is moving, up to the velocity limit of the product. For
example, assume a follower is traveling at 1 rps in the positive direction while following a master. If a
FSHFCmove is commanded in the positive direction at 2 rps, the follower's actual velocity (after
acceleration) will be 3 rps.

The FSHFCparameters stod and kill (3) can be used to halt a continudgHFCmove (positive-
direction or negative-direction). The example below shows how to $t8plRCcontinuous move.

An FSHFCmove may be needed to adjust the relative follower position on the fly during the continuous
Following move. For example, suppose an operator is visually inspecting the follower's motion with respect

Command Descriptions 103

to the master. If he notices that the master and follower are out of synchronization, it may be desirable to
have an interrupt programmed (e.g., activated with a push-button switch) that will allow the operator to
advance or retard the follower at a super-imposed correction speed until the operator chooses to have the
follower start tracking the master again. The example below shows this.

FSHFCExample:

Assume all scale factors and set-up parameters have been entered for the master and follower. In this
example, the follower (axis #1) is continually following the master at a 1:1 ratio. If the operator notices
some mis-alignment between master and follower, he can press 1 of 2 pushbuttons (connected to onboard
trigger inputs #1 and #2, which are also referred to as TRG-1A and TRG-1B) to shift the follower in the
positive- or negative-direction at 0.1 user scaled units until the button is released. After the adjustment, the
program continues on as before.

Example:
DEF SHIFT ; Begin definition of program called SHIFT
V.1 ; Add or subtract 0.1 user scaled units from the follower velocity
; when shifting
COMEXS1 ; Continue command execution after stop
COMEXC1 ; Continue command execution during motion
FOLMAS31 ; Axis 3 encoder input is the master for axis 1
FOLRN1 ; Set follower-to-master Following ratio numerator to 1
FOLRD1 ; Set follower-to-master Following ratio denominator to 1
; (ratio set to 1:1)
FOLEN1 ; Enable Following mode on axis #1
D+ ; Set to positive-direction
MC1 ; Select continuous positioning mode
GO1 ; Start following master continuously
VARB1=b10 ; Define onboard input pattern #1 and assign to VARB1
VARB2=b01 ; Define onboard input pattern #2 and assign to VARB2
$TESTIN ; Define label called TESTIN
IF(IN=VARBL1) ; IF statement (if onboard input #1 is activated, do the jump)
JUMP SHIFTP ; Jump to shift follower in the positive-direction when pattern 1
; active
NIF ; End of IF statement
IF(IN=VARB?2) ; IF statement (if onboard input #2 is activated, do the jump)
JUMP SHIFTN ; Jump to shift follower in the negative-direction when pattern 2
; active
NIF ; End of IF statement
JUMP TESTIN ; Return to main program loop
$SHIFTP ; Define label called SHIFTP (subroutine to shift in the
; positive direction)
FSHFC1 ; Start continuous follower shift move in positive-direction
WAIT(IN.1=b0) ; Continue shift until onboard input #1 is deactivated
FSHFCQ ; Stop shift move
JUMP TESTIN ; Return to main program loop
$SHIFTN ; Define label called SHIFTN (subroutine to shift in the
; hegative-direction)
FSHFC2 ; Start continuous follower shift move in the negative-direction
WAIT(IN.2=b0) ; Continue shift until onboard input #2 is deactivated
FSHFCO ; Stop shift move
JUMP TESTIN ; Return to main program loop
END ; End definition of program called SHIFT

104

6K Series Command Reference

FSHFD Preset Shift

Type Following Product Rev
Syntax <I><@><a>FSHFD<r>,<r>,<r>,<r> <i> <i> <i> <i> 6K 50
Units r = shift distance

Range r = 0.00000 - 999,999,999 (scalable with SCLD)

Default n/a

Response n/a

See Also FGADV, FOLEN, FOLK, FOLRN, FOLRNF, FOLRD, [FS], FSHFC, MC,

ONCOND, [PSHF], SCLD, TFS, TPSHF

TheFSHFDcommand allows time-based follower moves to be superimposed on continuous Following

moves. This results inshift (change in phase, or registration) between the master position and the follower
position. Preset shift moves of defined or variable distances, may be commanded only while the follower is in
the Following modeROLENY). TheFSHFDdistance is scaled by tis€LDvalue of scaling is enabled

(SCALE)).

Steppers Only : An FSHFDmove may be performed only when the follower is in the continuous
positioning modeNIC) and performing a Following move at a constant ratio.

The most recently commanded velocky &nd acceleratiorpf for the follower axis will determine the
speed at which theSHFDmove takes place. The velocity and direction offRREFDshift is independently
superimposed on whatever velocity and direction results from the ratio and motion of the master.

TheFSHFCparameters stod(and kill (3) can be used to halt &$HFD

It should be noted th&®SHFDis similar in execution t&Q The entire preset distance shift, or ramp-to-shift
velocity, must finish before the 6K controller proceeds to the next command.

TheFSHFDshift is not a change in ratio; rather, it is a velocity added to a ratio. The velocity commanded
will be added to the present speed at which the follower is moving, up to the velocity limit of the product.
For example, assume a follower is traveling at 1 rps in the positive direction while following a master. If a
FSHFDmove is commanded in the positive direction at 2 rps, the follower's actual velocity (after
acceleration) will be 3 rps.

An FSHFDmMove may be needed to adjust the follower position on the fly because of a load condition which
changes during the continuous Following move. For example, suppose an operator is visually inspecting the
follower's motion with respect to the master. If the operator notices that the master and follower are out of
synchronization, it may be desirable to have an input programmed (e.g., activated with a push-button
switch) that will allow the operator to advance or retard the follower a fixed distance, and then let the
follower resume tracking the master. The example below illustrates this.

FSHFDeExample:

Assume all scale factors and set-up parameters have been entered for the master and follower. In this
example, the follower (axis #1) is continually following the master at a 1:1 ratio. If the operator notices
some mis-alignment between master and follower, he can press 1 of 2 pushbuttons (connected to onboard
trigger inputs #1 and #2, which are also referred to as TRG-1A and TRG-1B) to advance or retard the
follower a fixed distance of 200 steps. After the adjustment, the follower resumes tracking the master as
before.

(Program on following page)

Command Descriptions 105

Example:

DEF PSHIFT ; Begin definition of program called PSHIFT
COMEXS1 ; Continue command execution after stop
COMEXC1 ; Continue command execution during motion
FOLMAS31 ; Axis 3 encoder input is the master for axis 1
FOLRN1 ; Set follower-to-master Following ratio numerator to 1
FOLRD1 ; Set follower-to-master Following ratio denominator to 1
; (ratio set to 1:1)
FOLEN1 ; Enable Following mode on axis #1
D+ ; Set direction to positive
MC1 ; Select continuous positioning mode
GO1 ; Start following master continuously
VARB1=b10 ; Define input pattern #1 and assign to VARB
VARB2=b01 ; Define input pattern #2 and assign to VARB
$TESTIN ; Define label called TESTIN
IF(IN=VARBL1) ; IF statement (if onboard input #1 is activated, do the jump)
JUMP SHIFTP ; Jump to shift follower in positive-direction when pattern 1 active
NIF : End of IF statement
IF(IN=VARB?2) ; IF statement (if onboard input #2 is activated, do the jump)
JUMP SHIFTN ; Jump to shift follower in negative-direction when pattern 2 active
NIF : End of IF statement
JUMP TESTIN ; Return to main program loop
$SHIFTP ; Define label called SHIFTP (subroutine to shift in the
; positive direction)
FSHFD200 ; Start preset follower shift move of 200 steps in positive direction
WAIT(FS.10=b0) ; Wait for shift to finish
JUMP TESTIN ; Return to main program loop
$SHIFTN ; Define label called SHIFTN (subroutine to shift in the
; negative direction)
FSHFD-209@ ; Start preset follower shift move of 200 steps in the negative

WAIT(FS.10=h0)

: direction
» Wait for shift to finish

JUMP TESTIN ; Return to main program loop
END ; End definition of program called PSHIFT
FVMACC Virtual Master Count Acceleration
Type Following Product Rev
Syntax <I><@><a>FVMACC<i> <i> <i> <i>,<i>,<i>,<i>,<i> 6K 10
Units i = count acceleration in counts/sec/sec '
Range +999,999,999.9999
Default +0
Response FVMACC *FVMACC+0,+0,+0,+0,+0,+0,+0,+0
1FVMACC *1FVMACC+0
See Also FOLMAS, FVMFRQ, SINAMP, SINANG, SINGO

Use thecVMAC@ommand to define the rate at which the virtual master internal count frequency may
change for each axis. This command allows smooth changes in master velocity and direction.

106 6K Series Command Reference

FVMFRQ Virtual Master Count Frequency

Type Following Product Rev
Syntax <I><@><a> FVMFRQ<i>,<i>,<i>,<i> <i> <i> <i> <i> 6K 1.0
Units i = count frequency in counts/sec

Range +1000000.0000

Default +0

Response FVMFRQ *FVMFRQ+0,+0,+0,+0,+0,+0,+0,+0
1FVMFRQ *1FVMFRQ+0

See Also FOLMAS, FVYMACC, SINAMP, SINANG, SINGO

Use thecVMFR@ommand to define the virtual master count frequency for each axis. The “virtual master” is
an internal count source, intended to mimic the counts which might be received on an external encoder port.
Just as may be encountered with an external encoder, this count source may speed up, slow down, stop, or
count backwards.

There is one count source per axis. Each count source has a variable count frequency, defined by the user.
The count sources are always enabled, counting at the signed rate specified by this command. To start and
stop the count source, specify non-zero or zero values, respectively, fMMRR@ommand.

The rate at which the count frequency may change is specified in counts per second per second with the
FVMAC@ommand, allowing smooth changes in master velocity and direction.

GO Initiate Motion

Type Motion Product Rev
Syntax <I><@>G0O 6K 5.0
Units n/a

Range b=0(dont go), 1(go), or X(don't change)

Default 1

Response GO: Noresponse; instead, motion is initiated on all axes

See Also A, AA, AD, ADA, COMEXC, D, DRFLVL, GOBUF, GOWHEN, K, LH, LS,
MA, MC, PSET, S, SCLA, SCLD, SCLV, SSV, TEST, V

The Initiate Motion 6Q command instructs the motor to make a move using motion parameters that have
been previously entered. Several commands affect the motion that will occur GberaceivedSCLA
SCLD SCLV, A, AA, AD, ADA D, V, LH, LS, MA andMC

TheGOcommand starts motion on any or all axes. IfGl@Eommand is issued without any arguments,
motion will be started on all axes.

If motion does not occur afterGOcommand has been issued, verify the drive fault l&RF(VLD) and the
limits (LH andLS).

Command Descriptions 107

On-The-Fly (Pre-emptive GQ Motion Profiling

While motion is in progress (regardless of the positioning mode), you can change these motion
parameters to affect a new profile:

¢ Acceleration (A) — S-curve acceleration is not supported in OTF motion changes
« Deceleration (AD) — S-curve acceleration is not supported in OTF motion changes
« Velocity (V)

« Distance (D)

« Preset or Continuous Positioning Mode Selection (MG

¢ Incremental or Absolute Positioning Mode Selection (MA

¢ Following Ratio Numerator and Denominator (FOLRNand FOLRD respectively)

The motion parameters can be changed by sending the respective command (e.g., A, V, D, MG etc.)
followed by the GOcommand. If the continuous command execution mode is enabled (COMEXC)] you
can execute buffered commands; otherwise, you must prefix each command with an immediate
command identifier (e.g., !A, IV, ID, IMC, etc., followed by !GO). The new GOcommand pre-empts the
motion profile in progress with a new profile based on the new motion parameter(s).

For more information, refer to the Custom Profiling section in the Programmer's Guide.

Example:
SCALE1
SCLA25000,25000,1,1

; Enable scaling
: Set the accel. scale factor on axes 1 & 2 to
; 25000 steps/unit, axes 3 & 4 to 1 step/unit

SCLV25000,25000,1,1

; Set the velocity scale factor on axes 1 & 2 to
; 25000 steps/unit, axes 3 & 4 to 1 step/unit

SCLD1,1,1,1 ; Set the distance scaling factor on axes 1, 2, 3, & 4 to
; 1 step/unit

DEL proga ; Delete program called proga

DEF proga ; Begin definition of program called proga

MAO0000 ; Incremental positioning mode on all axes

MCO0000 ; Preset positioning mode on all axes

A10,12,1,2 : Set the acceleration to 10, 12, 1, & 2 units/sec/sec
;onaxesl1,2,3&4

v1,1,1,2 ; Set the velocity to 1, 1, 1, & 2 units/sec on
;axes1,2,3&4

D100000,1000,10,100 ; Set the distance to 100000, 1000, 10, & 100 units on
;axes1,2,3&4

G0O1100 : Initiate motion on axes 1 and 2, 3 & 4 do not move

END ; End definition of proga

GOBUF Store a Motion Segment in Compiled Memory

Type Compiled Motion Product Rev

Syntax <@>GOBUF 6K 5.0

Units n/a

Range b =0 (don't go), 1 (go), or X (don't change)

Default 1

Response n/a

See Also [AS], DEF, END, [ER], FOLRNF, MA, MC, MEMORY, PCOMP, PEXE,

POUTn, PRUN, PUCOMP, PLOOP, PLN, [SS], TAS, TER, TSS, VF

The Store a Motion Segment in Compiled Mema@®BUF command creates a motion segment as part of a
profile and places it in a segment of compiled memory, to be executed after all p@@RUBNOtioN
segments have been executed. Whe®BUFcommand is executed, the distance from the beammand

is added to the profile’s current goal position as soon as@iFcommand is executed, thus extending

the overall move distance of the profile under construction.

GOBUHs not a stand-alone command; it can only be executed within compiled programs, uBiogtre
andPRUNcommands.

EachGOBUHMmMotion segment may have its own distance to travel, velocity, acceleration and deceleration.
The end of a preset segmemio@ is determined by the distance or position specified; a comigitzd
GOBUHMMotion segment is finished when th# Yoal is reached. The end of a continuous segm&d] (s
determined by the ratio or velocity specified; a compilgtiGOBUFRMotion segment is finished when the

108 6K Series Command Reference

velocity or ratio goal is reached. If either a preset segment or continuous segment is followed by a
compiledGOWHEBommand, motion will continue at the last velocity until@@VHEBondition becomes
true, and the next segment begins.

The GOBUFcommand is not allowed during absolute positioning mautke)(

Starting velocity of a GOBUFsegment
EveryGOBURMotion segment will start at a velocity equal to the previous segment’s end velocity. If the
previousGOBURsegment uses th&gcommand, then it will end at zero velocity; otherwise, the end
velocity will equal to the goal velocity] of the previous segment.

Ending velocity of aGOBUFsegment

Preset Positioning ModeV(CY
A preset motion segment starts at the previous motion segment’s end velocity, attempts to reach the
goal velocity ¥) with the programmed acceleration and deceleraian(lAD) values, and is
considered completed when the distari®)egpal is reached.

In non-Following motionKOLEN®, the last preseésOBUsegment always ends at zero velocity, but
if you wish the velocity between intermedi®®BUFsegments to end at zero velocity, usevii@
command. In Following mod€QLENY), the last presesOBURsegment will end with the last-
specified goal velocity, but if you wish the velocity between intermedia@UFsegments to end at
zero velocity, use theOLRNFcommand.

EachGOBUFwiIll build a motion segment that, by default, becomes known as the last segment in the
profile. The last motion segment in a profile must end at zero velocity. If using pre-compiled loops
(PLOOR and the loop is closed after the I&&1BUFSegmentRLN occurs after the lagiOBUF, then

the unit will not consider the lastOBURas a final motion segment since it can link to either the first
segment of the loop or the next segment after the loop. If the conditions are such that the last
motion segment is within a loop and does not end at zero velocity, then an error is generated
(TSYSS bit #31 is set) at compile tim@€OMJ, and the profile remains un-compiled.

Continuous Positioning Mode/C)
A continuous segment starts at the previous motion segment’s end velocity, and is considered
complete when it reaches the goal velocitydt the programmed acce) (or decel AD) values.

You may use a mode continuoi¥d) non-zero velocity segment as the last motion segment in a
profile (no error will result). The axis will just continue traveling at the goal velocity.

NOTE: EachGOBURMotion segment can consume from 2-8 memory segments of compiled memory. If
there is no more space left in compiled memory, a compilation error will result.

Example:
DEF simple ; Begin definition of program : ! : .
MCO . Preset positioning mode The resulting profile from this program:
MAO ; Preset incremental v 4 D50000

; positioning mode !
D50000 ; Distance is 50000 ST T\ T
Al10 ; Acceleration is 10 e
AD10 ; Deceleration is 10
V5 ; Velocity is 5 S Y A S A U
GOBUF1 ; 1st motion segment, axis 1 Y VY
D30000 Distance is 30000 D30000—]
V2 ; Velocity is 2 S/ W D40000
GOBUF1 ; 2nd motion segment, axis 1 o . >
D40000 ; Distance is 40000
V4 ; Velocity is 4
GOBUF1 ; 3rd motion segment, axis 1
END ; End program definition

PCOMP simple ; Compile simple
PRUN simple ; Run simple

Command Descriptions 109

GOL

Initiate Linear Interpolated Motion

Type Motion (Linear Interpolated) Product Rev
Syntax <I><@>GOL 6K 5.0
Units n/a

Range b=0(dont go), 1(go), or X(don't change)

Default 0

Response GOL: Noresponse, instead motion is initiated on all axes

See Also D, GOWHEN, PA, PAA, PAD, PADA, PV, SCALE, SCLA, SCLD, SCLV

The Initiate Linear Interpolated MotiogQL) command instructs the motor to make a move using motion
parameters that have been previously entered. Several commands affect the motion that will occur when a
GOLis receivedPA, PAA PAD PADA D, PV, andSCLA SCLD SCLV.

The GOLcommand starts motion on any or all axes. IfGél@.command is issued without any arguments,
motion will be started on all axes.

When moves are made using theLcommand, the endpoint of the linear interpolated move is determined

by theD command. The accelerations, decelerations, and velocities for the individual axes are calculated
internally by the 6K Series product, so that the load is movadstraight lineat the path acceleratioRA

andPAD and velocity enteredy). In other words, the path acceleratiem)(path average acceleration

(PAA), the path deceleratioPAD, path average deceleratia?ADA, and the path velocityy) all

correspond to the rate of travel required to go to the point in space specifiedDgothenand. All axes

are to arrive at the same time; therefore, if each axis' distance is different, each axis must travel at a different
rate to have each axis arrive at the same time. The 6K Series product takes care of the calculations for each
axis, you just enter the overall rate of travel.

If motion does not occur afterGOLcommand has been issued, verify the drive fault l&RF(VL) and
the limits CH andLS).

Example:

SCALE1 ; Enable scaling

@SCLA25000 ; Set path acceleration scale factor to 25000 steps/unit/unit

@SCLV25000 ; Set path velocity scale factor to 25000 steps/unit

@SCLD10000 ; Set distance scale factor to 10000 steps/unit on all axes

DEL conta ; Delete program called conta

DEF conta ; Begin definition of program called conta

PA25 ; Set the path acceleration to 25 units/sec/sec

PAD20 ; Set the path deceleration to 20 units/sec/sec

PVv2 ; Set the path velocity to 2 units/sec

D10,5,2,11 ; Set the distance to 10, 5, 2, and 11 units on axes 1-4

GOL1111 ; Initiate linear interpolated motion on axes 1-4. A GOL command
; could have been issued instead of a GOL1111 command.

END ; End definition of conta

GOSuUB Call a Subroutine

Type Program; Subroutine Definition; Program Flow Control Product Rev

Syntax <I>GOSUB<t> 6K 5.0

Units t = text (name of program/subroutine)

Range Text name of 6 characters or less

Default n/a

Response n/a

See Also $, BREAK, DEF, DEL, END, ERASE, GOTO, JUMP, RUN

The Call a Subroutine5OSUBcommand branches to the corresponding program/subroutine name when
executed. A subroutine name consists of 6 or fewer alpha-numeric characters. The subroutine@isiiBhe
initiates will return control to the line after til@®@SUBwWhen the subroutine completes operation. If an invalid
subroutine name is entered, no branch will occur, and processing will continue with the line &testie

If you do not want to use th@OSUBR.ommand before the subroutine na@®gUBsubnamg, you can
simply use the subroutine name without @@SUBattached to itgubname).

If a subroutine is executed, an@REAKcommand is received, the subroutine will return control to the
calling program or subroutine immediately.

Up to 16 levels of subroutine calls can be made without receiving an error.

110 6K Series Command Reference

Example:

DEF pick ; Begin definition of subroutine named pick
G0O1100 : Initiate motion on axes 1 and 2

END : End subroutine definition

DEF place ; Begin definition of subroutine named place
GOSUB pick ; Gosub to subroutine named pick
G0O1000 : Initiate motion on axis 1

END : End subroutine definition

place ; Execute program named place

After program place is initiated, the first thing to occur will be a gosub to program pick . Within pick , the
GOcommand will be executed, and then control will be passed back to program place . The GOcommand
in place will then be executed, and program execution will then terminate.

GOTO Goto a Program or Label

Type Program; Subroutine Definition; Program Flow Control Product Rev
Syntax <I>GOTO<t> 6K 5.0
Units t =text (name of program/label)

Range Text nameof 6 characters or less

Default n/a

Response n/a

See Also $, DEF, DEL, END, GOSUB,IF, JUMP, L, LN, NIF, NWHILE, REPEAT, RUN,
UNTIL, WHILE

TheGOTCGcommand branches to the corresponding program name or label when executed. A program or
label name consists of 6 or fewer alpha-numeric characters. The program or labelGicatdnéiates will

not return control to the line after tl@TQwvhen the program completes operation—instead, the program
will end. This holds true unless the subroutine in whichab&Qesides was called by another program; in
this case, theNDin theGOTrogram will initiate a return to the calling program.

If an invalid program or label name is entered,@l@aa Owill be ignored, and processing will continue with
the line after th&&OTO

CAUTION

Use caution when performing a GOTCbetween IF & NIF, or L & LN, or REPEAT&
UNTIL, or WHILE & NWHILE Branching to a different location within the same program
will cause the next IF , L, REPEATor WHILE statement to be nested within the previous
IF , L, REPEATor WHILE statement unless a NIF, LN, UNTIL or NWHILEcommand has
already been encountered. If you wish to avoid this nesting situation, use the JUMP
command instead of the GOTQGcommand.

Example:

DEF pick ; Begin definition of subroutine named pick
G0O1100 : Initiate motion on axes 1 and 2

END : End subroutine definition

DEF place ; Begin definition of subroutine named place
GOTO pick ; Goto to subroutine named pick

G0O1000 : Initiate motion on axis 1

END : End subroutine definition

place ; Execute program named place

: After the GOTO command, the GO1000 command will not be executed because a GOTO
; was issued. If a GOSUB was used instead of the GOTO statement, control would
: have been returned to the line after the GOSUB.

Command Descriptions 111

GOWHEN conditional Go

Type Motion; Following Product Rev

Syntax <I><@><a>GOWHEN(expression,expression,...) 6K 50
(1 expression per axis -- see diagram below)

Units n/a

Range Up to 80 characters (including parentheses)

Default n/a

Response n/a

See Also [AS], COMEXC, [ER], ERROR, ERRORP, [FB], FGADV, FSHFC,

FSHFD, GO, GOL, [IN], [LIM], [NMCY], [PC],[PE],
[PMAS], [PSHF], [PSLV], T, TAS, TER, TRGFN, WAIT

Use theGOWHEBommand is used to synchronize a motion profile of an axis with a specified position count
(commanded, feedback device, motor, master, follower, Following shift), input status, dwell (time delay), or
master cycle number on that axis or other axes. Command processing does not waii®ow N

conditions (relational expressions) to become true during@wWHEBSommand. Rather, the motion from

the subsequent start-motion comma@d GOL FGADY FSHFG andFSHFD will be suspended until the

condition becomes true.

Start-motion type commands thatnnot be synchronized using ti@OWHESommand aretiOMJOG JOY,
andPRUN A preseiGOcommand that is already in motion can start a new profile usingQ¢HEBNAGO
sequence of commands. Continuous momesl)(already in progress can change to a new velocity based
upon theGOWHEBNdGOsequence. Both preset and continuous moves can be started from rest with the
GOWHEBNdGOsequence.

GOWHESntax:

Axis 1 Axis 2 Axis 3

GOWHEN ‘(expression) ‘,‘ (expression)‘,‘ (expression)‘,

Relational Expression Syntax:

(<left operand> <relational operator> <right operand>)

y y y

Possible Operators: Possible Operators: Possible Operators:
FB....... Feedback device position >= * Numeric variables
LIM.....Limit input state <= (VAR Or VART)
NMCY... Master cycle number = + Decimal constant
PC....... Commanded position > * Binary value (b__)
PE....... Encoder position < for IN operator only
PMAS... Master position
PSLC... Slave position
PSHF... Following shift
IN....... Input state
Teeeeeenn Dwell (in milliseconds)
EXAMPLES
GOWHEN (1PE>40@@@) ; suspend next GO until axis 1 encoder position > 400@J
GOWHEN (IN. 6=bl) ; suspend next GO until onboard input #6 is activated (bl)
GOWHEN (2PMAS>255) ; suspend next GO until the master for axis 2 has
; traveled 255 master distance units

SCALING

If scaling is enabled (SCALEJ), the right-hand operand is multiplied by SCLDif the
left-hand operand is FB, PC, PE, PSLV, or PSHE The right-hand operand is
multiplied by the SCLMASvalue if the left-hand operand is PMAS The SCLDor
SCLMASvalues used correlate to the axis specified with the variable (e.g., a
GOWHEBRxpression with 3PE scales the encoder position by the SCLDvalue
specified for axis 3).

112 6K Series Command Reference

GOWHEStatus:

Axis Status — Bit #26 Bit #26 is set when motion has been commandedd®y @Ol FGADY
FSHFG or FSHFDcommand, but the change in motion is suspended due to a p&@IMGEN
condition. This status bit is cleared when @@wWHEBondition is true or when a stoys () or kill ('K
or ~K) command is executed. An individual axé®WHEBommand can be cleared using an axis-
specificS or K command (e.g!S11XJ or IK@GXX1).

AS.26 Assignment & comparison operator — use in a conditional expressiohSsee

TASF....... Full text description of each status bit. ($8ewhen is Pending " line item)
TAS.......... Binary report of each status bit (bits 1-32 from left to right). See bit #26.

Error Status — Bit #14: Bit #14 is set if the position relationship specified inGaVvHESommand
is already true when th&Q GOL, FGADY FSHFG or FSHFDcommand is issued. The error status is
monitored and reported only if you enable error-checking bit #14 witBRRORCommand (e.g.,
ERROR.14-1). NOTE: When the error occurs, the controller with branch to the error program
(assigned with thERRORR.Ommand).

ER.14 Assignment & comparison operator — use in a conditional expressiohSsee

TERF....... Full text description of each status bit. (98ewhen condition true " line item)
TER......... Binary report of each status bit (bits 1-32 from left to right). See bit #14.

GOWHEN o0On a Trigger Input:

If you wish motion to be triggered with a trigger input, useafflRGFNc1command. ThaTRGFNcl
command executes in the same manner aSGWHEBSommand, except that motion is executed when
the specified trigger input] for axis @) is activated. For more information, refer to HRGFN
command description.

GOWHEN. WAIT:

A WAIT will cause the 6K controller program to halt program flow (except for execution of immediate
commands) until the condition specified is satisfied. Common uses for this function include delaying
subsequent I/O activation until the master has achieved a required position or an object has been
sensed.

By contrast, &isOWHEWNill suspend the motion profile for a specific axis until the specified condition
is met. It doesot affect program flow. If you wish motion to be triggered with a trigger input, use the
aTRGFNclcommand. ThaTRGFNclcommand executes in the same manner aSGWHEN

command, except that motion is executed when the specified triggerdppaiattivated (SeERGFN
command description for details). In additi@QWHEBXpressions are limited to the operands listed
above;WAIT can use additional operands suclfF@gFollowing status) angMAS(velocity of master).

Command Descriptions 113

Factors Affecting GOWHEBkecution:

If, on the same axis, a secoB@WHEBommand is executdzbfore a start-motion comman&Q

GOL FGADVFSHFG or FSHFD), then the firsGOWHEI over-written by the secorGOWHEN
command. GOWHEBommands are not nested.) An error is not generated waemaESommand is
over-written by anotheBOWHEN

While waiting for aGOWHERondition to be mednd a start-motion commartths been issued, if a
secondGOWHEBommand is encountered, then the first sequence is disabled and another start-motion
command is needed to re-arm the sed®@8VHEBequence.

A newGOWHEBommand must be issued for each start-motion comn&n&OL FGADY FSHFG or
FSHFD. That is, once & OWHEBondition is met and the motion command is executed, subsequent
motion commands will not be affected by the sa3@WHESommand.

If the GOWHEBINd start-motion commands are issued, the motion profile is delayed u@bWEEN
condition is met. If a second start-motion command is encountered, the second start-motion command
will override theGOWHEBommand and start motion. If this override situation is not desired, it can be
avoided by using ®AIT condition between the first start-motion command and the second start-

motion command.

It is probable that the OWHEBommand, th&Ocommand, and theOWHESondition becoming true

may be separated in time, and by other commands. Situations may arise, or commands may be given
which make th&sOWHEMvalid or inappropriate. In these cases,H@®VHENKondition is cleared, and

any motion pending theOWHERondition becoming true is canceled. These situations include
execution of thdOG JOY, HOMPRUN andDRIVE@commands, as well motion being stopped due to

hard or soft limits, a drive fault, an immediate stg)(or an immediate kill!K or~K).

GOWHEM Compiled Motion: When used in a compiled progra@Q&avHEWiIll pause the profile in
progress (motion continues at constant velocity) until@8vHEKondition evaluates true. When
executing a compiled Following profile, tie®WHEIl ignored on the reverse Following path (i.e.,
when the master is moving in the opposite direction of that which is specifiedHOLMAS
command). A compileGOWHERay require up to 4 segments of compiled memory storage.

Sample 6K Code:

In the example below, axis 2 must start motion when the actual position of axis 1 has reached 4. While axis
1 is moving, the program must be monitoring inputs and serving other system requiremewa|®o a
statement cannot be used; instea@P&VHEBNdGOsequence will delay the profile of axis 2.

SCALE1 ; Enable scaling

SCLV25000,25000 ; Set velocity scaling factors
SCLD10000,10000 ; Set distance scaling factors

DEL proga ; Delete program called proga

DEF proga ; Begin definition of program called proga

MCO00 ; Set both axes to preset move mode

D20,20 ; Set distance end-point

COMEXC1 : Enable continuous command execution mode
V1,1 ; Set velocity

A100,100 : Set acceleration

GOWHEN(,1PE>4) ; Delay axis 2 profile. When the expression is true
; (position of encoder #1 is > 4), allow axis 2 to
: start motion.
G011 : Command both axes to move. Axis 2 will not start until
: conditions in the GOWHEN statement are true.
; Command processing does not wait, so other system
; functions may be performed.
END ; End definition of progam

114 6K Series Command Reference

HALT Terminate Program Execution

Type Program Flow Control Product Rev
Syntax <ISHALT 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also BP, BREAK, C, ELSE, IF, K, NIF, NWHILE, PS, REPEAT, S, T,

UNTIL, WAIT, WHILE

The Terminate Program ExecutiatiALT) command terminates program execution when processed. This
command allows the user to terminate command processing at any point in a program. The programmer
may want processing to stop because of an error condition, an input, a variable, or just after a specific
motion has been accomplished. This command is useful when debugging a program.

Example:

DEF progl ; Define a program called progl

GO1000 ; Initiate motion on axis 1

GOSUB prog2 ; Gosub to subroutine named prog2

GO0100 ; Initiate motion on axis 2

END ; End program definition

DEF prog2 ; Define a program called prog2

GO01110 ; Initiate motion on axes 1, 2, and 3

IF(IN=b1XO0) ; If onboard input 1 is active (1), and input 3 is inactive 0)

HALT ; If condition is true break out of program

ELSE ; Else part of if condition

TPE ; If condition does not come true transfer position of all
; encoders to PC

NIF ; End If statement

END ; End program definition

RUN progl ; Execute program prog2

; Upon completion of motion on axis 1, subroutine prog2 is called.

; Ifinputs 1 and 3 are in the correct state after the motion is complete,

; program processing will be terminated. In other words, all commands waiting
; to be parsed in the program buffer will be eliminated.

; ¥*** Note: There will not be a return to prog1l.

HELP Technical Support

Type Program Debug Tool Product Rev
Syntax <I>HELP 6K 5.0
Units n/a

Range n/a

Default n/a

Response See description below

See Also None

The HELP command provides the telephone numbers for technical support.

Command Descriptions 115

HOM Go Home

Type Homing Product Rev
Syntax <I><@>HOM 6K 5.0
Units n/a
Range b =0 (home in positive direction), 1 (home in negative direction),

or X(do not home)
Default X
Response n/a

See Also [AS], HOMA, HOMAA, HOMAD, HOMADA, HOMBAC, HOMDF, HOMEDG,
HOMV, HOMVF, HOMZ, [LIM], LIMEN, LIMLVL, PSET, TAS, TLIM

The Go HomeHONIcommand instructs the controller to search for the home position in the direction, and on
the axes, specified by the command. If an end-of-travel limit is activated while searching for the home limit,
the controller will reverse direction and search for home in the opposite direction. However, if a second end-
of-travel limit is encountered, after the change of direction, the homing operation will be aborted.

The status of the homing operation is provided by bit 5 of each axis status register (refea®dahas
command)When the homing operation is successfully completed, the absolute position register is set to
zero (equivalent t®#SET).

| NOTE |

Pause and resume functions are not recommended during the homing operation. A
Pause command or input will pause the homing motion; however, when the subsequent
Resume command or input occurs, motion will resume at the beginning of the homing
motion sequence.

The homing operation has several parameters that determine the homing algorithm:

» Home acceleratiorHOMANdHOMAR

» Home deceleratiorHOMARNAHOMADA
» Home velocity HOMY

» Final home velocity{OMVF

» Home reference edgelOMED)G

» Backup to homeHOMBAL

» Final home directionHOMDF

» Active state of home inputMLVL)

» Home to encoder Z-chann&l@mZ

For more information on homing refer to tHemingsection of thé>rogrammer's Guide

Example:

SCALE1 ; Enable scaling

SCLA25000,25000,1,1 ; Set accel. scaling: axes 1 & 2 = 25000 steps/unit/unit;
; axes 3 & 4 = 1 step/unit/unit

SCLV25000,25000,1,1 ; Set vel. scaling: axes 1 & 2 = 25000 steps/unit;
; axes 3 & 4 = 1 step/unit

@SCLD1 ; Set distance scaling factor for all axes to 1 step/unit

DEL Homrdy ; Delete program called Homrdy

DEF Homrdy ; Begin definition of program called Homrdy

@MAO ; Incremental index mode for all axes

@MCO ; Preset index mode for all axes

HOMA10,12,1,2 ; Set home acceleration to 10, 12, 1, & 2 units/sec/sec for
;axes1,2,3&4

@HOMAD20 ; Set home deceleration to 20 units/sec/sec for all axes

HOMBAC1100 ; Enable backup to home switch on axes 1 and 2 only

HOMEDGO0011 ; Axes 1 & 2 stop on the positive-direction edge of the home
; switch, axes 3 and 4 are to stop on negative-direction side

@HOMDFO ; Set final home direction to positive on all axes.

@HOMZ0 ; Disable homing to encoder Z-channel on all axes

LIMLVLXxx0Oxx0xx0xx0 ; Set home active level to low on axes 1-4

HOMV1,1,1,2 ; Set home velocity to 1, 1, 1, and 2 units/sec for
;axes1,2,3&4

@HOMVF.1 ; Sets home final velocity to 0.1 units/sec for all axes

HOMO1XX ; Execute go home in positive-direction on axis 1,
; hegative-direction on axis 2. Do not home on axes 3 and 4.

END ; End definition of Homrdy

116 6K Series Command Reference

HOMA Home Acceleration

Type Homing Product Rev
Syntax <I><@><a>HOMA<I>,<r>,<r> <r>,<r><r>,<r>,<r> 6K 50
Units r = units/sec/sec

Range 0.00001 - 39,999,998 (depending on the scaling factor)

Default 10.0000

Response HOMA: *HOMA10.0000,10.0000,10.0000,10.0000 ...
1HOMA: *1HOMA10.0000

See Also HOM, HOMAD,HOMBAC,HOMDF,HOMEDG HOMV, HOMVF, HOMZ, [LIM],
LIMEN, LIMLVL, SCALE, SCLA

The Home AcceleratiortHOMAcommand specifies the acceleration rate to be used upon executing the next
go home HONIcommand.

| UNITS OF MEASURE andSCALING: refer to page 16.

The homing acceleration remains set until you change it with a subsequent homing acceleration command.
Homing accelerations outside the valid range are flagged as an error, with a mésssige DATA-FIELD

x, where x is the field number. When an invalid homing acceleration is entered the previous homing
acceleration value is retained.

If the home deceleratiotlOMAPcommand has not been entered, the home acceleratamcommand
will set the home deceleration rate. Once the home decelerdtiomapcommand has been entered, the
home acceleratioHOMAcommand no longer affects home deceleration.

Example : Refer to the go home (HONIcommand example.

HOMAA Homing Average Acceleration

Type Motion (S-Curve) Product Rev
Syntax <I><@><a>HOMAASI>,<r>,<r> <r> <r>,<r>,<r>,<r> 6K 50
Units r = units/sec/sec

Range 0.00001 - 39,999,998 (depending on the scaling factor)

Default 10.00 (trapezoidal profiling is default, where HOMAAracks HOMA)

Response HOMAA: *HOMAA10.0000,10.0000,10.0000,10.0000 ...
1HOMAA: *1HOMAA10.0000

See Also A, AD, ADA, HOM, HOMA, HOMAD, HOMADA, HOMBAC, SCALE, SCLA

The Homing Average AcceleratioAH@MApcommand allows you to specify the average acceleration for an
S-curve homing profile. S-curve profiling provides smoother motion control by reducing the rate of change in
acceleration and deceleration; this accel/decel rate of change is knjask Befer to page 13 for details on
S-curve profiling.

Scaling 6CLA affectsHOMAAhe same as it does fdHOMARefer to page 16 for details on scaling.

Example:
SCALEO ; Disable scaling
DEL proge ; Delete program called proge
DEF proge ; Begin definition of program called proge
@MAO ; Select incremental positioning mode
HOMA10,10 ; Set homing max. accel to 10 rev/sec/sec (axes 1 and 2)
HOMAAS5,10 ; Set homing avg. accel to 5 rev/sec/sec on axis 1,
; and 10 rev/sec/sec on axis 2
HOMAD10,10 ; Set homing max. decel to 10 rev/sec/sec (axes 1 and 2)
HOMADAD5,10 ; Set homing avg. decel to 5 rev/sec/sec on axis 1,
; and 10 rev/sec/sec on axis 2
HOM11XX ; Execute negative-direction homing moves on axes 1 and 2
; AXis 1 executes a pure S-curve; axis 2 executes a trapezoidal profile.
END ; End definition of program

Command Descriptions 117

HOMAD

Home Deceleration

Type Homing Product Rev
Syntax <I><@><a>HOMAD<I>,<r>,<r>,<r>,<r> <r> <r> ,<r> 6K 50
Units r = units/sec/sec

Range 0.00001 - 39,999,998 (depending on the scaling factor)

Default 10.0000 (HOMAD tracks HOMA)

Response HOMAD: *HOMAD10.0000,10.0000,10.0000,10.0000 ...
1HOMAD: *1HOMAD10.0000
See Also HOM, HOMA, HOMAA, HOMADA,HOMBAC ,HOMEDG HOMDF, HOMV, HOMVF,

HOMZ, [LIM], LIMEN, LIMLVL, SCALE, SCLA

The Home DeceleratiotdiOMAPcommand specifies the deceleration rate to be used upon executing the
next go homeHONIcommand.

UNITS OF MEASURE andSCALING: refer to page 16.

The home deceleration remains set until you change it with a subsequent home deceleration command.
Decelerations outside the valid range are flagged as an error, with a méssagéd DATA-FIELD x,

where x is the field number. When an invalid deceleration is entered the previous deceleration value is
retained.

If the home deceleratiomOMAPcommand has not been entered, the home acceleratamNcommand
will set the deceleration rate. Once the home deceleradiomgpcommand has been entered, the home
accelerationfOMAcommand no longer affects home deceleration. IHtbRIAZOmmand is set to zero
(HOMAD@then the homing deceleration will once again track whatevet@w,command is set to.

Example : Refer to the go home (HONIcommand example.

HOMADA Homing Average Deceleration

Type Motion (S-Curve) Product Rev
Syntax <I><@><a>HOMADA<I>,<r>,<r> <r>,<r>,<r>,<r> <r> 6K 5.0
Units r = units/sec/sec

Range 0.00001 - 39,999,998 (depending on the scaling factor)

Default 10.00 (HOMADA tracks HOMAA)

Response HOMADA: *HOMADA10.0000,10.0000,10.0000,10.0000 ...
1HOMADA: *1HOMADA10.0000
See Also A, AD, HOM, HOMA, HOMAA, HOMAD, SCALE, SCLA

The Homing Average Deceleration@MADpcommand allows you to specify the average deceleration for
an S-curve homing profile. S-curve profiling provides smoother motion control by reducing the rate of
change in acceleration and deceleration; this accel/decel rate of change is kijenwrRaser to page 13

for details on S-curve profiling.

Scaling 6CLA affectsHOMADAhe same as it does fdOMADRefer to page 16 for details on scaling.

Example:
SCALEO ; Disable scaling
DEL proge ; Delete program called proge
DEF proge ; Begin definition of program called proge
@MAO ; Select incremental positioning mode
HOMA10,10 ; Set homing max. accel to 10 rev/sec/sec (axes 1 and 2)
HOMAAS5,10 ; Set homing avg. accel to 5 rev/sec/sec on axis 1,
; and 10 rev/sec/sec on axis 2
HOMAD10,10 ; Set homing max. decel to 10 rev/sec/sec (axes 1 and 2)
HOMADAD5,10 ; Set homing avg. decel to 5 rev/sec/sec on axis 1,
; and 10 rev/sec/sec on axis 2
HOM11XX ; Execute negative-direction homing moves on axes 1 and 2.
; AXis 1 executes a pure S-curve.
; AXis 2 executes a trapezoidal profile.
END ; End definition of program

118 6K Series Command Reference

HOMBAC Home Backup Enable

Type Homing Product Rev
Syntax <I><@><a>HOMBAC 6K 5.0
Units n/a

Range b =0 (disable), 1 (enable), or X (don't change)

Default 0

Response HOMBAC: *HOMBACO0000_0000
1HOMBAC: *1HOMBACO

See Also HOM, HOMA, HOMAA, HOMAD, HOMADA, HOMDF, HOMEDG, HOMV, HOMVF,
HOMZ, [LIM], LIMEN, LIMLVL

The Home Backup EnableiOQMBArCcommand enables or disables the backup to home switch function. When
this function is enabled, the motor will decelerate to a stop after encountering the active edge of the home
region, and then move the motor in the opposite direction at the home final veliaity) until the active

edge of the home region is encountered. This motion will occur regardless of whether or not the home input is
active at the end of the deceleration of the initial go home move.

Example : Refer to the go home (HONIlcommand example.

HOMDF Home Final Direction

Type Homing Product Rev
Syntax <I><@><a>HOMDF 6K 5.0
Units n/a
Range b = 0 (positive-direction), 1 (negative-direction),

or X (don't change)
Default 0

Response HOMDF: *HOMDFO0000_0000
1HOMDF: *1HOMDFO

See Also HOM, HOMA, HOMAA, HOMAD, HOMADA, HOMBAC, HOMEDG, HOMV, HOMVF,
HOMZ, [LIM], LIMEN, LIMLVL

The Home Final DirectiorHOMD)command specifies the direction the 6K Series product is to be traveling
when the home algorithm does its final approach. This command is operational when backup to home
(HOMBALIs enabled, or when homing to an encoder Z char@VIE

Example : Refer to the go home (HONIlcommand example.

Command Descriptions 119

HOMEDG Home Reference Edge

Type Homing Product Rev
Syntax <I><@><a>HOMEDG<h> 6K 5.0
Units n/a
Range b = 0 (positive-direction edge), 1 (negative-direction edge),

or X (don't change)
Default 0

Response HOMEDG: *HOMEDGO0000_0000
1HOMEDG: *1HOMEDGO

See Also HOM, HOMA, HOMAA, HOMAD, HOMADA, HOMBAC, HOMDF, HOMV, HOMVF,
HOMZ, [LIM], LIMEN, LIMLVL,

The Home Reference EdgedMEDGcommand specifies which edge of the home switch the homing
operation will consider as its final destination.

As illustrated below, the positive-direction edge of the home switch is defined as the first switch transition
seen by the controller when traveling off of the positive-direction end-of-travel limit in the negative

direction. The negative-direction edge of the home switch is defined as the first switch transition seen by the
indexer when traveling off of the negative-direction end-of-travel limit in the positive-direction. This
command is operational when backup to hoR@NBALis enabled.

Negative Direction Positive Direction
Edge of Home Edge of Home

Home Switch

Active Region
Negative Direction Positive Direction
End-of-Travel Limit End-of-Travel Limit

Example : Refer to the go home (HONIlcommand example.

HOMV Home Velocity
Type Homing Product Rev
Syntax <I><@><a>HOMV<r>,<r>,<r> <r>,<r>,<r>,<r>,<r> 6K 5.0
Units r = units/sec (scalable with SCLV)
Range Stepper Axes: 0.00000-2,048,000 (max. depends on SCLV&PULSE)

Servo Axes: 0.00000-6,500,000 (max. depends on SCLV)
Default 1.0000

Response HOMV: *HOMV1.0000,1.0000,1.0000,1.0000 ...
1HOMV: *1HOMV1.0000

See Also HOM, HOMA, HOMAA, HOMAD, HOMADA, HOMBAC, HOMDF, HOMEDG, HOMVF,
HOMZ, [LIM], LIMEN, LIMLVL, PULSE, SCALE, SCLV

The Home Velocity HfOMYcommand specifies the velocity to use when the home algorithm begins its initial
go home KION move. The velocity remains set until you change it with a subsequent home velocity command.
Velocities outside the valid range are flagged as an error, with a meg$agelD DATA-FIELD x, wherex

is the field number. When an invalid velocity is entered the previous velocity value is retained.

| UNITS OF MEASURE andSCALING: refer to page 16.

Example : Refer to the go home (HONIlcommand example.

120 6K Series Command Reference

HOMVF Home Final Velocity

Type
Syntax
Units
Range

Default
Response

See Also

Homing Product
<I><@><a>HOMVF<r>,<r>,<r>,<r>,<r>,<r> <r> <r> 6K

r = units/sec (scalable with SCLV)

Stepper Axes: 0.00000-2,048,000 (max. depends on SCLV&PULSE)

Servo Axes: 0.00000-6,500,000 (max. depends on SCLV)

0.1000

HOMVF: *HOMVF0.1000,0.1000,0.1000,0.1000 ...
1HOMVF: *1HOMVF0.1000

HOM, HOMA, HOMAA, HOMAD, HOMADA, HOMBAC, HOMDF, HOMEDG, HOMV,
HOMZ, [LIM], LIMEN, LIMLVL, PULSE, SCALE, SCLV

Rev
5.0

The Home Final VelocityHOMVFFcommand specifies the velocity to use when the home algorithm does its
final approach. This command is only operational when backup to h@MBALIs enabled, or when
homing to an encoder Z channaqM¥

The velocity remains set until you change it with a subsequent home final velocity command. Velocities
outside the valid range are flagged as an error, with a messageID DATA-FIELD x, wherex is the
field number. When an invalid velocity is entered, the previous velocity value is retained.

UNITS OF MEASURE andSCALING: refer to page 16.

Example : Refer to the go home (HONIcommand example.
HOMZ Home to Encoder Z-channel Enable
Type Homing Product Rev
Syntax <I><@><a>HOMZ 6K 50
Units n/a
Range b =0 (disable), 1 (enable), or X (don't change)
Default 0
Response HOMZ: *HOMZ0000_0000
1HOMZ: *1HOMZO0
See Also [ASX], HOM, HOMA, HOMAA, HOMAD, HOMADA, HOMBAC, HOMDF,

HOMEDG, HOMV, HOMVF, [LIM], LIMEN, LIMLVL, TASX

This command enables homing to an encoder z-channel after the initial home input has gone active. NOTE:
The home limit input is required to go active prior to homing to the Z channel. The state of the Z-channel is
reported with bit 6 of thaSXandTASXregister.

Example :

Refer to the go home (HOMcommand example.

Command Descriptions

121

IF() IF Statement

Type Program Flow Control or Conditional Branching Product Rev
Syntax <I>IF(expression) 6K 5.0
Units n/a

Range Upto 80 characters (including parentheses)

Default n/a

Response n/a

See Also ELSE, NIF

This command is used in conjunction with #1eSE andNIF commands to provide conditional branching.
If the expression contained within the parenthesis offheommand evaluates true, then the commands
between théF and theNIF are executed. If the expression evaluates false, the commands betwe&en the
and theNIF are ignored, and command processing continues with the first command followiig the

When theELSE command is used in conjunction with tRecommand, trué~ evaluations cause the
commands between thfe andELSE commands to be executed, the commands aft&UsE until theNIF
are ignored. Falsi& evaluations cause commands betweerEtI8E and theNIF to be executed, with
commands between tlife and theELSEignored. TheELSE command is optional and does not have to be
included in theF statement.

ThelF().. ELSE.. NIF structure can be nested up to 16 levels deep.

NOTE: Be careful about performing@oThetweenF andNIF. Branching to a different location within
the same program will cause the nigxtstatement encountered to be nested within the preNdous
statement, unless allF command has already been encountered.

IF statement programming ordertF(expression)...commands...NIF

or
IF(expression)...commands...ELSE...commands...NIF

All logical operatorsAND OR NOT), and all relational operators, (>, >=, <, <=, <>) can be used within
thelF expression. There is no limit on the number of logical operators, or on the number of relational
operators allowed within a single expression. The limiting factor for thie expression is the command
length.The total character count for thelF command and expression cannot exceed 80 characters.
(e.g., If you add up the letters in tlfe command and the letters within th¢ expression, including the
parenthesis and excluding each space, this count must be less than or equal to 80.)

All assignment operatorg(AD, AS, ASX D, ER IN, LIM, MOYOUT PC PCE PCMPE, PER PMAS SEG SS,
TIM, US V, VEL, VELA, etc.) can be used within tHe expression.

Multiple parentheses may not be used withinltheommand.

Example:
IF(IN=b1X0 AND VAR1=1) ; If onboard input 1 is ON, input 3 is OFF, and
; variable 1 equals 1, then the IF statement evaluates
; true, so commands between this statement and NIF
; are executed
TREV ; Transfer revision level
NIF ; End IF statement
IF(1A<5000 AND 2PC>50000) ; If the acceleration of axis 1 is less than 5000, and
; the commanded position of axis 2 is greater than
; 50000, then do the IF statement. Note: The
; acceleration value used is programmed acceleration,
; not actual.
VAR1=VAR1+1 ; Increment variable 1
NIF ; End if statement
IF(4VEL<123 OR 4VEL>156) ; If the current velocity of axis 4 is less than 123

; or if it is greater than 156, then do the commands
; following the IF statement
WRITE"Something's Wrong\13" ; Put message Something's Wrong<cr> in output buffer
NIF ; End if statement
IF(OUT=b110X1 AND VAR1<=13) ; If onboard outputs 1, 2 and 5 are ON, output 3 is
; off and variable 1 is less than or equal to 13,
; then set variable 1 equal to variable 1 plus 1,
; else set variable 1 equal to variable 1 minus 1
VAR1=VAR1+1
ELSE
VAR1=VAR1-1
NIF ; End IF statement

122 6K Series Command Reference

[IN] Input Status

Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also GOWHEN, INFNC, [LIM], ONIN, TIN, VARB

Use theN operator is used to assign the input value to a binary variabie), or to make a comparison

against a binary or hexadecimal value. To make a comparison against a binary value, the letter b (b or B) must
be placed in front of the value. The binary value itself must only contain ones, zeros, or Xs (1, @, X, x). To
make a comparison against a hexadecimal value, the letter h (h or H) must be placed in front of the value. The
hexadecimal value itself must only contain the letters A through F, or the numbers @ through 9.

Syntax: VARBn=IN where ‘h” is the binary variable number, it can be used in an expression such as
IF(IN=b11@1) , orIF(IN=h7F) . To assign only one input value to a binary variable, instead of
all the inputs, the bit select) operator can be used. For examplkeRB1=2IN.10 assigns the
binary state of input 10 {2pin on SIM 2) on /O brick 2 to binary variable 1.

The number of inputs available for assignment or comparison varies from one 6K Series product to another;
to ascertain the input bit assignments for your 6K Series product refer to page 6. The function of the inputs is
established with theNFNC command (although thal operator looks at any trigger or external digital input,
regardless of its assigned function from tRENC command).

Example:

VARB1=3IN ; Input status on 1/O brick 3 assigned to binary variable 1
VARB2=2IN.12 ; Input bit 12 on 1/O brick 2 assigned to binary variable 2
VARB2 ; Response if bit 12 is set to 1:

T FVARB2=X XXX XXXX XXXL XXXX_ XXXX_ XXXX_ XXXX_ XXXX
IF(1IN=b111011X11); If the input status contains 1's for inputs 1,2,3,5,6,8,& 9,

; and 0 for input 4 on I/O brick 1, do the commands

; following the IF statement

TREV : Transfer revision level
NIF : End IF statement
IF(2IN=hEFO00) ; If the input status contains 1's for I/O brick 2's inputs

;1,2,3,5,6,7,& 8, and O's for every other input, do the
; commands following the IF statement

TREV : Transfer revision level

NIF : End IF statement

Command Descriptions 123

INDEB Input Debounce Time

Type Input Product Rev
Syntax <I>INDEB<i> 6K 5.0
Units i = time in milliseconds (ms)

Range i=2-250

Default 4

Response INDEB: *OINDEB4
1INDEB: *1INDEB4

See Also INFNC, LIMENC, RE, REG, TIN, TLIM, TRGFN, TRGLOT

TheINDEB command governs the debounce time for all of the inputs on the specified 1/O brick (all trigger
inputs, found on theTRIGGERS/OUTPUTS” connectors, are collectively considered I/O brick 0). The debounce
is the period of time that the input must be held in a certain state before the controller recognizes it. This
directly affects the rate at which the inputs can change state and be recognized. The default setting is 4 ms.

Exception for Trigger Inputs: For trigger inputs that are assigned the “Trigger Interrupt” function

(INFNCi-H), the debounce is instead governed bymtReLOTsetting. TherRGLOTsetting applies to all

trigger inputs defined as “Trigger Interrupt” inputs. THRGLOTdebounce time is the time required

between a trigger's initial active transition and its secondary active transition. This allows rapid recognition
of a trigger, but prevents subsequent bouncing of the input from causing a false position capture. The
default setting is 24 ms.

Limit Inputs . The limit inputs found on theLiMITS/IHOME” connectors are not normally debounced,;
however, if a limit is assigned a different function with thd~NC command (other thatiMFNCIi-R ,
LIMFNCI-S , orLIMFNCI-T), the input is debounced using INDEB setting for the on-board trigger inputs
(I/O brick 0). If a general-purpose input or trigger input is assigned a limit input funiNieNGi-R
INFNCI-S , or INFNCI-T), the input will not be debounced.

Example :

INDEB6 ; Assign all onboard trigger a debounce time of 6 ms

2INDEB10 ; Assign inputs on 1/O brick 2 a debounce time of 10 ms

1INDEB12 ; Assign inputs on 1/O brick 1 a debounce time of 12 ms

INDUSE Enable/Disable User Status

Type Controller Configuration Product Rev
Syntax <I>INDUSE 6K 5.0
Units n/a

Range b = 0 (disable) or 1 (enable)

Default 0

Response INDUSE: *INDUSEO

See Also INDUST, ONUS, TUS, [US]

The Enable/Disable User Status@USE) command enables tieDUST command updates. When this
command is not enabled, the user status INBUST) can be defined; however, they will not be updated in
theUsSor theTuScommands untiNDUSE is enabled.

Example:
INDUSE1 ; Enable user status

124 6K Series Command Reference

INDUST User Status Definition

Type Controller Configuration Product Rev
Syntax <I>INDUST<i><-<i><c>> 6K 50
Units See description below

Range Isti=1-16;2ndi=1-32; c=Athrough S

Default See description below

Response INDUST: *INDUST1-1A AXIS 1 STATUS - STATUS OFF
(...repeated for all 16 user status bhits...)
*INDUST16-4D AXIS 4 STATUS - STATUS OFF
INDUST1: *INDUST1-1A AXIS 1 STATUS - STATUS OFF

See Also [AS], [ASX], [IN], INDUSE, ONUS, [SS], TAS, TASX, TIN,
TSS, TUS, [US]

The User Status DefinitionNDUST) command establishes the user status bit function. Each bit can
correspond to an axis status bit, a system status bit, an input, an interrupt bit, or an extended axis status bit.
The default for each user status bit is as follows:

Default for the 6K product (first twas status bits for each axis):

Bits 1-2 = first 2 bits of axis status$) for axis 1

Bits 3-4 = first 2 bits of axis status$) for axis 2

Bits 5-6 = first 2 bits of axis status$) for axis 3

Bits 7-8 = first 2 bits of axis status$) for axis 4

Bits 9-10 = first 2 bits of axis statua$) for axis 5

Bits 11-12 = first 2 bits of axis statusg) for axis 6

Bits 13-14 = first 2 bits of axis statusg) for axis 7

Bits 15-16 = first 2 bits of axis statusg) for axis 8

The purpose of this command is to allow the user to create his or her own meaningful status word. It allows
the user to place certain status information in the order they prefer.

The syntaxB>INDUST<i><-<i><c>> is described as follows:
» First<i> corresponds to the user status bit being defined (16 maximum).

» Secondki> corresponds to the bit of the axis staig)(the system status$), the input statugy]),
or the extended axis statuss).

* The<c> defines what status to use:

<c> Value Function <c> Value Function

RESERVED

Use extended axis status (ASX) for axis 1
Use extended axis status (ASX for axis 2
Use extended axis status (ASX for axis 3
Use extended axis status (ASX for axis 4
Use extended axis status (ASX for axis 5
Use extended axis status (ASX) for axis 6
Use extended axis status (ASX) for axis 7
Use extended axis status (ASX) for axis 8

>

Use axis status (AS) for axis 1
Use axis status (AS) for axis 2
Use axis status (AS) for axis 3
Use axis status (AS) for axis 4
Use axis status (AS) for axis 5
Use axis status (AS) for axis 6
Use axis status (AS) for axis 7
Use axis status (AS) for axis 8
Use system status (SS) *
Use input status (IN) **

« T IOTMmMOO®
nwIovOUVOoOZ2ZZIr X

* If you are using multitasking, the “I ” value requires you to prefix the INDUST command with the task
identifier (e.g., 2%INDUST6-2| assigns system status bit 2 for task 2 to user status bit 6). If no task prefix
is given, the system status for task 1 is used by default.

** The “J” value requires you to prefix the INDUST command with the I/O brick identifier (e.g., 2INDUST14-4J
assigns the status of 1/0O point on 1/O brick 2 to user status bit 14). If no brick prefix is given, the onboard
trigger inputs are referenced by default. Refer to page 6 to fully understand the I/O bit patterns and use of
the brick identifier.

Example

INDUSE1 ; Enable user status

INDUST1-5A ; User status bit 1 defined as axis 1 status bit 5
INDUST2-3F ; User status bit 2 defined as axis 6 status bit 3
3INDUST3-5J ; User status bit 3 defined as input 5 on 1/O brick 3

2%INDUST16-2I ; User status bit 16 defined as system status bit 2 for task 2

Command Descriptions 125

INEN Input Enable

Type Input or Program Debug Tool Product Rev
Syntax <I>INEN<d><d>...<d> (one <d> for each input) 6K 5.0
Units n/a
Range d = 0 (disable, leave off), 1 (disable, leave on),

E (enable), or X (don't change)
Default E

Response INEN: *INENEEEE_EEEE_EEEE_EEEE_E
1INEN: *1INENEEEE EEEE EEEE EEEE EEEE EEEE EEEE_EEEE
1INEN.3 *E

See Also DRFEN, ERROR, [IN], INFNC, INLVL, INPLC, INSTW, LH, LIMEN,
TIN, TIO, TSTAT

TheINEN command allows you to simulate the activation of specific trigger or external digital inputs (without
actually wiring the inputs to the controller) by disabling them and setting them to a specific level (ON or OFF).

The defauliNEN condition is enableds], requiring external wiring to exercise the input’s respective
INFNC function.

Using Inputs on Expansion I/O Bricks If the I/O brick is disconnected or if it loses power, the controller
will perform a kill (all tasks) and set error bit #18 (&%=ROR The controller will remember the brick
configuration (volatile memory) in effect at the time the disconnection occurred. When you reconnect the
I/O brick, the controller checks to see if anything changed (SIM by SIM) from the state when it was
disconnected. If an existing SIM slot is changed (different SIM, vacant SIM slot, or jumper setting), the
controller will set the SIM to factory defauNEN andOUTLVLsettings. If a new SIM is installed where

there was none before, the new SIM is auto-configured to factory defaults.

Example: INEN1 disables trigger input Al but leaves it in the ON state{thkecommand will show trigger
input 1A as active)NEN@disables trigger input Al but leaves it in the OFF (inactive) state. To re-enable trigger
input 1A, issue théeNENE command.

INEN has no effecton ... |

« trigger inputs when they are configured as “trigger interrupt” inputs with the INFNCi-H
command. This includes position capture and registration functions.

« trigger or external digital inputs configured as “end-of-travel limit” inputs with the INFNCi-aR or
INFNCi-aS commands. Instead, use the LH command.

« limit inputs found on your product’s “LIMITS/HOME" connector(s).

Input bit assignments for thREN command vary by product and external 1/O brick configuration. The input bit
patterns for onboard and external 1/O bricks are explained on page 6 of this document.

Example:
DEF tester ; Begin definition of program tester
WHILE(IN=b11X10) ; While onboard inputs 1, 2, and 4 are active, and input 5 is not
; active, execute the statements between the WHILE & NWHILE

GO1100 ; Initiate motion on axes 1 and 2

NWHILE ; End WHILE statement

END ; End definition of program tester

INEN11X10 ; Disable onboard inputs 1,2,4, & 5, and set inputs 1, 2 & 4 in
; the active state, and input 5 in the inactive state

RUNtester ; Initiate program tester

IINENOO0O0O ; Disable onboard inputs 1,2,3,4, & 5, and leave them in the
; inactive state

INENeeeee ; Re-enable inputs 1 through 5

126 6K Series Command Reference

INFNC Input Function

Type Input Product Rev
Syntax <I>INFNC<i>-<<a>c> 6K 5.0
Units i = input #, a = axis #, ¢ = function identifier letter
Range i = 1-32 (I/O brick dependent — see page 6);

a = 1-8 (product dependent);

c=AT
Default A
Response INFNC: (input function and status of onboard inputs)

1INFNC: (input function and status of I/O brick 1 inputs)
1INFNC1: *1INFNC1-A NO FUNCTION - STATUS OFF

See Also COMEXR, COMEXS, ENCCNT, [ER], ERROR, [IN], INDEB, INEN,
INLVL, INPLC, INSELP, INSTW, INTHW, JOY, JOYAXH, JOYAXL,
JOYVH, JOYVL, K, KDRIVE, LH, LIMFNC, PSET, [SS], TER, TIN,
TIO, TRGFN, TRGLOT, [TRIG], TSS, TSTAT, TTRIG

The Input FunctionlNFNC) command defines the function of each individual input, whesethe input bit
number,a is an axis number if required, or the program number for the case of input functioncHs &inel
function. All function definitions given below will specify whether an axis number is required. A limit of 32
inputs may be assign@&dFNC functions; this excludes functions“*general-purpose”) and (“trigger
interrupt”).

Input Debounce Using the Input Debounce TImM®IDEB) command, you can change the input debounce
time for all of the inputs on the specified 1/0 brick (all trigger inputs, found onmMRIEGERS/OUTPUTS”
connectors, are collectively considered I/O brick 0). The debounce is the period of time that the input must
be held in a certain state before the controller recognizes it. This directly affects the rate at which the inputs
can change state and be recognized. Trigger inputs that are assigned the “Trigger Interrupt” function
(INFNCi-H), are instead debounced by #RGLOTvalue. Inputs defined as limit inputSIENCI-R

INFNCI-S , orINFNCI-T), will not be debounced.

Input bit assignments vary by product. The input bit patterns for onboard and external I/O bricks are
explained on page 6 of this document.

Input Scan Rate The programmable inputs are scanned onceystem updaté milliseconds).

Multitasking . If theINFNC command does not include the task identifi@mefix, the function affects the
task that executes tlig@FNC command. The functions that may be directed to a taskotéte:C, D (without
an axis specified}, F, andP (e.g.,2%INFNC3-F assigns onboard input 3 as a user fault input for task 2).
Multiple tasks may share the same input, but the input may only be assigned one function.

Identifier Function Description

A No special function (general-purpose input). Normal input, used with the IN assignment
B BCD Program Select. BCD input assignment to programs, lowest numbered input is least

significant bit (LSB). BCD values for inputs are as follows:

BCD Value
Least Significant Bit Value 1

Most Significant Bit Value 100

Note: If fewer inputs than shown above are defined to be Program Select Inputs, then
the highest input number defined as a Program Select Input is the most significant bit.

An input defined as a BCD Program Select Input will not function until the INSELP command has
been enabled.

Command Descriptions 127

Identifier Function Description

C Kill. Kills motion on all axes and halts all command processing (refer to K and KDRIVE

<a>D

command descriptions for further details on the kill function). This is an edge detection function
and is not intended to inhibit motion. To inhibit motion, use the Pause/Resume function
(INFNCI-E). When enabled with the ERROR.ommand, bit #6 of the TERand ERcommands will
report the kill status.

Stop. Stops motion. Axis number is optional; if no axis number is specified, motion is stopped on
all axes. If COMEX$s set to zero (COMEXS@program execution will be terminated. If COMEX$
set to 1 (COMEXS)L command processing will continue. With COMEXSet to 2 (COMEXSR
program execution is terminated, but the INSELP value is retained. Motion deceleration during
the stop is controlled by the AD& ADAcommands. If error bit #8 is enabled (e.g., ERROR.8-1),
activating a Stop input will set the error bit and cause a branch to the ERRORRProgram.

Pause/Continue. If COMEXHRs disabled (COMEXR@then only command execution pauses, not
motion. With COMEXRnabled (COMEXR)1 both command and motion execution are paused.
After motion stops, you can release the input or issue a continue (!C) command to resume
command processing (and motion of in COMEXRinode).

User Fault. Refer to the ERRORommand. If error bit #7 is enabled (e.g., ERROR.7-1),
activating a User Fault input will set the error bit and cause a branch to the ERRORRrogram.
CAUTION: Activating the user fault input sends an IK command to the controller, “killing” motion
on all axes (refer to the K command description for ramifications).

Reserved

Trigger Interrupt - This function can only be assigned to the onboard trigger inputs. A “Trigger
Interrupt” input can be used for these purposes:

« Position Capture . Each axis has two dedicated trigger inputs, referred to as “TRIG-nA” and
“TRIG-nB” (n = number of the axis). These trigger inputs are located on the 25-pin
“TRIGGERS/OUTPUTS” connector. When either trigger input (TRIG-nA or TRG-nB) for a
particular axis is assigned the Trigger Interrupt function, activating the input performs a
hardware capture of that axis' position. If the axis is used as a follower in Following, activating
the trigger also performs an interpolated capture of the associated master axis position.

An additional trigger, labeled “TRIG-M”, may be used to perform a hardware capture of the
“MASTER ENCODER?” (the encoder connected to the “Master Encoder” connector), as well as
the position of all axes (encoder position on servo axes; commanded or encoder position for
steppers, depending on the ENCCNTsetting). To assign TRIG-M as a trigger interrupt input,
use the INFNC17-H command.

When a Trigger Interrupt input is activated, the controller captures the relevant positions and
stores them in registers that are available at the next system update (2 ms) through the use of
these transfer and assignment/comparison commands:

Captured Information ~ Transfer Assignment/Comparison Offset * Scale Factor **
Commanded position TPCC PCC PSET SCLD
Encoder position TPCE PCE PSEFPESET SCLD
Master encoder position TPCME PCME PMESET SCLMAS
Master cycle position TPCMS PCMS PSET SCLMAS

* Captured values are offset by any existing PSETor PMESEToffset.
** |f scaling is enabled, the captured position is scaled by SCLDor SCLMAS

NOTES ABOUT POSITION CAPTURE :

- Hardware Capture: The encoder position is captured within + 1 encoder count. The
commanded position capture accuracy is + 1 count.

- Interpolated Capture: There is a time delay of up to 50 us between activating the trigger
interrupt input and capturing the position; therefore, the accuracy of the captured position
is equal to 50 pus multiplied by the velocity of the axis at the time the input was activated.

- Servo vs. Stepper. The nature of the axis position captured with a Trigger Interrupt input
may be different, depending on whether the axis is configured for servo or stepper

operation (AXSDEFcommand setting). For servo axes, both the commanded and encoder
position for the axis are captured. Analog input feedback cannot be captured. For stepper
axes, if the ENCCNTcommand is set to ENCCNTQdefault condition), only the commanded
position is captured. If ENCCNTImode is enabled, only the encoder position is captured.

More about Trigger Interrupt function on next page ...

128 6K Series Command Reference

Identifier

Function Description

H(con’t) Continued from previous page (Trigger Interrupt function):

alJ

aK

aL

« Registration . (see REdescription for details)

» Special trigger functions defined with the TRGFNcommand (see TRGFNor details).

NOTES ABOUT TRIGGER INTERRUPT INPUTS:

- When a trigger is assigned the "Trigger Interrupt” function, the debounce is governed by the
TRGLOTcommand setting (default is 24 ms). The TRGLOTsetting overrides the existing
INDEB setting for only the trigger inputs that are assigned the “Trigger Interrupt” function.

- When configured as Trigger Interrupts, the triggers cannot be affected by the input enable
(INEN) command.

- Trigger Interrupt Status: Use the TTRIG and TRIG commands to ascertain if a trigger
interrupt input has been activated. TTRIG displays the status as a binary report, and TRIG
is an assignment/comparison operator for using the status information in a conditional
expression (e.g., in an IF statement). The TTRIG/TRIG bits are cleared with the respective
captured position is read (see table on previous page).

Alarm Event - Will cause the 6K controller to set an Alarm Event in the Communications Server
over the Ethernet interface. You must first enable the Alarm checking bit for this input-driven
alarm (INTHW.23-1). For details on using alarms, refer to the 6K Series Programmer’s Guide.

JOG positive-direction - Will jog the axis specified in a positive-direction. The JOGcommand
must be enabled for this function to work. Axis number required

JOG negative-direction. Will jog the axis specified in a negative-direction. The JOGcommand
must be enabled for this function to work. Axis number required

JOG Speed Select. Selects the high or low velocity range while jogging. If the input is active, the
high jog velocity range will be selected. Axis number is optional. If no axis number is designated,
it defaults to all axes.

Joystick Release. Signals the controller to end joystick operation and resume program
execution with the next statement in your program. When the input is open (high), the joystick
mode is disabled (joystick mode can be enabled only if the input is closed, and only with the JOY
command). When the input is closed (low), joystick mode can be enabled with the JOY
command. The process of using Joystick mode is:

1. Assign the "Joystick Release" input function to a programmable input.

2. At the appropriate place in the program, enable joystick control of motion (with the JOY
command). (Joystick mode cannot be enabled unless the "Joystick Release" input is closed.)
When the JOY command enables joystick mode for the affect axes, program execution stops
on those axes (assuming the Continuous Command Execution Mode is disabled with the
COMEXCgommand).

3. Use the joystick to move the axes as required.

4. When you are finished using the joystick, open the "Joystick Release" input to disable the
joystick mode. This allows program execution to resume with the next statement after the
initial JOY command that started the joystick mode.

Joystick Axis Select. Allows you to control two pairs of axes with one joystick. Use the JOYAXH
and JOYAXLcommands to assign analog inputs to control specific axes. Opening the Axis Select
input (input is high) selects the JOYAXHconfiguration. Closing the Axis Select input (input is low)
selects the JOYAXLconfiguration. NOTE: When this input is not connected, the JOYAXH
configuration is always in effect.

Joystick Velocity Select. Allows you to select the velocity for joystick motion. The JOYVHand
JOYVLcommands establish two joystick velocities. Opening the Velocity Select input (input is
high) selects the JOYVHconfiguration. Closing the Velocity Select input (input is low) selects the
JOYVL configuration. The JOYVL velocity could be used to quickly move to a location, the JOYVH
velocity could be used for low-speed accurate positioning. NOTE: When this input is not
connected, joystick motion always uses the JOYVHvelocity setting.

Command Descriptions 129

Identifier

Function Description

P

aR

asS

aT

Program Select. One to one correspondence for input vs. program number. The program
number comes from the TDIR command. The number specified before the program name is the
number to specify within this input definition. For example, in the 2INFNC1-3P command, 3 is
the program number. An input defined as a Program Select Input will not function until the
INSELP command has been enabled.

Program Security. Issuing the INFNCi-Q command enables the Program Security feature and
assigns the Program Access function to the specified programmable input.

The program security feature denies you access to the DEF, DEL, ERASE MEMORY.IMFNC, and
INFNC commands until you activate the program access input. Being denied access to these
commands effectively restricts altering the user memory allocation. If you try to use these
commands when program security is active (program access input is not activated), you will
receive the error message *ACCESSDENIED. The INFNCi-Q command is not saved in battery-
backed RAM, so you may want to put it in the start-up program (STARTH.

For example, once you issue the 3INFNC12-Q command, the input on the 4" pin on SIM2 (1/O
point 12) of I/O brick 3 is assigned the program access function and access to the DEF, DEL,
ERASE MEMORMXIMFNC, and INFNC commands will be denied until you activate the input.

To regain access to these commands without the use of the program access input, you must
issue the INEN command to disable the program security input, make the required user memory
changes, and then issue the INEN command to re-enable the input. For example, if input 3 on
brick 2 is assigned as the Program Security input, use 2INEN.3=1 to disable the input and leave
it activated, make the necessary user memory changes, and then use 2INEN.3=E to re-enable
the input.

End-of-Travel Limit, Positive Direction. ~ This input function allows you to provide an end-of-
travel limit input on your remove 1/O brick. An axis number is required (e.g., 3INFNC1-4R
assigns the "Positive EOT limit" function to the 1* pin on the SIM1 (I/O point 1) on extended I/O
brick #3, and makes it specific to axis 4). REMEMBER to reassign the corresponding dedicated
hardware limit (on the “LIMITS/HOME” connector) to a function other than LIMFNCi-aR ;
otherwise, the INFNCi-aR input and the LIMFNCi-aR input will have the same function. Once
an input is assigned a limit function, it is no longer debounced (INDEB has no effect), and it must
be enabled/disabled with the LH command instead of the INEN command.

End-of-Travel Limit, Negative Direction. This input function allows you to provide an end-of-
travel limit input on your remove 1/O brick. An axis number is required (e.g., 3INFNC2-4R
assigns the "Negative EOT limit" function to the 2" pin on the SIM1 (I/O point 2) on extended I/O
brick #3, and makes it specific to axis 4). REMEMBER to reassign the corresponding dedicated
hardware limit (on the “LIMITS/HOME” connector) to a function other than LIMFNCi-aS ;
otherwise, the INFNCi-aS input and the LIMFNCi-aS input will have the same function. Once
an input is assigned a limit function, it is no longer debounced (INDEB has no effect), and it must
be enabled/disabled with the LH command instead of the INEN command.

Home Limit. This input function allows you to provide a home limit input on your remote 1/O
brick. An axis number is required (e.g., 3INFNC3-4R assigns the "Home limit" function to the 3"
pin on the SIM1 (I/O point 3) on extended I/O brick #3, and makes it specific to axis 4).
REMEMBER to reassign the function of the home limit for the affected axis (e.g., given
3INFNC2-4T , you must issue a LIMFNC command to assign a different function for the home
input for axis 4). Once an input is assigned a limit function, it is no longer debounced (INDEB has
no effect), and it must be enabled/disabled with the LH command instead of the INEN command.

Example:

3INFNC1-D ; Input at I/O point #1 on brick 3 is defined to be a

; stop input for all axes

130 6K Series Command Reference

INLVL Input Active Level

Type Input Product Rev
Syntax <I>INLVL... 6K 50
Units n/a

Range b =0 (active low), 1 (active high), or X (don't change)

Default 0

Response INLVL: *INLVLO00O_0000_0 (onboard trigger inputs)

1INLVL: *1INLVLOO00_0000_0000_0000_0000_0000_0000_0000
1INLVL.3: *O (active low)

See Also INEN, INFNC, INPLC, INSTW, LIMLVL

The Input Active LevellNLVL) command defines the active state of all programmable inputs. To determine
the input bit assignments for your 6K Series product, refer to page 6 of this document.

If the device driving the input is off (not sinking current), the input will show (usingitheeommand) a
zero () if the input has been defined as active low, and a Dniéthe input has been defined as active
high. If the device driving the input is on (sinking current), the input will show algriethie input has
been defined as active low, and zedpif the input has been defined as active high. The default state is
active low (NLVLO). The input schematics are provided in each 6K Series prothstd#iation Guide

Example:
2INLVLO101 ; Set active level for these inputs on 1/O brick 2:
; inputs 1 & 3 are active low, inputs 2 & 4 are active high.
[INO] Other Input Status
Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a
Range n/a
Default n/a
Response n/a
See Also [IN], [LIM], TINO, TINOF

The Other Input StatugNO) command is used to assign an other input value to a binary variable, or to make a
comparison against a binary or hexadecimal value. To make a comparison against a binary value, the letter b (b
or B) must be placed in front of the value. The binary value itself must only contain ones, zeros, or Xs (1, @,

X, X). To make a comparison against a hexadecimal value, the letter h (h or H) must be placed in front of the
value. The hexadecimal value itself must only contain the letters A through F, or the numbers @ through 9.

Syntax: VARBn=INOwheren is the binary variable number
or[INO] can be used in an expression suclFr@sO=b11@1) , orIF(INO=h@2)

There are 8 other inputs available for assignment or comparison. If it is desired to assign only one bit (one
specific input) value to a binary variable, instead of all 8, use the bit sejexptérator . For example,
VARB1=INO.6 assigns the status of tRSIABLE input to binary variable 1.

Format for binary assignment: Pobbbbbb
Bit #1 Bit #8

Bit Function Location
1-5 RESERVED
6 Enable input (1 = OK for motion) ENABLE terminal

7-8 RESERVED

Example:

VARB2=INO.6 ; ENABLE input status assigned to binary variable 2

VARB2 ; Response if bit 6 is set to 1: *VARB2=XXXX_X1XX

IF(INO.6=b1) ; If ENABLE input status is 1 (OK for motion), do the commands
; following the IF statement until the NIF statement

TREV : Transfer revision level

NIF : End if statement

Command Descriptions 131

INPLC Establish PLC Data Inputs

Type Input Product Rev
Syntax <I>INPLC<i> <i-i>,<i><i> 6K 50
Units See below
Range See below
Default 1,0—0,0,0
Response INPLC1: *INPLC1,0-0,0,0
1INPLC1: *1
See Also INEN, INFNC, INLVL, INSTW, OUTPLC,[TW]

The Establish PLC Data InpuiédPLC) command, in combination with tt@UTPLCcommand, configure

the inputs and outputs to read data from a parallel I/O device such as a PLC (Programmable Logic
Controller), or a passive thumbwheel module. The actual data transfer occurs Witfcdmemand. Refer
to theTwcommand for a description of the data transfer process.

TheINPLC command has four fieldsi¢,<i-i>,<i>,<i>):

Data Field Description

Field 1: <i> Set #: There are 4 possible INPLC sets (1-4). This field identifies which set to use.

Field 2: <i-i> Input #s : Data is read into the 6K Series product through the programmable inputs. This
field identifies the inputs to be used with the TWcommand. The first number is the first
input, and the second number is the last input. The inputs must be consecutive. The
number of inputs should be 8, because two BCD digits are read per data strobe. Refer to
page 6 for help in identifying which input bits are available to place in this field.

Field 3: <i> Sign Input # : This field identifies which input is designated to provide sign information. A
zero specified in the command field specifies no sign information. An active signal on the
input designated as the sign input indicates a negative data entry.

Field 4: <i> Data Valid Input # : This field identifies which input is designated to be the data valid
handshake input. A zero in this field indicates that there will be no data valid handshake
input used. When an input is specified as a data valid, the input must be active in order for
data to be read. If the input is not active, data will not be read until the signal becomes
active.

To disable a specific PLC set, entePLCn,@0-3,8,8 wheren is the PLC set (1-4).

Example:
2INPLC2,1-8,9,10 ; Set INPLC set 2 as BCD digits on inputs 1-8 on /O brick 2,
; with input 9 as the sign bit, and input 10 as the data valid
10UTPLC2,1-4,5,50 ; Set OUTPLC set 2 as output strobes on outputs 1-4 on 1/O
; brick 2, with output 5 as the output enable bit, and
: strobe time of 50 milliseconds
A(TW6) ; Read data into axis 1 acceleration using INPLC set 2 and
; OUTPLC set 2 as the data configuration

132 6K Series Command Reference

INSELP Select Program Enable

Type Input Product Rev
Syntax <I>INSELP<i><i> 6K 5.0
Units See below
Range Ist i =0, 1, or 2; 2ndi =0- 5000
Default 0,0
Response INSELP: *INSELPO,0
See Also COMEXS, INEN, INFNC, INLVL, INPLC, INSTW, LIMFNC, [SS],
TDIR, TSS

The Select Program Enabl&l§ELP) command enables program selection by inputs. In addition, the
command establishes the strobe time for the inputs, and if programs are selected on a one-to-one basis
(INFNCi-iP or LIMFNCI-P) or on a BCD basidNFNCi-B or LIMFNCi-B). When programs are selected

on a one-to-one basis, each input defined withNR&8ICi-iP or LIMFNCi-P command will run a specific
program upon activation. When programs are selected by BCD values, each input definadfyahs

or LIMFNCi-B command will contribute to the BCD value, which corresponds to the program number. The
program number is derived from the order in which the programs were ddéi@gdThe first program

defined is program #1, the second defined is program #2, etc. To verify which program number corresponds
to each program, use ti®IR command. The number in front of the program name is the program number.

Firsti = Enable or disable functio@ Disable,l and2 = Enable). US&NFNCi-B or LIMFNCI-B
inputs ifi =1; useINFNCi-iP or LIMFNCIi-P inputs ifi =2, to select program.

Second = Strobe Time in milliseconds for inputs used to select program. The input must be active at the
end of the strobe time for it to be recognized as a valid selection. The inputs are scanned once
persystem updaté milliseconds).

The Kill (!K') command releases this mode, in additioN&ELP@Z. The Stop!§) command or an input
defined as a stop input will also release this mode, as loag@®gXx$as been disabled.

Example:

2INFNC1-1P ; Input #1 on 1/O brick 2 defined to select program #1
2INFNC2-2P ; Input #2 on 1/O brick 2 defined to select program #2
2INFNC3-7P ; Input #3 on 1/O brick 2 defined to select program #7
INSELP2,50 ; Enable continuous scan of inputs to select a program to run

Command Descriptions 133

INSTW Establish Thumbwheel Data Inputs

Type Input Product Rev
Syr_]tax <I>INSTW<i> <i-i>,<i> 6K 50
Units See below

Range See below

Default 1,0—0,0

Response INSTW1: *INSTW1,0-0,0
1INSTW1: *1INSTW1,0-0,0

See Also INEN, INFNC, INLVL, INPLC, OUTTW][SS], TSS, [TW]

The Establish Thumbwheel Data Input¢STW) command, in combination with tl@JTTWommand,
configure the inputs and outputs to read data from an active thumbwheel device. The actual data transfer
occurs with the'wcommand. Refer to thBivcommand for a description of the data transfer process.

TheINSTWcommand has three fieldsi¥,<i-i>,<i>):

Data Field Description
Field 1: <i> Set #: There are 4 possible INSTWsets (1-4). This field identifies which set to use.
Field 2: <i-i> Input #s : Data is read into the 6K Series product through the programmable inputs. This field identifies

the inputs to be used with the TWcommand. The first number is the first input, and the second number
is the last input. The inputs must be consecutive. The number of inputs should be compatible to the
thumbwheel device. Refer to page 6 for help in identifying which input bits are available to place in this
field.

Field 3: <i> Sign Input # : This field identifies which input is designated to provide sign information. A zero
specified in the command field specifies no sign information. An active signal on the input designated
as the sign input indicates a negative data entry.

To disable a specific thumbwheel set, emSTWn,3-3,3 wheren is the thumbwheel set (1-4).

Example:
3INS'?'W2,1—4,5 ; Set INSTW set 2 as BCD digits on inputs 1-4 on 1/O brick 3,
; with input 5 as the sign bit
20UTTW2,1-3,4,50 ; Set OUTTW set 2 as output strobes on outputs 1-3 on I/O
; brick 2, with output 4 as the output enable bit, and
; strobe time of 50 milliseconds
A(TW2) ; Read data into axis 1 acceleration using INSTW set 2
; and OUTTW set 2 as the data configuration

134 6K Series Command Reference

INTHW Check for Alarm Events

Type Alarm Event Product Rev
Syntax <I>INTHW... (one b for each of 32 interrupts) 6K 5.0
Units n/a

Range b = 0 (disable), 1 (enable), or X(don't change)

Default 0

Response INTHW: *INTHWO0000_0000_0000_0000_0000_0000_0000_0000

See Also INFNC, INTSW, LIMENC, TIMINT

Use theNTHWcommand to determine which conditions will cause an alarm event in the 6K

Communications Server (this requires an Ethernet interface to the 6K). The alarm bit in the 6K is cleared as
soon as the alarm occurs, but the status of the alarm remains available, through the Communications Server,
to be checked by client applications. For details on using alarms, referéid eries Programmer’s

Guide

The table below lists the potential alarm conditions, and any number of the conditions may be enabled.

Format forlNTHW bbbb_bbbb_bbbb_bbbb_bbbb_bbbb_bbbb_bbbb

A

Bit #1 Bit #32
Location Location

To enable a specific interrupt, place a 1 in the corresponding bit locajiontbieINTHWbDb....bbb
command. To disable a specific interrupt bit, plaggrathe corresponding bit location.

NOTE: A specific interrupt bit can also be enabled by specifying the bit and the state of the bit
(o= Disable,1 = Enable). For example, the commaRN®HW.29-1 enables bit 29, whereas
INTHW.29-@ disables bit 29.

Bit# Function ** Bit# Function
1 Software (forced) Alarm #1 17 Reserved
2 Software (forced) Alarm #2 18 Reserved
3 Software (forced) Alarm #3 19 Limit Hit - hard or soft limit, on any axis
4 Software (forced) Alarm #4 20 Stall Detected (stepper) or Position Error (servo) on any axis
5 Software (forced) Alarm #5 21 Timer (TIMINT)
6 Software (forced) Alarm #6 22 Reserved
7 Software (forced) Alarm #7 23 Input - any of the inputs defined by INFNCi-l or LIMFNCI-I
8 Software (forced) Alarm #8 24 Command Error
9 Software (forced) Alarm #9 25 Motion Complete on Axis 1
10 Software (forced) Alarm #10 26 Motion Complete on Axis 2
11 Software (forced) Alarm #11 27 Motion Complete on Axis 3
12 Software (forced) Alarm #12 28 Motion Complete on Axis 4
13 Command Buffer Full 29 Motion Complete on Axis 5
14 ENABLE input Activated 30 Motion Complete on Axis 6
15 Program Complete 31 Motion Complete on Axis 7
16 Drive Fault on any Axis 32 Motion Complete on Axis 8

** Bits 1-12: software alarms are forced with the INTSWcommand.

Command Descriptions 135

INTSW Force an Alarm Event

Type Alarm Event Product Rev
Syntax <I>INTSW<i> 6K 5.0
Units i = alarm event condition # (see list in INTHW)

Range i=1-12

Default n/a

Response n/a

See Also INTHW

This command forces a specific alarm event. The alarm events are available in the Communications Server
(over the Ethernet interface), and a client application can read the Communications Server’s “faster status”
(alarm event) register to ascertain when certain conditions have occurred. 12 different software alarms are
available (see table iINTHWcommand description). By forcing an alarm condition, you can customize the
program to generate specific alarms at predefined places in your program.

The specific alarm event cannot be forced until the corresponding enable bit is set witiHtve
command. For example, before you can force alarm event Oit#3w3), you must first enable the 6K to
check the state of alarm event bit #8THW.3-1).

The client application must determine the cause of the forced alarm event. This is accomplished by polling
the Communication Server’s “fast status” register for the alarm information. Once the register has been read
for a client application, the alarm conditions are automatically cleared in the Communications Server. For
more information on the alarms and using the fast status register, refePtoghammer’s Guide

Example:

INTHW1 ; Enable alarm event bit #1

A20,20 ; Set acceleration to 20 units/sec/sec on axes 1 and 2

V2,2 ; Set velocity to 2 units/sec on axes 1 and 2

D25000,25000 ; Set move distance to 25000 units on axes 1 and 2

GO11 ; Initiate motion on axes 1 and 2

INTSW1 ; Force alarm event bit #1 as soon as the moves on axes 1 and

2 are flnlshed
* Note: After the alarm occurs, it is the client application program's *
* responsibility to examine the communication server's fast status *
* register to determine the cause of the alarm.

136 6K Series Command Reference

JOG Jog Mode Enable

Type Jog Product Rev
Syntax <I><@><a>JOG 6K 5.0
Units n/a

Range b =0 (disable), 1 (enable), or X (don't change)

Default 0

Response JOG: *JOG0000_0000

1JOG: *1JOGO
See Also DJOG, JOGA, JOGAA, JOGAD, JOGADA, JOGVH, JOGVL, INFNC, LIMFNC

This command enables jog mode on the appropriate axis. Once jog mode has been enabled, the jog inputs
can be used to produce motion on the specific axis. The inputs that will be used as jog inputs are determined
by theINFNC or LIMFNC command. Once the jog inputs have been enabled, they will remain enabled, and
able to jog at any time while the mototinsposition Or in other words, as long as the motor is not moving

the jog inputs will be active.

After processing theOG1command, command processing does not stop and wait for the jog mode to be
disabled JOGg. Instead, the jog inputs are enabled and command processing continues with the first
command after th&0G1command.

WARNING
If a jog input is active when jog mode is enabled, motion will occur.

To disable jog mode, issue th@eGacommand (to the appropriate axis) at any point in the program.

NOTE: If you are using an RP240 operator panel, you can enable the RP240 Jog Mode mith@he
command and use the RP240's arrow keys to jog individual axes. To disable the RP240 Jog Mode,
use theDJOG@command or press the RP24@ENU RECALL button.

Example:
1INFNC1-L ; Input #1 on 1/O brick 1 defined as jog velocity select input
1INFNC2-1J ; Input #2 on 1/0O brick 1 defined as jog positive-direction

; input for axis #1
1INFNC3-1K ; Input #3 on 1/O brick 1 defined as jog negative-direction

; input for axis #1
1INFNC4-2J ; Input #4 on 1/0O brick 1 defined as jog positive-direction

; input for axis #2
1INFNC5-2K ; Input #5 on 1/O brick 1 defined as jog negative-direction

; input for axis #2
JOGA100,100 ; Jog acceleration set to 100 units/sec/sec on both axes
JOGAD200,200 ; Jog deceleration set to 200 units/sec/sec on both axes
JOGVH10,8 ; The velocity when the jog velocity select input is high is

: 10 units/sec on axis #1 and 8 units/sec on axis 2
JOGVL1,.8 ; The velocity when the jog velocity select input is low is

: 1 units/sec on axis #1 and 0.8 units/sec on axis 2
JOG1100 ; Enable jog mode on axes 1 and 2. When an input occurs on

; input 2, input 3, input 4, or input 5, the motor will move at

; the appropriate jog velocity until the input is released
WAIT(1IN.6=b1) ; Wait for input #6 on I/O brick 1 to become active.

; Input #6 is being used as a signal to disable jog mode.
JOG0000 ; Disable jog mode on all axes

Command Descriptions 137

JOGA Jog Acceleration

Type Jog Product Rev
Syntax <I><@><a>JOGA<I>,<r>,<r>,<r> <r> <r><r>,<r> 6K 5.0
Units r = units/sec/sec

Range 0.00001 - 39,999,998 (depending on the scaling factor)

Default 10.0000

Response JOGA: *JOGA10.0000,10.0000,10.0000,10.0000 ...
1JOGA: *1JOGA10.0000

See Also DJOG, JOG, JOGAA, JOGAD, JOGADA, JOGVH, JOGVL, INFNC, LIMFNC,
SCALE, SCLA

The Jog Acceleratiod0GA command specifies the acceleration to be used upon receiving a jog input.

UNITS OF MEASURE andSCALING : refer to page 16.

The jog acceleration remains set until you change it with a subsequent jog acceleration command.
Accelerations outside the valid range are flagged as an error, with a nteNs@@gedD DATA-FIELD x,

where x is the field number. When an invalid acceleration is entered the previous acceleration value is
retained.

If the jog decelerationiDGAD command has not been entered, the jog accelerat@y(command will
also set the jog deceleration rate. Once the jog decelera®@@A) command has been entered, the jog
accelerationJOGA command no longer affects jog deceleration.

Example: Refer to the jog mode enable (JOG command example.

JOGAA Jogging Average Acceleration

Type Jog; Motion (S-Curve) Product Rev
Syntax <I><@><a>JOGAA<I>,<r>,<r> <r>,<r><r>,<r>,<r> 6K 5.0
Units r = units/sec/sec

Range 0.00001 - 39,999,998 (depending on the scaling factor)

Default 10.00 (trapezoidal profiling is default, where JOGAAtracks JOGA)

Response JOGAA: *JOGAA10.0000,10.0000,10.0000,10.0000 ...
1JOGAA: *1JOGAA10.0000

See Also A, ADA, JOG, JOGA, JOGAD, JOGADA, SCALE, SCLA

The Jogging Average AcceleratiaFOGAA command allows you to specify the average acceleration for an
S-curve jogging profile. S-curve profiling provides smoother motion control by reducing the rate of change
in acceleration and deceleration; this accel/decel rate of change is knsi Befer to page 13 for

details on S-curve profiling.

Scaling 6CLA affectsJOGAAthe same as it does faDGA Refer to page 16 for details on scaling.

Example:
JOGA10,10,10,10 ; Sets the maximum jogging acceleration of all axes
JOGAA5,5,7.5,10 ; Sets the average jogging acceleration of all axes

JOGAD Jog Deceleration

Type Jog Product Rev
Syntax <I><@><a>JOGAD<I>,<r>,<r>,<r>,<r> <r> <r> <r> 6K 5.0
Units r = units/sec/sec

Range 0.00001 - 39,999,998 (depending on the scaling factor)

Default 10.0000 (JOGAD tracks JOGA)

Response JOGAD: *JOGAD10.0000,10.0000,10.0000,10.0000 ...
1JOGAD: *1JOGAD10.0000

See Also DJOG, JOG, JOGA, JOGAA, JOGADA, JOGVH, JOGVL, INFNC, LIMFNC,
SCALE, SCLA

The Jog Deceleratiod@GAD command specifies the deceleration to be used when a jog input is released.

UNITS OF MEASURE andSCALING : refer to page 16.

138 6K Series Command Reference

The jog deceleration remains set until you change it with a subsequent jog deceleration command.
Decelerations outside the valid range are flagged as an error, with a méssagéd DATA-FIELD x,

where x is the field number. When an invalid deceleration is entered the previous deceleration value is
retained.

If the jog decelerationiDGAD command has not been entered, the jog accelerat@y(command will
also set the jog deceleration rate. Once the jog decelera®@@A) command has been entered, the jog
accelerationJOGA command no longer affects jog deceleratiodOGADis set to zeroJOGADY then the
jog deceleration will once again track whateverd@&Acommand is set to.

Example: Refer to the jog mode enable (JOG command example.

JOGADA Jogging Average Deceleration

Type Jog; Motion (S-Curve) Product Rev
Syntax <I><@><a>JOGADA,<r>,<r> <r>,<r> <r>,<r>,<r> 6K 5.0
Units r = units/sec/sec

Range 0.00001 - 39,999,998 (depending on the scaling factor)

Default 10.00 (JOGADA tracks JOGAA)

Response JOGADA: *JOGADA10.0000,10.0000,10.0000,10.0000 ...
1JOGADA: *1JOGADA10.0000

See Also A, AD, JOG, JOGA, JOGAA, JOGAD, SCALE, SCLA

The Jogging Average DeceleratiQtdGADA command allows you to specify the average deceleration for
an S-curve jogging profile. S-curve profiling provides smoother motion control by reducing the rate of
change in acceleration and deceleration; this accel/decel rate of change is kienwrRadfer to page 13

for details on S-curve profiling.

Scaling 6CLA affectsIOGADAhe same as it does f@DGAD Refer to page 16 for details on scaling.

Example:
JOGAD10,10,10,10 ; Sets the maximum jog deceleration of all four axes
JOGADA5,5,7.5,10 ; Sets the average jog deceleration of all four axes

JOGVH Jog Velocity High

Type Jog Product Rev
Syntax <I><@><a>JOGVH<r>,<r>,<r>,<r><r> <r><r>,<r> 6K 5.0
Units r = units/sec (scalable with SCLV)
Range Stepper Axes: 0.00000-2,048,000 (max. depends on SCLV&PULSE)

Servo Axes: 0.00000-6,500,000 (max. depends on SCLV)
Default 10.0000

Response JOGVH: *JOGVH10.0000,10.0000,10.0000,10.0000 ...
1JOGVH: *1JOGVH10.0000

See Also DJOG, JOG, JOGA, JOGAA, JOGAD, JOGADA, JOGVL, INFNC, LIMFNC,
PULSE, SCALE, SCLV

The Jog Velocity HighdOGvH command specifies the velocity to be used upon receiving a jog input with
the jog velocity select input activOl).

The jog high velocity remains set until you change it with a subsequent jog high velocity command.
Velocities outside the valid range are flagged as an error, with a meg$agelD DATA-FIELD x, where
x is the field number. When an invalid velocity is entered the previous velocity value is retained.

UNITS OF MEASURE andSCALING : refer to page 16.

Example: Refer to the jog mode enable (JOG command example.

Command Descriptions 139

JOGVL Jog Velocity Low

Type Jog Product Rev
Syntax <I><@><a>JOGVL<r>,<r>,<r> <r>,<r><r>,<r>,<r> 6K 5.0
Units r = units/sec (scalable with SCLV)
Range Stepper Axes: 0.00000-2,048,000 (max. depends on SCLV& PULSE)

Servo Axes: 0.00000-6,500,000 (max. depends on SCLV)
Default 0.5000

Response JOGVL: *JOGVL0.50000,0.50000,0.50000,0.50000 ...
1JOGVL: *1JOGVL0.50000

See Also DJOG, JOG, JOGA, JOGAA, JOGAD, JOGADA, JOGVH, INFNC, LIMFENC,
PULSE, SCALE, SCLV

The Jog Velocity LowJOGVL) command specifies the velocity to be used upon receiving a jog input with
the jog velocity select input low, @FF. The velocity remains set until you change it with a subsequent jog
velocity low command. Velocities outside the valid range are flagged as an error, with a message
*INVALID DATA-FIELD x, wherex is the field number. When an invalid velocity is entered the previous
velocity value is retained.

UNITS OF MEASURE andSCALING : refer to page 16.

Example: Refer to the jog mode enable (JOG command example.

JOY Joystick Mode Enable

Type Joystick Product Rev
Syntax <I><@><a>JOY<h> 6K 5.0
Units n/a

Range b = 0 (disable), 1 (enable), or X(dont change)

Default 0

Response JOY: *JOY0000_0000

1JOY: *1JOYO

See Also ANIRNG, [AS], COMEXC, INFNC, JOYA, JOYAA, JOYAD, JOYADA,
JOYAXH, JOYAXL, JOYCDB, JOYCTR, JOYEDB, JOYVH, JOYVL, JOYZ,
LIMENC, TAS, TIN

The 6K controller supports joystick operation with digital inputs and analog inputs. The digital inputs
include the onboard limit inputs and trigger inputs, as well as digital input SIMs on an external 1/O brick.
The 12-bit analog inputs are available only if you install an analog input SIM on an external 1/O brick
(default voltage range is -10V to +10V, selectable WNIRNG.

To Set Up Joystick Operation(refer also to the example code below):

1. Select the required digital inputs and analog inputs required for joystick operation. Connect the
joystick as instructed in your controllehsstallation Guide

2. Assign the appropriate input functions to the digital inputs used for joystick's operation:
* Release InputNFNCi-M for triggers & external inputs, @MFNCi-M for limit inputs.
» Axis Select InputINFNCi-N for triggers & external inputs, @MFNCi-N for limit inputs. NOTE: If
you're not using this input, assign the analog inputs to the axes with¥#exHcommand.
» Velocity Select InputtNFNCi-O for triggers & external inputs, @MFNCi-O for limit inputs.

3. (optional) Use theaNIRNGcommand to select the voltage range for the analog inputs you will use.
The default range is -10VDC to +10VDC (other options are 0 to +5V, -5 to +5V, and 0 to +10V).

4. Assign analog inputs to control specific axes, using:
* JOYAXH Standard analog input-to-axis assignment.
* JOYAXL(optional). Analog input-to-axis assignment when the Axis Select Input is low.

5. Define the joystick motion parameters:
» Max. Velocity when Velocity Select input switch is open/highYvHcommand). If the Velocity
Select input is not used, joystick motion always usesaha/Hvelocity.
* Max. Velocity when Velocity Select input switch is closed/Id®YVL command).
* Accel JOYAcommand).

140 6K Series Command Reference

» Accel for s-curve profilingJOYAAcommand).
» Decel joyADcommand).
» Decel for s-curve profilingJOYADAcommand).

6. Define the usable voltage zone for your joystick:
(make sure you have first assigned the analog inputs — see step 3 above)
» End DeadbandJOYEDB: Defines the voltage offset (from the -10V & +10V endpoints) at which
max. velocity occurs. Default is 0.1V, maxing voltage at -9.9V and +9.9V.
» Center VoltageJOYCTRor JOY2): Defines the voltage when the joystick is at rest to be the zero-
velocity center. DefaullOYCTRsetting is OV.
» Center Deadband®YCDB: Defines the zero-velocity range on either side of the Center Voltage.
Default is 0.1V, setting the zero-velocity range at -0.1V to +0.1V.

7. Tojog the axes:
a. Inyour program, enable Joystick Operation withitné command (Joystick Release input must
be closed in order to enable joystick mode). Wherd@écommand enables joystick mode for the
affect axes, program execution stops on those axes (assuming the Continuous Command Execution
Mode is disabled with theOMEXC@ommand).
b. Move the load with the joystick.
c. When you are finished, open the Joystick Release input to disable joystick mode. This allows
program execution to resume with the next statement after the Jaittalommand that started the
joystick mode.

Programming Example (refer also to the illustration below):

Application Requirements:

This example represents a typical two-axis joystick application in which a high-velocity range is required to
move to a region, then a low-velocity range is required for a fine search. After the search is completed it is
necessary to record the load positions, then move to the next region. A digital input can be used to indicate that
the position should be read. The Joystick Release input is used to exit the joystick mode and continue with the

motion program.

Hardware Configuration:

¢ An analog input SIM is installed in the 3rd slot of I/O brick 1. The eight analog inputs (1-8) are addressed as
input numbers 17-24 on the I/O brick. Analog input 17 will control axis 1, and analog input 18 will control

axis 2.

« Adigital input SIM is installed in the 1st slot of I/O brick 1. The eight digital inputs (1-8) are addressed as
input numbers 1-8 on the I/O brick. Digital input 6 will be used for the Joystick Release function, and input 7
will be used for the Joystick Velocity Select input. Input 8 will be used to indicate that the position should be

read.

Setup Code (the drawing below shows the usable voltage configuration):

1INFNC7-M
1INFNC8-O

JOYAXH1-17,1-18

JOYVH1,1
JOYVL10,10

JOYA100,100
JOYAD100,100

; Assign Joystick Release f(n) to brick 1, input 7
; Assign Joystick Velocity Select f(n) to brick 1, input 8

; Assign analog input 17 to control axis 1,

; Assign analog input 18 to control axis 2
; Max. velocity on axes 1 & 2 is 10 units/sec when the
; Velocity Select input switch (1IN.7) is open (high)
; Max. velocity on axes 1 & 2 is 1 unit/sec when the
; Velocity Select input switch (1IN.7) is closed (low)
; Set joystick accel to 100 units/sec/sec on both axes
; Set joystick decel to 100 units/sec/sec on both axes

;7 COMMANDS TO SET UP USABLE VOLTAGE: **k

1JOYCTR.17=+1.0
1JOYCTR.18=+1.0

1JOYCDB.17=0.5
1JOYCDB.18=0.5

1JOYEDB.1

7=2.0
1JOYEDB.18=2.0

; Set center voltage for analog input 17 (controls axis 1)
; and 18 (controls axis 2) to+1.0V. The +1.0V value was
; ascertained by checking the voltage of the both
; inputs (with the 1TANI.17 and 1TAIN.18 commands)
; when the joystick was at rest.
; Set center deadband to compensate for the fact that
; when the joystick is at rest, the voltage received on
; both analog inputs may fluctuate +/- 0.5V on either
; side of the +1.0V center.
; Set end deadband to compensate for the fact that the
; joystick can produce only -8.0V to +8.0V.

Jov11

; Enable joystick mode for axes 1 & 2

Command Descriptions

141

Velocity
(posttive direction)

— — — — JOYVHOr JOYVL —= — — — — —

JOYCD
(zero-velocity range)

| — | Volts

-10v | +10V
JOYCTROr JOYZ

(voltage when joystick is at rest)

I—

JOYEDB

JOYEDB

—— JOYVHOr JOYVL — — — —

Velocity
(negative direction)

JOYA Joystick Acceleration

Type Joystick Product Rev
Syntax <I><@><a>JOYASLIr>,<r>,<r>,<r> <r> <r>,<r><r> 6K 5.0
Units r = units/sec/sec

Range 0.00120-39,999,998 (depending on the scaling factor)

Default 10.0000

Response JOYA: *JOYA10.0000,10.0000,10.0000,10.0000 ...
1JOYA: *1JOYA10.0000

See Also JOY, JOYAA, JOYAD, JOYADA, JOYAXH, JOYAXL, JOYCDB,JOYCTR, JOYEDB,
JOYVH, JOYVL, JOYZ, SCALE, SCLA

The Joystick Acceleratiod©YA command specifies the acceleration to be used during joystick mode.

UNITS OF MEASURE andSCALING : refer to page 16.

The joystick acceleration remains set until you change it with a subsequent joystick acceleration command.
Accelerations outside the valid range are flagged as an error, with a nteNs@gedD DATA-FIELD x,

where x is the field number. When an invalid acceleration is entered the previous acceleration value is
retained.

If the joystick decelerationJOYAD command has not been entered, the joystick accelera@om)(
command will also set the joystick deceleration rate. Once the joystick deceleratt@m)(command has
been entered, the joystick acceleratioa@¥4 command no longer affects joystick deceleration.

Example: Refer to the joystick mode enable (JOY) command example.

JOYAA Joystick Average Acceleration

Type Motion (S-Curve) Product Rev
Syntax <I><@><a>JOYAASI> <r>,<r> <r> <r> <r>,<r>,<r> 6K 50
Units r = units/sec/sec

Range 0.00120-39,999,998 (depending on the scaling factor)

Default 10.00 (trapezoidal profiling is default, where JOYAAtracks JOYA)

Response JOYAA: *JOYAA10.0000,10.0000,10.0000,10.0000 ...
1JOYAA: *1JOYAA10.0000

See Also AA, AD, JOY, JOYA, JOYAD, JOYADA, SCALE, SCLA

The Joystick Average AcceleratialoYAA command allows you to specify the average acceleration for an
S-curve joystick profile. S-curve profiling provides smoother motion control by reducing the rate of change

142 6K Series Command Reference

in acceleration and deceleration; this accel/decel rate of change is knsi Befer to page 13 for
details on S-curve profiling.

Accelerating Scaling3CLA) affectsJOYAAthe same as it does f@DYA Refer to page 16 for details on
scaling.

Example:

JOYA10,10,10,10 ; Set the maximum joystick acceleration of all four axes

JOYAA5,5,7.5,10 ; Set the average joystick acceleration of all four axes

JOYAD Joystick Deceleration

Type Joystick Product Rev
Syntax <I><@><a>JOYAD<r>,<r>,<r>,<r> <r>,<r><r> <r> 6K 5.0
Units r = units/sec/sec

Range 0.00120-39,999,998 (depending on the scaling factor)

Default 10.0000 (JOYAD tracks JOYA)

Response JOYAD: *JOYAD10.0000,10.0000,10.0000,10.0000 ...
1JOYAD: *1JOYAD10.0000

See Also JOY, JOYA, JOYAA, JOYADA, JOYAXH, JOYAXL, JOYCDB, JOYCTR,
JOYEDB, JOYVH, JOYVL, JOYZ, SCALE, SCLA

The Joystick Deceleratiod@YAD command specifies the deceleration to be used during the joystick
mode.

UNITS OF MEASURE andSCALING : refer to page 16.

The joystick deceleration remains set until you change it with a subsequent joystick deceleration command.
Decelerations outside the valid range are flagged as an error, with a méssagéd DATA-FIELD x,

where x is the field number. When an invalid deceleration is entered the previous deceleration value is
retained.

If the joystick decelerationlOYAD command has not been entered, the joystick acceleradom)(
command will also set the joystick deceleration rate. Once the joystick decelerat@i)(command has
been entered, the joystick acceleratiady4 command no longer affects joystick decelerationON ADis
set to zeroJOYAD), then the joystick deceleration will once again track whateveldkacommand is
set to.

Example: Refer to the joystick mode enable (JOY) command example.

JOYADA Joystick Average Deceleration

Type Motion (S-Curve) Product Rev
Syntax <I><@><a>JOYADA<KI>,<r>,<r>,<r>,<r> <r> <r> <r> 6K 50
Units r = units/sec/sec

Range 0.00120-39,999,998 (depending on the scaling factor)

Default 10.00 (JOYADA tracks JOYAA)

Response JOYADA: *JOYADA10.0000,10.0000,10.0000,10.0000 ...
1JOYADA: *1JOYADA10.0000

See Also A, AD, JOY, JOYA, JOYAA, JOYAD, SCALE, SCLA

The Joystick Average Deceleratiaroff ADA command allows you to specify the average deceleration for
an S-curve joystick profile. S-curve profiling provides smoother motion control by reducing the rate of
change in acceleration and deceleration; this accel/decel rate of change is kiewwrRadfer to page 13

for details on S-curve profiling.

Acceleration Scaling3CLA) affectsJOYADAthe same as it does f@DYAD Refer to page 16 for details on
scaling.

Example:
JOYAD10,10,10,10 ; Sets the maximum joystick deceleration of all four axes
JOYADA5,5,7.5,10 ; Sets the average joystick deceleration of all four axes

Command Descriptions 143

JOYAXH Joystick Analog Channel High

Type Joystick Product Rev
Syntax <I><@><a>JOYAXH<B-i><B-i><B-i><B-i>,<B-i>,<B-i>,<B-i>,<B-i> 6K 50
Units B = 1/O brick number

i = Location of the analog input on I/O brick (see page 6)
Range B=1-8

i=1-32
Default 0-0,0-0,0-0,0-0,0-0,0-0,0-0,0-0

Response JOYAXH: *JOYAXH1-1,1-2,1-3,1-4,1-5,1-6,1-7,1-8
1JOYAXH: *1JOYAXH1-1
See Also ANIRNG, [IN], INFNC, JOY, JOYA, JOYAA, JOYAD, JOYADA, JOYAXL,

JOYCDB, JOYCTR, JOYEDB, JOYVH, JOYVL, JOYZ, [LIM], LIMFNC,
TIN, TLIM

The Joystick Analog Channel HighdYAXH command specifies the analog input that will control each
axis while the Joystick Axis Select inpitlENCi-N or LIMFNCI-N) is open and the corresponding axis is
in Joystick Mode. A single analog input can control more than one axisJ@Y#$XH1-1,1-1 assigns the
analog input at location 1 on 1/O brick 1 to control axes 1 and 2). If the Joystick Axis Select input is not
used, thaoYAXHcommand determines which axes are controlled by which analog inputs.

To understand how specific I/O points are addressed on the 1/O bricks, refer to page 6.

NOTE: The 12-bit analog inputs are available only if you install an analog input SIM on an external I/0
brick. Use theANIRNGcommand to select the voltage range for the analog inputs you will use. The default
range is -10VDC to +10VDC (other options are 0 to +5V, -5 to +5V, and 0 to +10V).

Example: Refer to the joystick mode enable (JOY) command example.

JOYAXL Joystick Analog Channel Low
Type Joystick Product Rev
Syntax <I><@><a>JOYAXH<B-i><B-i><B-i><B-i><B-i><B-i> <B-i>,<B-i> 6K 5.0
Units B = 1/O brick number

i = Location of the analog input on 1/O brick (see page 6)
Range B=1-8

i=1-32
Default 0-0,0-0,0-0,0-0,0-0,0-0,0-0,0-0

Response JOYAXL: *JOYAXL1-1,1-2,1-3,1-4,1-5,1-6,1-7,1-8
1JOYAXL: *1JOYAXL1-1
See Also ANIRNG,[IN], INENC, JOY, JOYA, JOYAA, JOYAD, JOYADA, JOYAXH,

JOYCDB, JOYCTR, JOYEDB, JOYVH, JOYVL, JOYZ, [LIM], LIMFNC,
TIN, TLIM

The Joystick Analog Channel LowdYAXL) command specifies the analog input that will control each axis
while the Joystick Axis Select inpuNENCI-N or LIMFNCI-N) is closed and the corresponding axis is in
Joystick Mode. A single analog input can control more than one axisJ@Y®XxL1-1,1-1 assigns the
analog input at location 1 on 1/O brick 1 to control axes 1 and 2). If the Joystick Axis Select input is not
used, thadOYAXLcommand has no effect; instead, Jlkey AXHcommand determines which axes are
controlled by which analog inputs.

To understand how to address specific 1/0O points on the 1/O bricks, refer to page 6.

NOTE: The 12-bit analog inputs are available only if you install an analog input SIM on an external 1/O
brick. Use theANIRNGcommand to select the voltage range for the analog inputs you will use. The default
range is -10VDC to +10VDC (other options are 0 to +5V, -5 to +5V, and 0 to +10V).

Example: Refer to the joystick mode enable (JOY) command example.

144 6K Series Command Reference

JOYCDB Joystick Center Deadband

Type Joystick Product Rev
Syntax <I><@><a>JOYCDB<.i><=r> 6K 5.0
Units i = I/O location for the analog input on brick B (see page 6)

r =volts
Range i=1-32

r =-10.00 - +10.00 (depending on ANIRNG setting)
Default 0.1

Response 1JOYCDB.1 *1JOYCDB.1=0.1

See Also ANIRNG, INFNC, JOY, JOYA, JOYAA, JOYAD, JOYADA, JOYAXH,
JOYAXL, JOYCTR, JOYEDB, JOYVH, JOYVL, JOYZ, LIMFNC

TheJOycDBcommand defines, for the specified analog input(s), the zero-velocity range on either side of the
Center Voltage established with th@YCTRcommand or thaOYz command. The default setting is 0.1V, which
sets the zero-velocity range at -0.1V to +0.1V (assuming the da€auiTRdefault of 0.0V is usedNOTE:
Executing thedOYCDBcommand before th#dYAXHcommand will cause an erroiNfPUT(S) NOT DEFINED

AS JOYSTICK INPUT ").

Example: Refer to the joystick mode enable (JOY) command example.

JOYCTR Joystick Center

Type Joystick Product Rev
Syntax <I><@><a>JOYCTR<.i><=r> 6K 5.0
Units i = I/O location for the analog input on brick B (see page 6)

r =volts
Range i=1-32

r =-10.00 - +10.00 (depending on ANIRNG setting)
Default 0.00

Response 1JOYCTR.1 *1JOYCTR.1=0.00

See Also ANIRNG, INFNC, JOY, JOYA, JOYAA, JOYAD, JOYADA, JOYAXH,
JOYAXL, JOYCDB, JOYEDB, JOYVH, JOYVL, JOYZ, LIMFNC

TheJOYCTRcommand defines, for the specified analog input(s), the voltage to be considered as the zero-
velocity center (usually associated with leaving the joystick in the resting position). Default is OV. The zero-
velocity range about the center is determined by@hCDBcommand. As an alternative to th@YCTR

command, you could use theYZcommandNOTE: Executing thedOYCTRcommand before thEDYAXH
command will cause an errof{PUT(S) NOT DEFINED AS JOYSTICK INPUT 7).

Example: Refer to the joystick mode enable (JOY) command example.

JOYEDB Joystick End Deadband

Type Joystick Product Rev
Syntax <I><@><a>JOYEDB<.i><=r> 6K 5.0
Units i = I/O location for the analog input on brick B (see page 6)

r =volts
Range i=1-32

r=-10.00 - +10.00 (depending on ANIRNG setting)
Default 0.1

Response 1JOYEDB.1 *1JOYCTR.1=0.1

See Also ANIRNG, INFNC, JOY, JOYA, JOYAA, JOYAD, JOYADA, JOYAXH,
JOYAXL, JOYCDB, JOYCTR, JOYVH, JOYVL, JOYZ, LIMFNC

The JOYEDBcommand defines, for the specified analog input(s), the voltage offset (from the -10V & +10V
endpoints) at which maximum velocity occurs. This command is useful if your joystick does not reach either limit
of the voltage range (-10.00V to+10.00V). The default setting is 0.1V, creating a maximum voltage range of -9.9V
to +9.9V.NOTE: Executing theJOYEDBcommand before thBDYAXHcommand will cause an erroiPUT(S)

NOT DEFINED AS JOYSTICK INPUT).

Example: Refer to the joystick mode enable (JOY) command example.

Command Descriptions 145

JOYVH Joystick Velocity — Velocity Select Input High

Type Joystick Product Rev
Syntax <I><@><a>JOYVH<r>,<r>,<r>,<r>,<r> <r>,<r>,<r> 6K 5.0
Units r = units/sec
Range Stepper Axes: 0.00000-2,048,000 (max. depends on SCLV& PULSE)

Servo Axes: 0.00000-6,500,000 (max. depends on SCLV)
Default 0.5000

Response JOYVH: *JOYVH0.5000,0.5000,0.5000,0.5000 ...
1JOYVH: *1JOYVH0.5000

See Also [IN], INENC, JOY, JOYA, JOYAA, JOYAD, JOYADA, JOYAXH, JOYAXL,
JOYCDB, JOYCTR, JOYEDB, JOYVL, JOYZ, [LIM], LIMFNC, PULSE.
SCALE, SCLV, TIN, TLIM

The Joystick Velocity HighJOYvH command specifies the maximum velocity that can be obtained at full
deflection during joystick mode, with the Joystick Velocity Select input open (high). The Joystick Velocity
Select input function is defined with theé=NCi-O command or theIMFNCi-O command. If the Velocity
Select input is not used, joystick motion always useg@he/Hvelocity.

NOTE: The data fields<>,<r>,<r>,<r>...) represent the axesot the analog inputs

The joystick velocity must be entered prior to entering joystick mad¥) (The joystick velocity high
remains set until you change it with a subsequ@ertvHcommand. Velocities outside the valid range are
flagged as an error, with a messag@®/ALID DATA-FIELD x, wherex is the field number. When an
invalid velocity is entered the previous velocity value is retained.

UNITS OF MEASURE andSCALING : refer to page 16.

Example: Refer to the joystick mode enable (JOY) command example.

JOYVL Joystick Velocity — Velocity Select Input Low
Type Joystick Product Rev
Syntax <I><@><a>JOYVL<r>,<r>,<r>,<r> <r>,<r><r>,<r> 6K 5.0
Units r = units/sec
Range Stepper Axes: 0.00000-2,048,000 (max. depends on SCLV& PULSE)

Servo Axes: 0.00000-6,500,000 (max. depends on SCLV)
Default 0.2000

Response JOYVL: *JOYVL0.2000,0.2000,0.2000,0.2000 ...
1JOYVL: *1JOYVLO0.2000

See Also [IN], INENC, JOY, JOYA, JOYAA, JOYAD, JOYADA, JOYAXH, JOYAXL,
JOYCDB, JOYCTR, JOYEDB, JOYVH, JOYZ, [LIM], LIMFNC, PULSE.
SCALE, SCLV, TIN, TLIM

The Joystick Velocity LowJOYVL) command specifies the maximum velocity that can be obtained at full
deflection during joystick mode, with the Joystick Velocity Select input closed (low). The Joystick Velocity
Select input function is defined with theé=NCi-O command or theIMFNCi-O command. If the Velocity
Select input is not used, joystick motion always useg@he/Hvelocity.

NOTE: The data fields<>,<r>,<r>,<r>...) represent the axesot the analog channels

The joystick velocity must be entered prior to entering joystick mao¥) (The joystick velocity low
remains set until you change it with a subsequoentvL command. Velocities outside the valid range are
flagged as an error, with a messag@®/ALID DATA-FIELD x, wherex is the field number. When an
invalid velocity is entered the previous velocity value is retained.

UNITS OF MEASURE andSCALING : refer to page 16.

Example: Refer to the joystick mode enable (JOY) command example.

146 6K Series Command Reference

JOYZ Joystick Zero

Type Joystick Product Rev
Syntax <I><@>JOYZ<.i><=b> 6K 50
(multiple inputs per brick may be configured at one time)
Units B = 1/O brick number
i = Location of the analog input on I/O brick (see page 6)
b = enable bit
Range B=1-8
i=1-32
b = 0 (don't zero), 1 (zero), or X (don't change)
Default n/a
Response n/a

See Also ANIRNG, JOY, JOYA, JOYAA, JOYAD, JOYADA, JOYAXH, JOYAXL,
JOYCDB, JOYCTR, JOYEDB, JOYVH, JOYVL

The Joystick ZeroJOY2 command defines the voltage when the joystick is at rest to be the zero-velocity
center. Simply leave the joystick in its resting position and issierZ command to define the current

voltage of the respective analog inputs as the zero-velocity center. The zero-velocity range about the center
is determined by thaOYCDBcommand.

TheJOYzcommand is an alternative to using flley CTRcommand.

Example:
1INFNC7-M ; Assign Joystick Release f(n) to brick 1, input 7
1INFNCS8-0O ; Assign Joystick Velocity Select f(n) to brick 1, input 8

JOYAXH1-17,1-18 ; Assign analog input 17 to control axis 1,
; Assign analog input 18 to control axis 2

JOYVH10,10 ; Max. velocity on axes 1 & 2 is 10 units/sec when the

; Velocity Select input (1IN.7) is high (sinking current)
JOYVL1,1 ; Max. velocity on axes 1 & 2 is 1 unit/sec when the

; Velocity Select input (1IN.7) is low (not sinking current)
JOYA100,100 ; Set joystick accel to 100 units/sec/sec on both axes
JOYAD100,100 ; Set joystick decel to 100 units/sec/sec on both axes
¥ COMMANDS TO SET UP USABLE VOLTAGE: *xx#iikiix
1J0YZ.17=1 ; These command are executed while the joystick is at rest. They
1J0YZ.18=1 ; set the current voltage on analog input 17 (controls axis 1)

; and input 18 (controls axis 2) as the zero-velocity center.
; Set center deadband to compensate for the fact that
; when the joystick is at rest, the voltage received on

; both analog inputs may fluctuate +/- 0.5V on either

; side of the zero-velocity center established with JOYZ.

1JOYCDB.1

7=0.5
1JOYCDB.18=0.5

1JOYEDB.17=2.0 ; Set end deadband to compensate for the fact that the

1JOYEDB.18=2.0 ; joystick can produce only -8.0V to +8.0V.

JOY11 ; Enable joystick mode for axes 1 & 2

JUMP Jump to a Program or Label (and do not return)

Type Program or Subroutine Definition or Program Flow Control Product Rev
Syntax <I>JUMP<t> 6K 5.0
Units t = text (name of program/label)

Range Text name of 6 characters or less

Default n/a

Response n/a

See Also $, DEF, DEL, END, GOSUB, GOTO, IF, L, LN, NIF, NWHILE, REPEAT,
RUN, UNTIL, WHILE

The JuMPcommand branches to the corresponding program name or label when executed. A program or
label name consists of 6 or fewer alpha-numeric characters.

All nestedIF s, WHILES, andREPEAT, loops, and subroutines are cleared; thus, the program or label that
the JUMPInitiates willnot return control to the line after ti&MP when the program completes operation.
Instead, the program will end.

If an invalid program or label name is entered,Xt®Pwill be ignored, and processing will continue with
the line after thaUMP

Command Descriptions 147

Example

; * In this example, the program place is executed and calls the pick *

; * subroutine. The pick subroutine then initiates motion on axes 1 & 2 *

; * (G0O1100) and jumps to the program called load to initiate motion on *

; * axis 3 (GO001). Then, because the JUMP command cleared the pick *
; * subroutine, program execution is terminated instead of returning to *

; * the place program. *

DEF pick ; Begin definition of subroutine named pick

GO1100 ; Initiate motion on axes 1 and 2

JUMP load ; Jump to the program named load

END ; End subroutine definition

DEF load ; Begin definition of program named load

GO001 ; Initiate motion on axis 3

END ; End program definition

DEF place ; Begin definition of subroutine named place

GOSUB pick ; Gosub to subroutine named pick

G01000 ; Initiate motion on axis 1

END ; End subroutine definition

RUN place ; Execute program named place

K Kill Motion

Type Motion Product Rev
Syntax <I><@>K<bh> 6K 5.0
Units n/a

Range b =0 (don't kill), 1 (kill), or X (don't change)

Default n/a

Response IK No response, instead motion is killed on all axes

See Also DRFLVL, FOLK, GO, <CTRL>K, KDRIVE, LHAD, LHADA, S, SCANP, TAS

The Kill Motion (K) command instructs the motor to stop motion on the specified axes. If the)Kill (
command is used without any argumemrt®(!K), motion will be stopped on all axes, and program
execution will be terminated. When the Kifl)(command is used with ones in the command fields (e.qg.,
K@11g), motion will be stopped on the axes specified with ohgsad program execution will continue
with the next command. The Kill command will be used most frequently with the immediate command
delimiter in front of the commandk(). By using the immediate KillK) command, motion will be stopped
at the time the command is received.

Motion is stopped at the rate set with théaDAandLHADcommands. If you want the drive to be disabled
upon executing & or 'K command, enable thaisable Dive on Killmode with th&KDRIVE command.
CAUTION : In theKDRIVE mode, & or 'K command immediately shuts down the drive, allowing the load
to free wheeto a stop.

If the axis is involved in a PLC Scan (initiated wBANR, aK command will clear the scan.

Example:

A2,2,25000,25000 ; Set acceleration to 2, 2, 25000, and 25000 units/sec/sec
;foraxes 1,2,3and 4

AD2,2,25000,25000 ; Set deceleration to 2, 2, 25000, and 25000 units/sec/sec
;foraxes 1,2,3and 4

v1,1,1,2 ; Set velocity to 1, 1, 1, and 2 units/sec for axes 1, 2, 3
; and 4, respectively
@D10 : Set distance on all axes to 10 units
@GO01 ; Initiate motion on all axes -- motion begins.
; After a short period the Kill command is sent.
IK ; Kill motion on all axes (steppers stop instantaneously,

; servos stop at the LHADA/LHAD decel)

148 6K Series Command Reference

<CTRL>K Kill Motion

Type Motion Product Rev
Syntax <CTRL>K 6K 5.0
Units n/a

Range n/a

Default n/a

Response <CTRL>K: Noresponse, instead motion is killed on all axes

See Also GO, K, KDRIVE, LHAD, LHADA, S

The Kill Motion (<ctrl>K) command instructs the controller to stop motion on all axes, and terminate
program execution. In essence, fhel>K command is an immediate kilk() command.

Motion is stopped at the rate set with theaDAandLHADcommands. If th®isable Dive on Killmode is
enabled with th&DRIVE command, &ctrl>K command immediately shuts down the drive, allowing the
load tofree wheeto a stop.

Example:

A2,2,25000,25000 ; Sets acceleration to 2, 2, 25000, and 25000 units/sec/sec
;foraxes 1,2,3and 4

AD2,2,25000,25000 ; Sets deceleration to 2, 2, 25000, and 25000 units/sec/sec
;foraxes 1,2, 3and 4

v1,1,1,2 ; Sets velocity to 1, 1, 1, and 2 units/sec for axes 1, 2, 3
; & 4, respectively
@D10 : Set distance on all axes to 10 units
@GO01 ; Initiate motion on all axes -- motion begins.
; After a short period the Kill command is sent.
<CTRL>K ; Kill motion on all axes (steppers stop instantaneously,

; servos stop at the LHADA/LHAD deceleration)

KDRIVE Disable Drive on Kill

Type Controller Configuration Product Rev
Syntax <I><@><a>KDRIVE 6K 50
Units b = enable bit

Range 0 (disable), 1 (enable), or X (don't change) (applicable to servo
Default 0 axes only)

Response KDRIVE: *KDRIVEO000_0000
1KDRIVE: *KDRIVEO

See Also DRIVE, INFNC, K, <ctrl>K, LIMFNC

If you enable the Disable Drive on Kill functiokRIVEL), then when a kill command (K , or

<ctrl>K) is processed or a kill inputNFNCi-C or LIMFNCI-C) is activated, the drive will be disabled
immediately; this cuts all control to the motor and allows the load to freewheel to a stop (although steppers
have some detent torque).

When the drive is disabled (shutdown/de-energized):

e Stepper AxisShutdown+ sources current arghutdown- sinks current.
» Servo AXisS:SHTNO relay output is disconnected frarom, and thesHTNC relay output is connected
to com.

To re-enable the drive, issue thBIVE1 command to the affect axis or axes.

If you leave th&KDRIVE command in its default statg, (disabled), the kill function behaves in its normal
manner, leaving the drive enabled.

Example:
KDRIVE11l ; Set axes 1 & 2 to de-energize the drive during a Kill
K ; Kill is performed and drives are de-energized

Command Descriptions 149

L Loop

Type Loops; Program Flow Control Product Rev
Syntax <I>L<i> 6K 5.0
Units i = number of times to loop

Range 0-999,999,999

Default 0

Response L: No response; instead, this has the same function as LO

See Also LN, LX, PLN, PLOOP

When you combine the Loop)(command with the end of loopN) command, all of the commands
betweerL andLN will be repeated the number of times indicated by «i>If = @ or if no argument is
specified, all the commands betweeandLN will be repeated indefinitely. The loop can be stopped by
issuing a Terminate LoopLK) command, an immediate Kill) command, or an immediate Halt
("HALT) command.

The loop can be paused by issuing an immediate P@&sedommand or a StopS) command with
COMEX®nabled. The loop can then be resumed with the immediate Con@nwohmand. You may nest
loops up to 16 levels deep.

NOTE: Be careful about performing@Thetween thé andLN commands. Branching to a different
location within the same program will cause the next loop encountered to be nested within the
previous loop, unless am command has already been encountered.

Example:
L5 ; Repeat the commands between L and LN five times
GO1110 ; Start motion on axes 1, 2, and 3, axis 4 will remain motionless
LN ; End loop
LH Hardware End-of-Travel Limit — Enable Checking
Type Limit (End-of-Travel) Product Rev
Syntax <I><@><a>LH<i> <> <i> <> <i> <i> <> <i> 6K 5.0
Units n/a
Range i = 0 (disable both), 1 (disable positive-direction),
2 (disable negative-direction), or 3 (enable both)
Default 3
Response LH: *LH3,3,3,3,3,3,3,3
1LH: *1LH3
See Also [AS],[ER], ERROR, INFNC, INLVL, LHAD, LHADA, [LIM], LIMEN,
LIMENC, LIMLVL, LS, LSAD, LSADA, LSNEG, LSPOS, TAS, TER, TLIM,
TSTAT

Use theLH command to enable or disable the inputs defined as end-of-travel limit inputs. This pertains to
onboard limit inputs defined with theMFNCi-aR andLIMFNCi-aS commands (this is the factory default
configuration for limits), as well as to onboard triggers and external digital inputs defined witiFtt@3-aR
andINFNCi-aS commands.

Command Syntax:
LH<i> <i> <>, <> <i>,<i> <i>,<i>

Axis 1 J
Axis 2

Axis 3
Axis 4

With limits disabled, motion will not be restricted. When a specific limit is enabled (positive- or negative-
direction), and the limit wiring for the enabled limit is a physical open circuit, motion will be restricted
(assuming.HLVL@or INLVL@). TheLHLVL controls the active level for onboard limit inputs, and the

INLVL command controls the active level for onboard triggers and external digital inputs.

Disable negative-direction limit; Disable positive-direction limit: i =0
Enable negative-direction limit; Disable positive-direction limit: i =1
Disable negative-direction limit; Enable positive-direction limit: i =2
Enable negative-direction limit; Enable positive-direction limit: i =3

150 6K Series Command Reference

If an “end-of-travel limit” input is redefined with a different function (i.e., BMFNCI-R , LIMFNCI-S ,
INFNCi-R or INFNCI-S), it is no longer controlled by thed command. If the input is a limit (on the
“LIMITS/HOME” connector), use thelMEN command; if the input is a trigger or external digital input, use
theINEN command.

NOTE

If a hard limit is encountered while limits are enabled, motion must occur in the opposite direction
after correcting the limit condition (resetting the switch); then you can make a move in the original
direction. If limits are disabled, you are free to make a move in either direction.

Example:

LH3,3 ; Enable limits on axes 1 and 2

LHAD100,100 ; Set hard limit decel to 100 units/sec/sec on axes 1 and 2

LIMLVLOOx00 ; Active low hard limits for axes 1 & 2

A10,12 ; Set acceleration to 10 and 12 units/sec/sec for axes 1 and 2

Vi1 ; Set velocity to 1 unit/sec for axes 1 and 2

D100000,1000 ; Set distance to 100000 and 1000 units for axes 1 and 2

GO11XX ; Initiate motion on axes 1 and 2

LHAD Hard Limit Deceleration

Type Limit (End-of-Travel) Product Rev
Syntax <I><@><a>LHAD<r><r>,<r>,<r><r><r> <r> <r> 6K 5.0
Units I = units/sec/sec

Range 0.00001-39,999,998 (depending on the scaling factor)

Default 100.0000

Response LHAD: *LHAD100.0000,100.0000,100.0000,100.0000 ...
1LHAD: *1LHAD100.0000

See Also DRES, DRFLVL, INFNC, K, LH, LHADA, [LIM], LIMFNC, LIMLVL,
LS, LSAD, LSADA, LSNEG, LSPOS, SCALE, SCLA

The Hard Limit DeceleratiorLHAD command determines the value at which to decelerate after an end-of-
travel limit has been hit. This applies to the on-board dedicated limits, as well as to any inputs configured as
end-of-travel limits INFNCi-R or INFNCi-S).

| UNITS OF MEASURE andSCALING : refer to page 16.

When a drive fault, a Kill command,('K , or~K), or a Kill input (NFNCi-C orLIMFNCI-C) occurs,
motion is stopped at the rate set with tka\DandLHADAcommands. If th®isable Drive on Killmode is
enabled KDRIVELY), the drive is immediately shut down upon a Kill command or input and allows the
motor/load tadreewheelto a stop without a controlled deceleration.

The hard limit deceleration remains set until you change it with a subsequent hard limit deceleration
command. Decelerations outside the valid range are flagged as an error, with a riggsage DATA-
FIELD x, wherex is the field number. When an invalid deceleration is entered the previous deceleration
value is retained.

Example: Refer to the hard limit enable (LH) command example.

LHADA Hard Limit Average Deceleration

Type Motion (S-Curve) Product Rev
Syntax <I><@><a>LHADAKI>,<r>,<r>,<r>,<r> <r>,<r>,<r> 6K 5.0
Units r = units/sec/sec

Range 0.00001-39,999,998 (depending on the scaling factor)

Default 100.000 (default is a constant deceleration ramp, where LHADA

tracks LHAD)
Response LHADA: *LHADA100.0000,100.000,100.000,100.000 ...
1LHADA: *1LHADA100.0000

See Also AD, ADA, INFNC, K, LHAD, LIMFNC, LIMLVL, SCALE, SCLA

The Hard Limit Average DeceleratiobHADA command allows you to specify the average deceleration for
an S-curve deceleration profile when a limit is hit. S-curve profiling provides smoother motion control by

Command Descriptions 151

reducing the rate of change in deceleration; this decel rate of change is krjerknRefer to page 13 for
details on S-curve profiling.

Acceleration scaling3CLA) affectsLHADAthe same as it does forAD Refer to page 16 for details on scaling.

Example:
LHAD10,10,10,10
LHADAS5,5,7.5,10

: Set the maximum deceleration of axes 1-4
; Set the average deceleration of axes 1-4

[LIM] Limit Status

Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [IN], INDEB, INFNC, LH, LIMEN, LIMENC, LIMLVL, TLIM

The Limit Statusl(IM) operator is used to assign the limit status bits to a binary variable, or to make a
comparison against a binary or hexadecimal value. To make a comparison against a binary value, the letter b
(b or B) must be placed in front of the value. The binary value itself must only contain ones, zeros, or Xs (1,
d, X, x). To make a comparison against a hexadecimal value, the letter h (h or H) must be placed in front of
the value. The hexadecimal value itself must only contain the letters A through F, or the numbers @ through 9.

LIM does not depict the status of trigger inputs or external digital inputs assigned an end-of-travel or home
limit function (INFNCI-R , INFNCi-S , or INFNCI-T). For such inputs, you must use tReoperator.

Syntax: VARBn=LIM wheren is the binary variable number,

or LIM can be used in an expression suclFr@sM=b1XX1) , orlIF(LIM=h7)

TheLIM value is the debounced version of the limits status (debounced wihNbeBvalue). Axis status
(AS) bits 15 and 16 reports the non-debounced version of the end-of-travel limits.

There are 3 limit inputs per axis, home limit, positive-direction, and negative-direction end-of-travel limits.
Each is available for assignment or comparison. If it is desired to assign only one limit input value to a
binary variable, instead of the status of all the limit inputs, the bit selegpérator can be used. The bit
select, in conjunction with the limit input number, is used to specify a specific limit input. For example,
VARB1=LIM.4 assigns limit input 4 (positive-direction limit for axis 2) to binary variable 1.

Format for binary assignment: Pbbbbbbbbbbbbbbbbbbbbbbb.
Bit #1 Bit #24

LIM bit Function LIM bit Function

1 Axis 1 - positive-direction Limit 13 Axis 5 - positive-direction Limit
2 Axis 1 - negative-direction Limit 14 Axis 5 - negative-direction Limit
3 Axis 1 - Home Limit 15 Axis 5 - Home Limit

4 Axis 2 - positive-direction Limit 16 Axis 6 - positive-direction Limit
5 Axis 2 - negative-direction Limit 17 AXxis 6 - negative-direction Limit
6 Axis 2 - Home Limit 18 Axis 6 - Home Limit

7 Axis 3 - Positive-direction Limit 19 Axis 7 - Positive-direction Limit
8 Axis 3 - Negative-direction Limit 20 Axis 7 - Negative-direction Limit
9 Axis 3 - Home Limit 21 Axis 7 - Home Limit

10 AXxis 4 - Positive-direction Limit 22 Axis 8 - Positive-direction Limit
11 Axis 4 - Negative-direction Limit 23 Axis 8 - Negative-direction Limit
12 AXxis 4 - Home Limit 24 Axis 8 - Home Limit

Example:

IF(LIM=b11X1)

TLIM
NIF

; If both limit inputs on axis 1 and the positive-direction
; limit input on axis 2 are active, then do the statements

: between the IF and NIF

; Transfer limit status
: End IF statement

152 6K Series Command Reference

LIMEN Limit Input Enable

Type Inputs; Program Debug Tool Product Rev
Syntax <ISLIMEN<d><d><d> (one <d> for each limit input) 6K 5.0
Units n/a
Range d = 0 (disable, leave off), 1 (disable, leave on),
E (enable), or X (don't change)
Default E
Response LIMEN: *LIMENEEE_EEE_EEE_EEE_EEE_EEE_EEE_EEE
LIMEN.3 *E
See Also HOMLVL, INEN, LH, [LIM], LIMFNC, LIMLVL, TIO, TLIM

TheLIMEN command allows you to simulate the activation of specific limit inputs (without actually wiring
the inputs to the controller) by disabling them and setting them to a specific level (ON or OFF). This is
useful for testing and debugging your program (see program example bal&N. may only be used for
onboard limit inputs (found on theiMITS/HOME” connector), not for triggers or external digital inputs. The
default state is enableH)(requiring external wiring to exercise their respectif=NC functions.

Command Syntax:
Axils 1 Axils 2 Axils 3 Axils 4

LlMEl\l<d><d><d>”<d><d><d>2d><d><d><”d><d><d> '

Positive direction end-of-travel limit, axis 1 J
Negative direction end-of-travel limit, axis 1

Home limit, axis 1

Positive direction end-of-travel limit, axis 2

Negative direction end-of-travel limit, axis 2

Home limit, axis 2

TheLH command is required to enable checking the state of the end-of-travel limitdNiFNCI-R , or
LIMFNCI-S); for exampleLH1 is required to detect the occurrence of the hardware limit activation, as
reported with axis status bits 15 and 16 (B&8F, TAS, AS). The defaultH condition is enabled_(1).

Input bit assignments for théeMEN command vary by product, because of the number of limit inputs
available. The input bit patterns for onboard and external I/O bricks are explained on page 6 of this document.

Example:

DEL tsting ; Delete program called "tsting”

DEF tsting ; Begin definition of program called "tsting"

LIMFNC10-E ; Define hardware end-of-travel limit #10 (normally defined

; as the positive direction end-of-travel limit for axis 4)
; as a "pause/resume" input.
COMEXR1 ; Activating the pause/resume input will pause command and
; motion execution, de-activating the pause/resume input
: will resume command and motion execution.

MC111 ; Set axes 1-3 to continuous motion profiling mode
A15,15,15 : Set acceleration on axes 1-3 to 15 units/sec/sec
AD5,5,5 : Set deceleration on axes 1-3 to 5 units/sec/sec
V4,44 ; Set velocity on axes 1-3 to 4 revs/sec

GO111 : Initiate continuous motion on axes 1-3

END ; End definition of program called "tsting"

; While this program is running and motion is in progress, you can send

; immediate LIMEN commands to simulate the function of the "pause/resume”
; input as follows:

;1. Start the program by sending the RUN TSTING command to the controller.
; Axes 1-3 will start moving, all using the same continuous motion profile.
;2. Send the 'LIMEN.10=1 command to the controller. This disables the

; "pauselresume" input but simulates its activation. Motion and

; program execution will pause.

;3. Send the 'LIMEN.10=0 command to the controller. This disables the

; "pauselresume" input but simulates its de-activation. Motion and

; program execution will resume.

;4. Send the 'LIMEN.10=E command to the controller. This re-enables the

; "pauselresume" input for normal operation with an external switch

; Or sensor.

;5. To stop this experiment, send the !K command to the controller.

; This "kills" program execution and motion on all three axes.

Command Descriptions 153

LIMFNC Input Function for Limit Inputs

Type Inputs; Limits (end of travel); Homing Product Rev
Syntax <I>LIMFNC<i>-<<a>c> 6K 50
Units i = input # on the “LIMITS/HOME” connector (see page 6);

a = axis # (or program # for function P);
¢ = function identifier letter
Range i = 1-24 (product dependent); a = 1-8 (product dependent);
c=AT
Default A
Response LIMENC: *LIMFNC1-A NO FUNCTION - STATUS OFF
(repeated for all onboard limit inputs)

See Also COMEXR, COMEXS, [ER], ERROR, INDEB, INFNC, INPLC, INSELP,
INSTW, INTHW, JOY, JOYAXH, JOYAXL, JOYVH, JOYVL, K, KDRIVE,
LH, [LIM], LIMEN, LIMFNC, LIMLVL, PSET, [SS], TER, TIN,
TRGFN, TRGLOT, [TRIG], TSS, TSTAT, TTRIG

The Limit Input Function{IMFNC) command defines the function of each individual limit input found on

the “LIMITS/IHOME” connector(s). The factory default configuration is that each dedicated hardware end-of-
travel and home limit is assigned to its respedtiM=NC function. That is, axis 1 positive limit is assigned

to LIMFNC1-1R, axis 1 negative limit is assignedUFNC2-1S, axis 1 home limit is assigned to

LIMFNC3-1T, etc. A limit of 32 limit inputs may be assigneFNC functions; this excludes functioas
(“general-purpose”) ang, S, andT (end-of-travel and home limit input functions).

Input debounce By default, the limit inputs are not debounced. However, when a limit input is assigned a
function other than its respectit®MFNC function, it is debounced with the Input Debounce TirR®EB)

command setting for 1/O brick zero (default is 4 ms). INiZEB debounce is the period of time that the

input must be held in a certain state before the controller recognizes it. This directly affects the rate at which
the inputs can change state and be recognized. If a limit is once again returned to its résdesttve

function, the debounce is removed.

Input bit assignments vary by product.The number of limits inputs and axes available depends on your
product (each axis has two end-of-travel limits and one home limit) — see page 6 for detalils.

Input scan rate: The limit inputs are scanned once ggstem updaté milliseconds).

Enabling & disabling inputs. Limit inputs assigned an end-of-travel input function (funct®osS
described below) are enabled/disabled withLtheommand — the default is enabled. Limit input functions
may be overridden with theMEN command — the default is enabled (no override).

Multitasking . If the LIMFNC command does not include the task identifigmprefix, the function affects
the task that executes theFNC command. The functions that may be directed to a taskosdtie:C, D

(without an axis specifiedE, F, andP (e.g.,2%LIMFNC3-F assigns limit input 3 as a user fault input for
task 2). Multiple tasks may share the same input, but the input may only be assigned one function.

Identifier Function Description

A No special function (general-purpose input). Status can be used with the LIM
assignment/comparison operator.

B BCD Program Select. BCD input assignment to programs, lowest numbered input is least
significant bit (LSB). BCD values for inputs are as follows:

BCD Value
Least Significant Bit Value 1

Most Significant Bit Value 100

Note: If fewer inputs than shown above are defined to be Program Select Inputs, then the highest input number
defined as a Program Select Input is the most significant bit.

An input defined as a BCD Program Select Input will not function until the INSELP command has
been enabled.

154 6K Series Command Reference

Identifier

Function Description

C

<a>D

G,H

aJ

akK

aL

Kill. Kills motion on all axes and halts all command processing (refer to K and KDRIVE
command descriptions for further details on the kill function). This is an edge detection function
and is not intended to inhibit motion. To inhibit motion, use the Pause/Resume function
(LIMFNCI-E). When enabled with the ERRORommand, bit #6 of the TERand ER commands will
report the kill status.

Stop. Stops motion. Axis number is optional; if no axis number is specified, motion is stopped on
all axes. If COMEX$s set to zero (COMEXS@program execution will be terminated. If COMEX$
set to 1 (COMEXS)L command processing will continue. With COMEXSet to 2 (COMEXSR
program execution is terminated, but the INSELP value is retained. Motion deceleration during
the stop is controlled by the AD& ADAcommands. If error bit #8 is enabled (e.g., ERROR.8-1),
activating a Stop input will set the error bit and cause a branch to the ERRORRBrogram.

Pause/Continue. If COMEXRs disabled (COMEXR@then only command execution pauses, not
motion. With COMEXRnabled (COMEXR)1 both command and motion execution are paused.
After motion stops, you can release the input or issue a continue (!C) command to resume
command processing (and motion of in COMEXRinode).

User Fault. Refer to the ERRORommand. If error bit #7 is enabled (e.g., ERROR.7-1),
activating a User Fault input will set the error bit and cause a branch to the ERRORRrogram.
CAUTION: Activating the user fault input sends an IK command to the controller, “killing” motion
on all axes (refer to the K command description for ramifications).

Reserved

Alarm Event - Will cause the 6K controller to set an Alarm Event in the Communications Server
over the Ethernet interface. You must first enable the Alarm checking bit for this input-driven
alarm (INTHW.23-1). For details on using alarms, refer to the 6K Series Programmer’s Guide.

JOG positive-direction - Will jog the axis specified in a positive-direction. The JOGcommand
must be enabled for this function to work. Axis number required

JOG negative-direction. Will jog the axis specified in a negative-direction. The JOGcommand
must be enabled for this function to work. Axis number required

JOG Speed Select. Selects the high or low velocity range while jogging. If the input is active, the
high jog velocity range will be selected. Axis number is optional. If no axis number is designated,
it defaults to all axes.

Joystick Release. Signals the controller to end joystick operation and resume program
execution with the next statement in your program. When the input is open (high), the joystick
mode is disabled (joystick mode can be enabled only if the input is closed, and only with the JOY
command). When the input is closed (low), joystick mode can be enabled with the JOY
command. The process of using Joystick mode is:

1. Assign the "Joystick Release" input function to a programmable input.

2. At the appropriate place in the program, enable joystick control of motion (with the JOY
command). (Joystick mode cannot be enabled unless the "Joystick Release" input is closed.)
When the JOY command enables joystick mode for the affect axes, program execution stops
on those axes (assuming the Continuous Command Execution Mode is disabled with the
COMEXCgbmmand).

3. Use the joystick to move the axes as required.
4. When you are finished using the joystick, open the "Joystick Release" input to disable the

joystick mode. This allows program execution to resume with the next statement after the
initial JOY command that started the joystick mode.

Joystick Axis Select. Allows you to control two pairs of axes with one joystick. Use the JOYAXH
and JOYAXLcommands to assign analog inputs to control specific axes. Opening the Axis Select
input (input is high) selects the JOYAXHconfiguration. Closing the Axis Select input (input is low)
selects the JOYAXLconfiguration. NOTE: When this input is not connected, the JOYAXH
configuration is always in effect.

Command Descriptions 155

Identifier Function Description

Continued from previous page

O Joystick Velocity Select. Allows you to select the velocity for joystick motion. The JOYVHand
JOYVLcommands establish two joystick velocities. Opening the Velocity Select input (input is
high) selects the JOYVHconfiguration. Closing the Velocity Select input (input is low) selects the
JOYVL configuration. The JOYVLvelocity could be used to quickly move to a location, the JOYVH
velocity could be used for low-speed accurate positioning. NOTE: When this input is not
connected, joystick motion always uses the JOYVHvelocity setting.

iP Program Select. One to one correspondence for input vs. program number. The program
number comes from the TDIR command. The number specified before the program name is the
number to specify within this input definition. For example, in the LIMFNC1-3P command, 3 is
the program number. An input defined as a Program Select Input will not function until the
INSELP command has been enabled.

Q Program Security. Issuing the LIMFNCIi-Q command enables the Program Security feature and
assigns the Program Access function to the specified programmable input.

The program security feature denies you access to the DEF, DEL, ERASE MEMORY.IMFNC, and
INFNC commands until you activate the program access input. Being denied access to these
commands effectively restricts altering the user memory allocation. If you try to use these
commands when program security is active (program access input is not activated), you will
receive the error message *ACCESSDENIED. The LIMFNCI-Q command is not saved in battery-
backed RAM, so you may want to put it in the start-up program (STARTH.

For example, once you issue the LIMFNC10-Q command, the positive end-of-travel limit for axis
4 is assigned the program access function and access to the DEF, DEL, ERASE MEMORY
LIMFNC, and INFNC commands will be denied until you activate the input.

To regain access to these commands without the use of the program access input, you must
issue the LIMEN command to disable the program security input, make the required user
memory changes, and then issue the LIMEN command to re-enable the input. For example, if
limit input 3 is assigned as the Program Security input, use LIMEN.3=1 to disable the input and
leave it activated, make the necessary user memory changes, and then use LIMEN.3=E to re-
enable the input.

aR End-of-Travel Limit, Positive Direction . This is the factory default function for each dedicated
hardware positive-direction end-of-travel limit input found in the “LIMITS” connector(s). If a trigger
input or a digital input on an external 1/O brick is assigned this function (e.g. 2INFNC1-1R), then
change the respective limit input’s function to something else (e.g., change LIMFNC1-1R to
LIMFNC1-A). When an input is assigned this function, it is not debounced.

aS End-of-Travel Limit, Negative Direction. This is the factory default function for each dedicated
hardware negative-direction end-of-travel limit input found in the “LIMITS/HOME” connector(s). If
a trigger input or a digital input on an external I/O brick is assigned this function (e.g.
2INFNC2-1S)), then change the respective limit input’s function to something else (e.g., change
LIMFNC2-1S to LIMFNC2-A). When an input is assigned this function, it is not debounced.

aT Home Limit. This is the factory default function for each dedicated hardware home limit input
found in the “LIMITS/HOME” connector(s). If a trigger input or a digital input on an external /0
brick is assigned this function (e.g. 2INFNC3-1T), then change the respective limit input’s
function to something else (e.g., change LIMFNC3-1T to LIMFNC3-A). When an input is
assigned this function, it is not debounced.

Example:
LIMFNC10-3D ; Redefine the positive EOT input for axis 4 (limit input #10)
; to be a stop input for axis 3

156 6K Series Command Reference

LIMLVL Hardware Limit Input Active Level

Type Limit (End-of-Travel and Homing) Product Rev
Syntax <I>LIMLVL ... (see drawing below) 6Kn 5.0
Units n/a
Range b =0 (active low: requires n.c. EOT switch & n.o. home switch),
1 (active high: requires n.o. EOT switch & n.c. home switch),
or X (don't care)
Default 0

Response LIMLVL: *LIMLVLO0O_000_000_000_000_000_000_000
See Also [AS], LH, LIMEN, [LIM], LIMFNC, HOM, TAS, TLIM

Use theLIMLVL command to define the active state of all dedicated hardware end-of-travel and home limits
(found on the tIMITSIHOME” connectors). The default state is active low.

Command Syntax:
Axils 1 Axils 2 Axils 3
T 1T 1T
LIMLVL
Positive direction EOT limit, axis 1 J
Negative direction EOT limit, axis 1

Home limit, axis 1

Positive direction EOT limit, axis 2
Negative direction EOT limit, axis 2

Home limit, axis 2

Active Level Setting Required Switch Type * State LIM/TLIM Report
Active low (LIMLVLO) End-of-travel limit: N.C. Grounded — sinking current 1 (active)
This is the default setting. Home limit: N.O. (device driving the input is on)

Not Grounded — not sinking current 0 (inactive)
(device driving the input is off)

Active high (LIMLVL1) End-of-travel limit: N.O. Grounded — sinking current 0 (inactive)
Home limit: N.C. (device driving the input is on)

Not Grounded — not sinking current 1 (active)
(device driving the input is off)

* Compumotor recommends that all end-of-travel limit switches be normally-closed, because with normally-closed
limit switches the limit function (i.e., inhibit motion) is considered active when the switch contact is open or if the
wiring to the switch is broken.

Axis Status AS, TAS, andTASF) bits 15 and 16 indicate when a hardware end-of-travel limit has been
activated (i.e., invoking the “inhibit motion” function).

Wiring instructions and specifications for the limit inputs are provided in your 6K prodostalation
Guide

Command Descriptions 157

LN End of Loop

Type Loops or Program Flow Control Product Rev
Syntax <I>LN 6K 5.0
Units n/a

Range n/a

Default n/a

Response Noresponse; used in conjunction with the L command

See Also L, LX

The End of Loopl{N) command marks the end of a loop. You must use this command in conjunction with
the Loop () command. All buffered commands that you enter between éimelLN commands are

executed as many times as the number that you enter followingctiramand. You may nest loops up to

16 levels dee@OTE: Be careful about performing@Thetween thé andLN commands. Branching to

a different location within the same program will cause the next loop encountered to be nested within the
previous loop, unless am command has already been encountered.

Example:
L5 ; Repeat the commands between L and LN five times
GO1110 ; Start motion on axes 1, 2, and 3, axis 4 will remain motionless
LN ; End loop
LOCK Lock Resource to Task
Type Multi-tasking Product Rev
Syntax <I>LOCK«i,i> 6K 5.0
Units 1sti = resource number

2nd i = 1 (lock the resource) or 0 (unlock the resource)
Range 1sti=1 (COML1 port), 2 (COM2 port),

or 3 (task swapping)

2nd i = 1 (lock the resource) or 0 (unlock the resource)
Default 0 (= not locked)
Response LOCK (see example below)

See Also [, 1, DRPCHK, E, PORT, TSKTRN

Use theL.OCKcommand to make a resource available only to the specified taskOTikable resources are:

+ COM1 — the Rs-232" communication port or theETHERNET” communication port

* COM2 — the Rs-232/485" communication port

» Task Swapping — When task swapping is locked to a specific task, statements in all other tasks will
not be executed until the task swapping is again unlocked.

To check theeOCKstatus of all available resources, enterltheKcommand without field value. Below is
an example response:

*LOCK1,0 COMPORT 1 -UNLOCKED
*LOCK2,0 COM PORT 2 - UNLOCKED
*LOCK3,0 TASK SWAPPING - UNLOCKED

NOTES

« If one task attempts to lock a resource in a different task (e.g., if Taskl attempts to execute the
2%LOCK1,1command), the controller will response with an error message (“ALTERNATE TASK
NOT ALLOWED).

« If task “A” attempts to lock a resource that is already locked to task “B”, command processing in
task “A” will pause on the LOCKcommand until task “B” unlocks the resource, at which time task
“B” will be able to lock the resource and continue processing.

» Aresource may be locked by a task only while that task is executing a program. If program
execution is terminated for any reason (e.g., stop, kill, limit, fault, or just reaching the ENDof a
program), all resources locked by that task will become unlocked.

158 6K Series Command Reference

Example:

LOCK1,1 ; Ensure exclusive COM1 access for the task executing
; this program

WRITE"travel is" ; First part of output string

WRVAR1 : Numeric value of travel
WRITE"inches.” ; Finish complete string
LOCK1,0 : Allow other tasks access to COM1
LS Soft Limit Enable
Type Limit (End-of-Travel) Product Rev
Syntax <I><@><a>LS<i> <i> <i> <i> <i> <i> <i> <i> 6K 50
Units n/a
Range i = 0 (disable both), 1 (disable positive-direction),
2 (disable negative-direction) or 3 (enable both)
Default 0
Response LS: *LS0,0,0,0,0,0,0,0
1LS: *1LSO
See Also [AS], [ER], LSAD, LSADA, LSNEG, LSPOS, TAS, TER, TSTAT

The Soft Limit Enablel(S) command determines the status of the programmable soft move distance limits.
With soft limits disabled, motion will not be restricted. After a soft limit absolute position has been
programmedl(SPOSandLSNEQG, and the soft limit is enableds), a move will be restricted upon reaching
the programmed soft limit absolute position. The rate at which motion is decelerated to a stop upon

reaching a soft limit is determined by th@ADandLSADAcommands.

Disable negative- and positive-direction soft limits i =0
Enable negative-direction, disable positive-direction soft limit =1
Enable positive-direction, disable negative-direction soft limit =2
Enable negative- and positive-direction soft limits i =3

NOTE: The controller maintains an absolute count, even though you may be programming in the

incremental modeMA@. The soft limits will also function in incremental modea@ or

continuous modeMCJ. The soft limit position references the commanded position, not the

position as measured by the feedback device (e.g., encoder).

NOTE |

If a soft limit is encountered while limits are enabled, motion must occur in the opposite direction
before a move in the original direction is allowed. You cannot use the PSETcommand to clear the
soft limit condition. If limits are disabled, you are free to make a move in either direction.

Example:
LSPOS500000,50000 ; Set soft limit positive-direction absolute positions to be
; 500000 units for axis 1, 50000 units for axis 2
; (Soft limits are always absolute)
LSNEG-500000,-50000 ; Set soft limit negative-direction absolute positions to
; be -500000 units for axis 1, -50000 units for axis 2
; (Soft limits are always absolute)

LS3,3 ; Soft limits are enabled on axes 1 and 2

LSAD100,100 ; Soft limit decel set to 100 units/sec/sec on axes 1 and 2
PSETO0,0,0,0 ; Set absolute position on all axes to 0

A10,12 ; Set accel to 10 and 12 units/sec/sec for axes 1 and 2
V1,1 ; Set velocity to 1 unit/sec for axes 1 and 2
D100000,1000 ; Set distance to 100000 and 1000 units for axes 1 and 2
GO11XX ; Initiate motion on axes 1 and 2

Command Descriptions

159

LSAD Soft Limit Deceleration

Type Limit (End-of-Travel) Product Rev
Syntax <I><@><a>LSAD<r>,<r>,<r><r> <r> <r>,<r><r> 6K 5.0
Units r = units/sec/sec

Range 0.00001-39,999,998 (depending on the scaling factor)

Default 100.0000

Response LSAD: *LSAD100.0000,100.0000,100.0000,100.0000 ...
1LSAD: *1LSAD100.0000

See Also DRES, LHAD, LS, LSADA, LSNEG, LSPOS, SCALE, SCLA

The Soft Limit Deceleration.SAD command determines the value at which to decelerate after a
programmed soft limit(SPOSor LSNEQ has been hit.

UNITS OF MEASURE andSCALING : refer to page 16.

The soft limit deceleration remains set until you change it with a subsequent soft limit deceleration
command. Decelerations outside the valid range are flagged as an error, with a riggsage DATA-
FIELD x, wherex is the field number. When an invalid deceleration is entered the previous deceleration
value is retained.

Example: Refer to the soft limit enable (LS) command example.

LSADA Soft Limit Average Deceleration

Type Motion (S-Curve) Product Rev
Syntax <I><@><a>LSADA<I>,<r>,<r> <r>,<r> <r>,<r>,<r> 6K 50
Units r = units/sec/sec

Range 0.00001-39,999,998 (depending on the scaling factor)

Default 100.0000 (default is a constant deceleration ramp, where LSADA

tracks LSAD)
Response LSADA: *LSADA100.0000,100.000,100.000,100.000 ...
1LSADA: *1LSADA100.0000

See Also AD, ADA, LS, LSAD, SCALE, SCLA

The Soft Limit Average DecelerationADA command allows you to specify the average deceleration for
an S-curve deceleration profile when a soft limit is hit. S-curve profiling provides smoother motion control
by reducing the rate of change in deceleration; this decel rate of change is kijeknRefer to page 13

for details on S-curve profiling.

Acceleration scaling3CLA) affectsLSADAthe same as it does foBAD. Refer to page 16 for details on scaling.

Example:
LSAD10,10,10,10 ; Sets the maximum deceleration of all four axes
LSADA5,5,7.5,10 ; Sets the average deceleration of all four axes

160 6K Series Command Reference

LSNEG Soft Limit Negative Travel Range

Type Limit (End-of-Travel) Product Rev
Syntax <I><@><a>LSNEG<r>,<r>,<r> <r> <r>,<r>,<r>,<r> 6K 5.0
Units r = units of distance

Range -999,999,999 - +999,999,999 (scalable)

Default +0

Response LSNEG: *LSNEG+0,+0,+0,+0,+0,+0,+0,+0
1LSNEG: *1LSNEG+0

See Also LS, LSAD, LSADA, LSPOS, PSET, SCALE, SCLD

The LSNEGcommand specifies the distance in absolute units where motion will be restricted when traveling
in a negative-travel direction. The reference position used to determine absolute position is set to zero upon
power-up, and can be reset usingRS&T commandBe sure to set the. SPOSvalue greater than the
LSNEGvalue.

TheLSNEGvalue remains set until you change it with a subsedu&MEGcommand.

All soft limit values entered are in absolute steps. If scaling is enghd El), LSNEGIs internally
multiplied by the distance scale fact®ICLD. The soft limit position references the commanded position,
not the position as measured by a feedback device (e.g., encoder).

Example: Refer to the soft limit enable (LS) command example.

LSPOS Soft Limit Positive Travel Range

Type Limit (End-of-Travel) Product Rev
Syntax <I><@><a>LSPOS<r>,<r>,<r>,<r>,<r> <r>,<r>,<r> 6K 5.0
Units r = units of distance

Range -999,999,999 - +999,999,999 (scalable by SCLD)

Default +0

Response LSPOS: *LSPOS+0,+0,+0,+0,+0,+0,+0,+0
1LSPOS: *1LSPOS+0

See Also LS, LSAD, LSADA, LSNEG, PSET, SCALE, SCLD

TheLSPOScommand specifies the distance in absolute units where maotion will be restricted when traveling
in a positive-travel direction. The reference position used to determine absolute position is set to zero upon
power-up, and can be reset usingRB&T commandBe sure to set the. SPOSvalue greater than the
LSNEGvalue.

TheLSPOSvalue remains set until you change it with a subsedu&?®Scommand.

All soft limit values entered are in absolute steps. If scaling is enghd El), LSPOSIs internally
multiplied by the distance scale fact&ICLD. The soft limit position references the commanded position,
not the position as measured by a feedback device (e.g., encoder).

Example: Refer to the soft limit enable (LS) command example.

Command Descriptions 161

LX Terminate Loop

Type Loops; Program Flow Control Product Rev
Syntax <I>LX 6K 5.0
Units n/a
Range n/a
Default n/a
Response n/a

See Also L, LN, PLN, PLOOP

The Terminate LoopLi) command terminates the current loop in progress. This command does not halt
processing of the commands in the loop until the last command in the current loop iteration is executed. At
this point, the loop is terminated. If there are nested loops, only the inner most loop is terminated.

This command can be used externally to terminate the loop only if it is preceded by the immediate command
specifier (LX). If the immediate command specifier is not used, the command will have no effect on a loop in
progress. An example of where the buffered Terminate Loop commshch{ght be used is provided below.

Example:

This program will make the move specified by the GO1110 command
; indefinitely until input 2 goes high, at which point, an LX will
; be issued, terminating the loop.

LO ; Repeat the commands between L and LN infinitely, or until
; @a Terminate Loop (LX) command is received

GO01110 ; Start motion on axes 1, 2, and 3,
; axis 4 will remain motionless

IF(IN=bX1) ; If onboard trigger input A2 goes high, execute all
; statements between IF and NIF

LX ; Terminate loop

NIF ; End IF statement

LN ; End loop

162 6K Series Command Reference

MA Absolute/Incremental Mode Enable

Type Motion Product Rev
Syntax <I><@><a>MA 6K 5.0
Units n/a
Range b =0 (incremental mode) or 1 (absolute mode)
Default 0
Response MA: *MAO0000_0000

1IMA: *1IMAO

See Also COMEXC, D, GO, GOBUF, PSET

The Absolute/Incremental Mode Enabi&d command specifies whether the moves to follow are made
with respect to current position (incremental) or with respect to an absolute zero position.

In incremental modeMAg, all moves are made with respect to the position at the beginning of the move.
This mode is useful for repeating moves of the same distance.

In absolute modeMA1), all moves are made with respect to the absolute zero position. The absolute zero
position is equal to zero upon power up, and can be redefined wiRisETeommand. An internal counter
keeps track of absolute position.

ON-THE-FLY CHANGES : You can change positioning modesthe fly(while motion is in progress) in
two ways. One way is to send an immediate commémnl) followed by an immediate go commang).
The other way is to enable the continuous command execution @OMEKClland execute a buffered
command A followed by a buffered go commandq.

Example:

PSETO0,0,0,1000 ; Set absolute position on axes 1, 2, and 3 to zero,
; and axis 4 to 1000 units

MA1111 ; Enable absolute mode on axes 1 through 4

A2,2,25000,25000 ; Set acceleration to 2, 2, 25000, and 25000 units/sec/sec
;foraxes 1,2, 3and 4

AD2,2,25000,25000 ; Set deceleration to 2, 2, 25000, and 25000 units/sec/sec
;foraxes 1, 2,3and 4

v1,1,1,2 ; Set velocity to 1, 1, 1, and 2 units/sec
; for axes 1, 2, 3 and 4 respectively
@D10 : Set distance on all axes to 10 units
G0O1111 ; Initiate motion on all axes (axes 1, 2, and 3 will move

; 10 units in the positive direction, axis 4 will move
; 990 units in the negative direction)

Command Descriptions 163

MC Preset/Continuous Mode Enable

Type Motion Product Rev
Syntax <I><@><a>MC 6K 5.0
Units n/a
Range b = 0 (preset mode) or 1 (continuous mode)
Default 0
Response MC: *MCO0000_0000

1IMC: *1MCO

See Also A, AD, COMEXC, COMEXS, D, FOLMD, [FS], FSHFC, FSHFD, GO,
GOBUF, K, MA, PSET, S, SSV, TEST, TFS, V

The Preset/Continuous Mode Enabl&g)(command causes subsequent moves to go a specified distance
(MCg, or a specified velocityMCJ).

In the Preset ModeMC®, all moves will go a specific distance. The actual distance traveled is specified by
theD, SCLQO andMAcommands.

In the Continuous ModeMC), all moves will go to a specific velocity with the Distanbgdommand
establishing the directioD¢ or D-). The actual velocity will be determined by thandSCLVcommands,
or thev andDREScommands.

Motion will stop with an immediate Stops() command, an immediate Kill{) command, or by
specifying a velocity of zero followed byGOcommand. Motion can also be stopped with a buffered Stop
(S) or Kill (K) command if the continuous command processing moa® EXECis enabled.

ON-THE-FLY CHANGES : You can change positioning modwesthe fly(while motion is in progress) in
two ways. One way is to send an immediate comménd) followed by an immediate go commanag).
The other way is to enable the continuous command execution @OMEKClland execute a buffered
command MQ followed by a buffered go commandq.

Example:
MAO0000 : Enable incremental mode on all axes
MCO0000 ; Enable preset mode on all axes

A2,2,25000,25000 ; Set acceleration to 2, 2, 25000, and 25000 units/sec/sec
cforaxes1,2,3&4

AD2,2,25000,25000 ; Set deceleration to 2, 2, 25000, and 25000 units/sec/sec
;foraxes1,2,3&4

v1,1,1,2 ; Set velocity to 1, 1, 1, and 2 units/sec for
;axes 1, 2, 3 & 4 respectively
D10,10,10,10 : Set distance on all axes to 10 units
GO1111 ; Initiate motion on all axes (axes 1,2, 3, & 4 will
; all move 10 units positive-direction)
COMEXC1 ; Enable continuous command processing mode
MC1111 : Enable continuous mode on all axes
A8,8,2000,2000 : Set acceleration to 8, 8, 2000, and 2000 units/sec/sec for
;axes 1,2,3&4
ADS8,8,2000,2000 : Set deceleration to 8, 8, 2000, and 2000 units/sec/sec for
;axes 1,2,3&4
V5,5,5,9 ; Set velocity to 5, 5, 5, and 9 units/sec for axes 1, 2,3 & 4
GO1111 ; Initiate motion on all axes (axes 1,2, and 3 will each

; travel at a velocity of 1 unit/sec, axis 4 will travel
; at a velocity of 2 units/sec)

T15 : Wait 15 seconds

@V5 ; Set velocity to 5 units/sec (axis 4 only affected axis)
GO1111 ; Initiate motion with new velocity of 5 units/sec (all axes)
T8 : Wait 8 seconds

@Vo0 ; Set velocity to zero

GO1111 ; Initiate motion with new velocity of 5 units/sec (all axes)
WAIT(MOV=b0000) ; Wait for motion to come to a halt on all axes

COMEXCO ; Disable continuous command processing mode

164 6K Series Command Reference

MEMORY Partition User Memory

Type Controller Configuration Product
Syntax <I>MEMORY<i><i> 6K
Units i = bytes of memory (use even number only)

1st <i> = partition for “Programs”

2nd <i> = partition for “Compiled Profiles”
Range (see table below)
Default (see table below)

Response MEMORY: *MEMORY149000,1000

See Al

so [DATP], DEF, GOBUF, PCOMP, PLCP, [SEG], [SS], TDIR,
TMEM, TSEG, TSS

Rev
5.0

Your controller's memory has two partitions: one for stopgragramsand one for storingompiled profiles
& PLC programs The allocation of memory to these two areas is controlled witiEMOREommand.

“Programs” vs. "Compiled Profiles & Programs”

Programs are defined with the DEFand ENDcommands, as demonstrated in the “Program

Development Scenario” in the Programmer's Guide.

Compiled Profiles & PLC Programs are defined like programs (using the DEFand END

commands), but are compiled with the PCOMRommand and executed with the PRUN
command (but PLCPprograms are usually executed with SCANR. Compiled
profiles/programs could be a multi-axis contour (a series of arcs and lines), an individual
axis profile (a series of GOBUFommands), a compound profile (combination of multi-axis
contours and individual axis profiles), or a PLC program (for PLC Scan Mode).

Programs intended to be compiled are stored in program memory. After they are compiled
with the PCOMRommand, they remain in program memory and the segments (see diagram
below) from the compiled program are stored in compiled memory. The TDIR report
indicates which programs are compiled as compiled profiles (“COMPILED AS A PATH")
and which programs are compiled as PLC programs (“COMPILED AS A PLC PROGRAM) .

For more information on multi-axis contours (Contouring), compiled profiles for individual
axes (Compiled Motion Profiling), and PLC Scan Mode, refer to the Programmer's Guide.

MEMOR®yntax:
MEMOR@OM Memory allocation for Compiled Profiles & Programs (bytes).

T Storage requirements depend on the number of segmants
(1 segment consumes 72 bytes). A segment could be one of
these commands:

Memory allocation for . . .

Programs (bytes). Contouring: Compiled Motion: PLC (PLCP Program:

Storage requirements PARCM GOBUF IF

depend on the number of PARCOM PLOOP ELSE

ASCII characters in the PARCOP GOWHEN NIF

program. PARCP TRGFN L

PLIN POUTA LN

POUTB ouT
POUTC ANO
POUTD EXE
POUTE PEXE
POUTF VAR **
POUTH

* GOBUFommands may require up to 4 segments.

** |F statements require at least 2 segments; each ANDor OR
compound requires an additional segment. VARI and VARB
each require 2 segments.

Command Descriptions

165

Allocation Defaults and Limits (by Product):

The following table identifies memory allocation defaults and limits for 6K Series products. When
specifying the memory allocation, use only even numbers. The minimum storage capacity for one
partition area (program or compiled) is 1,000 bytes.

Feature 6K

Total memory (bytes) 150,000
Default allocation (program,compiled) 149000,1000
Maximum allocation for programs 149000,1000
Maximum allocation for compiled profiles/programs 1000,149000
Max. # of programs 400

Max. # of labels 600

Max. # of compiled profiles 300

Max. # of compiled profile segments 2069

Max. # of numeric variables 225

Max. # of integer variables 225

Max. # of string variables 25

Max. # of binary variables 125

When teaching variable data to a data prog2ATP, be aware that the memory required for each
data statement of four data points (43 bytes) is taken from the memory allocation for program storage.

| CAUTION

Issuing a memory allocation command (e.g., MEMORY80000,70000) will erase all
existing programs and compiled segments. However, issuing the MEMOR¥ommand by
itself (e.g., type MEMOR¥cr> by itself to request the status of how the memory is
allocated) will not affect existing programs or compiled segments.

Checking Memory Status:

To find out what programs reside in your controller's memory, and how much of the available memory
is allocated for programs and compiled profile segments, issa®tRecommand (see example

response below). Entering tiMEMcommand or thlEMOR¥ommand (without parameters) will

also report the available memory for programs and compiled profile segments.

Sample response ®IR command:

*1 - SETUP USES 345 BYTES

*2 - PIKPRT USES 333 BYTES

*32322 OF 80000 BYTES (98%) PROGRAM MEMORY REMAINING
*70000 OF 70000 SEGMENTS (100%) COMPILED MEMORY REMAINING

Two system status bits (reported with T8S, TSSFandSS commands) are available to check when
compiled profile segment storage is 75% full or 100% full. System status bit #29 is set when segment
storage reaches 75% of capacity; bit #30 indicates when segment storage is 100% full.

Example:
MEMORY80000,70000 ; Set aside 80,000 bytes for program storage,

166

; 70,000 bytes for compiled profile segments

6K Series Command Reference

MEPOL Master Encoder Polarity

Type Encoder; Following; Controller Configuration Product Rev
Syntax <I>MEPOL 6K 5.0
Units b = polarity bit
Range b = 0 (normal polarity), 1 (reverse polarity),

or X (don't care)
Default 0

Response MEPOL: *MEPOLO

See Also ENCPOL, [PCME], [PCMS], [PMAS], [PME], PMESET, TPCME,
TPME, TPCMS, TPMAS

Use theMEPOLcommand to reverse the counting direction (polarity) of the Master Encoder input (the
encoder connector labeled “Master Encoder”). This allows you to reverse the counting direction without
having to change the actual wiring to the encoder input.

Immediately after issuing théEPOLcommand, the master encoder will start counting in the opposite
direction (including all master encoder position registers).

TheMEPOLcommand is automatically saved in non-volatile RAM.

MESND Master Encoder Step and Direction Mode
Type Encoder; Counter; Following Product Rev
Syntax <I>MESND 6K 5.0
Units b = enable bit
Range b = 0 (quadrature signal), 1 (step & direction),

or X (don't care)
Default 0

Response MESND: *MESNDO
See Also ENCSND, [PME], TPME

Use theMESNDzommand to specify the functionality of the Master Encoder input.

MESNDQ...... (default setting) accept a quadrature signal from the master encoder.

MESNDL1...... Accept step and direction signals. The count is registered on a positive edge of a
transition for a signal measured on encoder channel A+ and A- connections. The
direction of the count is specified by the signal on encoder channel B+ and B-
connections. Therefore, you should connect your step and direction input device as
follows: Connect Step+ to A+, Step- to A-, Direction+ to B+, and Direction- to B-.

[MOV] Axis Moving Status

Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [AS], GO, TAS

The Axis Moving StatusMOY command is used to assign the moving status to a binary variable, or to make
a comparison against a binary or hexadecimal value. To make a comparison against a binary value, the
letter b (b or B) must be placed in front of the value. The binary value itself must only contain ones, zeros,
or Xs (1, g, X, x). To make a comparison against a hexadecimal value, the letter h (h or H) must be placed
in front of the value. The hexadecimal value itself must only contain the letters A through F, or the numbers
@ through 9.

The axis moving status is also reported with bit #1 offk& TASFandAS commands

Command Descriptions 167

Syntax: VARBn=MOWheren is the binary variable number,
or MO\can be used in an expression suchF@s0Vv=b1XX1) , or IF(MOV=h3)

Each bit of thevOVcommand corresponds to a specific axis. The first bit (left to right) is for axis 1, the
second is for axis 2, etc. If the specific axis is in motion, the bit will be a one (1). If the specific axis is not
in motion, the bit will be a zero (D).

Each 6K Series product has 1 moving/not moving bit per axis. For example, the 6K4 has 4 axes, thus 4
moving/not moving bits. If it is desired to assign only one moving/not moving bit to a binary variable,
instead of all the moving/not moving bits, the bit selefiofperator can be used. The bit select operator, in
conjunction with the moving/not moving bit number, are used to specify a specific moving/not moving bit.
For exampleYARB1=MOV.2assigns bit 2 (representing axis 2 moving/not moving) to binary variable 1.

Example:

COMEXC1 ; Enable continuous command processing mode
COMEXS1 ; Save command buffer on stop

MC1111 : Enable continuous mode on all axes

A2,2,25000,25000 ; Set acceleration to 2, 2, 25000, and 25000 units/sec/sec
; for axes 1, 2, 3 and 4 respectively

AD2,2,25000,25000 ; Set deceleration to 2, 2, 25000, and 25000 units/sec/sec
; for axes 1, 2, 3 and 4 respectively

v1,1,1,2 ; Set velocity to 1, 1, 1, and 2 units/sec for axes 1, 2, 3
; and 4 respectively
GO1111 ; Initiate motion on all axes (axes 1,2, and 3 will each

; travel at a velocity of 1 unit/sec, axis 4 will travel
; at a velocity of 2 units/sec)

T5 : Wait 5 seconds

S1111 ; Stop motion on all axes

WAIT(MOV=b0000) ; Wait for motion to come to a halt on all axes

COMEXCO ; Disable continuous command processing mode

NIF End IF Statement

Type Program Flow Control or Conditional Branching Product Rev
Syntax <I>NIF 6K 5.0
Units n/a

Range n/a

Default n/a

Response No response when used in conjunction with the IF command

See Also ELSE, IF

This command is used in conjunction with theandELSE commands to provide conditional program flow. If
the expression contained within the parentheses dftlm®mmand evaluates true, then the commands between
thelF and theELSE are executed. The commands betweelEtlsE and theNIF are ignored. If the expression
evaluates false, the commands betweerELISE and theNIF are executed. The commands betwé&eand

ELSE are ignored. TheELSE command is optional and does not have to be included if teatement.

Programming ordeinF(expression) ...commands... NIF
or
IF(expression) ...commands... ELSE...commands... NIF

NOTE: Be careful about performing@ThetweenF andNIF. Branching to a different location within
the same program will cause the nigxtstatement encountered to be nested within the preNdous
statement, unless &iF command has already been encountered.

Example:
IF(IN=b1XO0) ; Specify IF condition to be onboard input 1 =1, input 3 =@
T5 : IF condition evaluates true wait 5 seconds
ELSE ; Else part of IF condition
TPE ; IF condition does not evaluate true, transfer position
: of all encoders
NIF : End IF statement

168 6K Series Command Reference

[NMCY] Master Cycle Number

Type Following; Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also FMCLEN, FMCNEW, FMCP, [FS], [PMAS], TFS, TNMCY, TRGFN

The Master Cycle NumbeNMCY command is used to assign the current master cycle number (specific to
one axis) to a numeric variable, or to make a comparison against another value. The master must be
assigned firstROLMAScommand) before this command will be useful. For a complete discussion of master
cycles, refer to the Following chapter in figrammer's Guide.

The value represents the current cycle number, not the position of the master (or the follower). The master
cycle number is set to zero when master cycle counting is restarted, and is incremented each time a master
cycle finishes (i.e., rollover occurs). It will often correspond to the number of complete parts in a

production run. This value may be used for subsequent decision making, or simply recording the cycle
number corresponding to some other event.

Syntax: VARn=aNMC¥vhere ‘h” is the variable number and™is the axis number, adMCYcan be used
in an expression such B{1NMCY>=5) . TheNMCYcommand must be used with an axis
specifier, or it will default to axis 1 (e./AR1=1NMCYIF(2NMCY>12) , etc.).

Example:
IF(2NMCY>500) ; If the master for axis 2 has moved through 500 cycles ...
WRITE"500 cycles have occurred" ; Send string to serial port or the AT-bus
NIF ; End of IF statement
VAR12=3NMCY ; Set VAR12 to equal the number of cycles that have

; occurred on axis 3 master

[NOT] Not

Type Operator (Logical) Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [AND], IF, NWHILE, [OR], REPEAT, UNTIL, WAIT, WHILE

TheNOToperator is used in conjunction with the program flow control comm#mJREPEAT.UNTIL,
WHILE..NWHILE , WAIT). TheNOToperator compliments a logical expression. If an expression is true, the
NOToperator will make the expression false. If an expression is falgeQtraperator will make the
expression true. This fact is best illustrated by the following examples:

If variable #1 equals 1, then the following is a true statengMaR1<3)

By using theNOToperator, the same statement becomes fi@sgNOT VAR1<3)

If variable #2 equals 2, then the following statement is falséiL E(VAR2=3)

By using the NOT operator, the same statement becomesirlieE (NOT VAR2=3)

To evaluate an expressiaN@TExpression) to determine if the expression is true, use the following rule:

NOT TRUE = FALSE
NOT FALSE = TRUE

In the following example, variable #1 is displayed, then is incremented by 1 as lfBids not equal to 10.

Example:

VAR1=1 ; Set variable 1 equal to 1

WHILE(NOT VAR1=10) ; Compare variable 1 to 10, and logically not the expression
WRVAR1 ; Write out variable 1

VAR1=VAR1 + 1 ; Set variable 1 to increment 1 by 1

NWHILE : End WHILE statement

Command Descriptions 169

NTADDR Ethernet IP Address

Type Communication Interface Product Rev
Syntax NTADDRK<i,i,i,i> 6K 5.0
Units i,i,i,i = IP address (commas are used in place of periods)

Range i=0-255

Default 192,168,10,30 (network address is 192.168.10.30)

Response NTADDR: *192,168,10,30
See Also TNTMAC

Use theNTADDReommand to change the 6K controller’s IP address (e.g., to correct an IP address conflict).
NOTE: The 6K product needs to be reset (cycle power or BES&Tcommand) in order for the new
address to take effect.

The NTADDRsetting is automatically saved in battery backed RAM.

NTMASK Ethernet Network Mask

Type Communication Interface Product Rev
Syntax NTMASK<i,i,i,i> 6K 50
Units i,i,i,i = mask

Range i=0-255

Default 255,255,255,0

Response NTMASK: *255,255,255,0

See Also NTADDR, TNTMAC

Use theNTMASKcommand to configure the 6K controller's network m&8RTE: The 6K product needs to
be reset (cycle power or isseReSETcommand) in order for the new network mask to take effect.

TheNTMASKsetting is automatically saved in battery backed RAM.

NWHILE End WHILE Statement

Type Program Flow Control or Conditional Branching Product Rev
Syntax <I>SNWHILE 6K 5.0
Units n/a

Range n/a

Default n/a

Response No response when used in conjunction with the WHILE command

See Also WHILE

The WHILE command, in conjunction with teMwHILEcommand, provide a means of conditional program
flow. TheWHILE command marks the beginning of the conditional statementWheLEcommand marks

the end. If the expression contained within the parenthesis wfHeE command evaluates true, then the
commands between theHILE andNWHILEare executed, and continue to execute as long as the expression
evaluates true. If the expression evaluates false, then program execution jumps to the first command after
the NWHILE

Up to 16 levels ofWHILE NWHILEcommands may be nested.

NOTE: Be careful about performing@OThetweenVHILE andNWHILE Branching to a different
location within the same program will cause the WeXtLE statement encountered to be nested
within the previousWHILE statement, unless &wHILEcommand has already been encountered.

Programming order: WHILE(expression) ...commands... NWHILE

Example:
WHILE(IN=b1X0) ; While input 1 = 1, input 3 = @, execute commands between
: WHILE and NWHILE

T5 : Wait 5 seconds
TPE ; Transfer position of all encoders
NWHILE : End WHILE statement

170 6K Series Command Reference

ONCOND On Condition Enable

Type On Condition (Program Interrupt) Product Rev
Syntax <I><%><@>ONCOND 6K 5.0
Units n/a

Range b =0 (disable), 1 (enable) or X (don't change)

Default 0

Response ONCOND: *ONCONDO0000

See Also FSHFD, ONIN, ONP, ONUS, ONVARA, ONVARB, [SS], TSS

The On Condition EnabledNCONPcommand enables ti@NIN, ONUSONVARAaNdONVARE ommands.
When enabled, the expressions specified irothiN, ONUSONVARAandONVARB.ommands will be
continuously evaluated. If any of the expressions ever evaluate true, a GOSUB will be mada® the
program/subroutine.

ONR ONIN, ONUSONVARAandONVARBhould be defined before enabling the On Conditio@N#Pis not
defined first, the error messati¢NDEFINEDLABEL will appear.

ONCONDbbbb Firstb = ONIN Enable
Secondch = ONUSEnable
Third b = ONVARAEnable
Fourthb = ONVARHEENnable

When ON conditions WILL NOT interrupt immediately : These are situations in which an ON

condition does not immediately interrupt the program in progress. However, the fact that the ON condition
evaluated true is retained, and when the condition listed below is no longer preventing the interrupt, the
interrupt_will occur.

» While awAIT statement is in progress

» While a time delayT) is in progress

» While a program is being definedgR

» While a pauseRS) is in progress

* While a data readDREADDREADE or READ is in progress

» While motion is in progress due @0 GOL GOWHENOMJOY, JOG or PRUNand the continuous
command execution mode is disable®MEXCD

Multi-Tasking : Each task has it on@NPProgram and its own set of On conditions.

Example:

DEF bigmov ; Define program bigmov

D20,20,1,3 ; Sets move distance on axes 1 and 2 to 20 units,
; axis 3 to 1 unit, and axis 4 to 3 units

GO1111 : Initiate motion on all axes

END ; End program definition

ONP bigmov ; Set ON program to bigmov

20NINxxx1 ; When input #4 on 1/O brick 2 is activated,
; GOSUB to the ONP program

ONCOND1000 : Enable ONIN condition

Now that the ONP program named bigmov is defined, if input #4 becomes
; active during normal program operation, the program will GOSUB to the

; ONP program (bigmov).

Command Descriptions 171

ONIN On an Input Condition Gosub

Type On Condition (Program Interrupt) Product Rev
Syntax <I><%>ONIN... 6K 5.0
Units n/a

Range b = 0 (disable), 1 (enable) or X (don't care)

Default 0

Response ONIN: *ONINOOOO_0000_0000_0000_0
1ONIN: *LONIN0O00O_0000_0000_0000_0000_0000_0000_0000

See Also INFNC, ONCOND, ONP, TIN

The On an Input Condition GosubNIN) command specifies the input bit pattern which will cause a
branch to the ON progran®KB. If the input pattern occurs, a GOSUB is performed. The subroutine or
program that the GOSUB branches to is selected with the ON progincommand.

The number of onboard and external inputs available varies by the product and configuration of I/O bricks used.
Refer to page 6 for details.

The ONIN command must be enabled using@nCONBommand before any branching will occur. Once a
branch to the©NPprogram occurgQNIN command will not call th&NPprogram while th©NPprogram is
executing, eliminating the possibility of recursive calls. After returning fronoteprogram, the input
pattern specified by theNIN command must evaluate false before another branch @\erogram,
resulting from thedNIN inputs, will be allowed.

Multi-Tasking : Each task has it owdNPProgram and its own set of On conditions. OnfgNIN condition
is allowed per task. Therefore, only one 1/O brick can be referenceddNIaircondition for a specific
task.

Example:

DEF bigmov ; Define program bigmov

D20,20,1,3 ; Sets move distance on axes 1 and 2 to 20 units,
; axis 3 to 1 unit, and axis 4 to 3 units

GO1111 : Initiate motion on all axes

END ; End program definition

ONP bigmov ; Set ON program to bigmov

20NINxxx11xx1 ; When inputs 4, 5, and 8 on I/O brick 2 is activate,
; GOSUB to the ONP program
ONCOND1000 : Enable ONIN condition

Now that the ONP program named bigmov is defined, if input #4 becomes
; active during normal program operation, the program will GOSUB to
; the ONP program (bigmov).

ONP On Condition Program Assignment

Type On Condition (Program Interrupt) Product Rev
Syntax <I><%>ONP<t> 6K 50
Units t = text (name of On Condition program)

Range text name of 6 characters or less

Default n/a

Response ONP: *ONP bigmov

See Also DEF, END, ONCOND, ONIN, ONUS, ONVARA, ONVARB

The On Condition Progran®B command assigns the program to which programming will GOSUB when
an ON condition is met. The program must be defimgEF)(previous to the execution of tienP

command. Th&NPcommand must be specified before enabling the ON conditiS@ND If ONPis not
defined first, the error messatiéNDEFINEDLABEL will appear.

To unassign the program as the ON condition program, iss@NtP@LR command. Deleting the program
with theDEL command will accomplish the same thing.

Within the ONPprogram, the programmer is responsible for checking which ON condition caused the
branch, if multiple ON conditionSOQNCONDhave been enabled. Once a branch t@theprogram occurs,

172 6K Series Command Reference

the ONPprogram will not be called again until after it has finished executing. After returning frodNthe
program, the condition that caused the branch must evaluate false before another brar@kRprtggram
will be allowed.

Multi-Tasking : Each task has it owdNPProgram and its own set of On conditions.

Example:

DEF bigmov ; Define program bigmov

D20,20,1,3 ; Sets move distance on axes 1 and 2 to 20 units,
; axis 3 to 1 unit, and axis 4 to 3 units

GO1111 ; Initiate motion on all axes

END ; End program definition

ONP bigmov ; Set ON program to bigmov

20NIN.4-1 ; When input #4 on 1/O brick 2 is activated,
; GOSUB to the ONP program

ONCOND1000 ; Enable ONIN condition

Now that the ONP program named bigmov is defined, if input #4 becomes
; active during normal program operation, the program will GOSUB to
; the ONP program (bigmov).

ONUS On a User Status Condition Gosub

Type On Condition (Program Interrupt) Product Rev
Syntax <I><%>ONUS... (16 bits) 6K 50
Units n/a

Range b = 0 (disable), 1 (enable) or X (don't care)

Default 0

Response ONUS: *ONUS0000_0000_0000_0000

See Also INDUSE, INDUST, ONCOND, ONP

The On a User Status Condition GosaiN{$ command specifies the user status bit pattern, defined using
theINDUST command, which will cause a branch to the ON prog@RB(If the bit pattern occurs, a
GOSUB is performed. The subroutine or program that the GOSUB branches to is selected by the ON
program ONB command.

The ONUScommand must be enabled using@nCONBommand before any branching will occur. Once a
branch to the©NPprogram occurgQNUscommand will not call th&NPprogram while th©NPprogram is
executing, eliminating the possibility of recursive calls. After returning fronotireprogram, the user
status bit pattern specified by t@&luScommand must evaluate false before another branch @\ihe
program, resulting from theNUSstatus bits, will be allowed.

Multi-Tasking : Each task has it owdNPProgram and its own set of On conditions.

Example:
INDUSE1 ; Enable user status
INDUST1-5A ; User status bit 1 defined as axis 1 status bit 5
INDUST2-3F ; User status bit 2 defined as axis 6 status bit 3
3INDUST3-5J ; User status bit 3 defined as input 5 on 1/O brick 3
INDUST4-1K ; User status bit 4 defined as interrupt status bit 1
2%INDUST16-2I ; User status bit 16 defined as system status bit 2 for task 2
DEF bigmov ; Define program bigmov
D20,20,1,3 ; Sets move distance on axes 1 and 2 to 20 units,
; axis 3 to 1 unit, and axis 4 to 3 units
GO1111 ; Initiate motion on axes 1-4
END ; End program definition
ONP bigmov ; Set ON program to bigmov
ONUSxxx1 ; On user status bit #4 (interrupt status bit 1) GOSUB to
; the ONP program
ONCONDO0100 ; Enable ONUS condition

Command Descriptions 173

ONVARA On Variable 1 Condition Gosub

Type On Condition (Program Interrupt) Product Rev
Syntax <I><%>0ONVARAKI,i,i> 6K 50
Units See below

Range +999,999,999.99999999

Default +0.0,+0.0,+0.0

Response ONVARA: *ONVARA+0.0,+0.0,+0.0

See Also ONCOND, ONP, ONVARB, VAR, VARI

The On Variable 1 Condition GosubNVARAcommand specifies the low and high values which will cause
a branch to the ON prograroNB. If the value of variable 1 is less than or equal to theifirst greater

than or equal to the seconda GOSUB is performed. The subroutine or program that the GOSUB
branches to is selected by the ON programf command. If the third field is non-zero, integer variables
(VARI) are used for the comparison.

The ONVARAommand must be enabled using@CONBommand before any branching will occur. Once
a branch to the&NPprogram occursQNVARAommand will not call th&@NPprogram while th©NP

program is executing, eliminating the possibility of recursive calls. After returning fro@Nthprogram,
variable 1 must be reset to a value within the low and high values before another branciNte the
program, resulting from the value of variable 1, will be allowed.

Multi-Tasking : Each task has it owdNPProgram and its own set of On conditions.

Example:
DEF bigmov ; Define program bigmov
D20,20,1,3 : Sets move distance on axes 1 and 2 to 20 units,
; axis 3 to 1 unit, and axis 4 to 3 units
GO1111 : Initiate motion on all axes
END ; End program definition
ONP bigmov ; Set ON program to bigmov
ONVARAO0,12 ; On VAR1 <=0, or VAR1 >= 12 GOSUB to ONP program
ONCONDO0010 : Enable ONVARA condition

ONVARB On Variable 2 Condition Gosub

Type On Condition (Program Interrupt) Product Rev
Syntax <I><%>0ONVARB«<i,i,i> 6K 50
Units See below

Range +999,999,999.99999999

Default +0.0,+0.0,+0.0

Response ONVARB: *ONVARB+0.0,+0.0,+0.0

See Also ONCOND, ONP, ONVARA, VAR, VARI

The ONVARB.ommand specifies the low and high values which will cause a branch to the ON program
(ONB. If the value of variable 2 is less than or equal to theifirst greater than or equal to the second

GOSUB is performed. The subroutine or program that the GOSUB branches to is selected by the ON
program ONB command. If the third field is non-zero, integer variablesR() are used for the comparison.

The ONVARBommand must be enabled using@CONBommand before any branching will occur. Once
a branch to the&NPprogram occursQNVAREommand will not call th&@NPprogram while th©NP

program is executing, eliminating the possibility of recursive calls. After returning fro@Nthprogram,
variable 2 must be reset to a value within the low and high values before another branciNte the
program, resulting from the value of variable 1, will be allowed.

Multi-Tasking : Each task has it owdNPProgram and its own set of On conditions.

Example:
DEF bigmov ; Define program bigmov
D20,20,1,3 : Sets move distance on axes 1 and 2 to 20 units,
; axis 3 to 1 unit, and axis 4 to 3 units
GO1111 : Initiate motion on all axes
END ; End program definition
ONP bigmov ; Set ON program to bigmov
ONVARBO0,12 ; On VAR2 <=0, or VAR2 >= 12 GOSUB to ONP program
ONCONDO0001 : Enable ONVARB condition

174 6K Series Command Reference

[OR] Or

Type Operator (Logical) Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [AND], IF, [NOT], NWHILE, REPEAT, UNTIL, WAIT, WHILE

Use theORcommand as a logical operator in a program flow control comman®EPEAT UNTIL, WHILE,
NWHILE WAIT). TheORcommand logically links two expressions. If either of the two expressions are true, and
are linked with aldRcommand, then the whole statement is true. This fact is best illustrated by example.

If VAR1=1andVAR2=1then, even though variable 2 is not greater than 3, this is a true statement:
IF(VAR1>0 ORVAR2>3). This statement would not be trug(VAR1<>1 ORVAR2=2).

To evaluate an expression (ExpressiaREXxpression 2 = Result) to determine if the whole expression is
true, use the following rule:

TRUEORTRUE = TRUE FALSEORTRUE = TRUE

TRUE ORFALSE = TRUE FALSEORFALSE = FALSE
Example:
VAR1=1 ; Set variable 1 equal to 1
IF(VAR1=1 OR IN=b1XXX) ; Compare variable 1 to 1, and check for input #1

; to be active

WRITE"FIRST EXAMPLE" ; If either condition is true, write out FIRST EXAMPLE
NIF ; End IF statement
ouT Output State
Type Output Product Rev
Syntax <I>0UT... 6K 5.0
Units n/a
Range b =0 (off), 1 (on) or X (don't change)
Default 0
Response n/a

See Also OUTALL, OUTEN, OUTENC, OUTLVL, OUTP, TIO, TOUT

The Output StateQUT command turns the output bits on and off. You may use this command to control any of
the onboard outputs, as well as any outputs on external I/O bricks, as long as they are left in the default function
(OUTENCI-A). If you attempt to change the state of an output that idefoted as a@UTFNCI-A (general-

purpose) output, the controller will respond with an error messayér@uT BIT USED AS OUTFNC”) and the
oOuTcommand will not be executed (but command processing will continue).

The number of onboard and external outputs varies by the product and configuration of 1/O bricks used. Refer to
page 6 for details.

If it is desired to set only one output value, instead of all outputs, the bit sélegiefator can be used,
followed by the number of the specific output. For exampl#T.12-1 turns on output 12.

Example:
20UT10 ; Turn on outputs 1 & 2 on 1/O brick 2
10UT.9-1 ; Turn on output 9 (the 1st I/O point on SIM2) on 1/O brick 1

Command Descriptions 175

[OUT] Output Status

Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range b =0 (off), 1 (on) or X (don't change)

Default 0

Response n/a

See Also OUTALL, OUTEN, OUTENC, OUTLVL, TIO, TOUT, VARB

Use the Output Statu®JT) operator to assign the output states to a binary varighRg, or to make a
comparison against a binary or hexadecimal value. To make a comparison against a binary value, the letter
b (b or B) must be placed in front of the value. The binary value itself must only contain ones, zeros, or Xs
(1, 9, X, x). To make a comparison against a hexadecimal value, the letter h (h or H) must be placed in
front of the value. The hexadecimal value itself must only contain the letters A through F, or the numbers @
through 9.

Syntax: VARBn=OUWwhere ‘h” is the binary variable number andg>" is number of the 1/O brick
where the output resides (not required if addressing the onboard outputs),
or OUTcan be used in an expression suclFr@OUT=b11@1) , orIF(LOUT=h7F)

The number of onboard and external outputs varies by product and number 1/O bricks used. Refer to page 6 for
details.

The function of the outputs is established with@werFNaGommand (although th@UToperator looks at all
outputs regardless of their assigned function fromOtl@FNGcommand). If it is desired to assign only one
output value to a binary variable, instead of all outputs, the bit selegpérator can be used, followed by
the number of the specific output. For exampheRB1=20UT.12 assigns output 12 (th&“2/O point on
SIM2) on /O brick 2 to binary variable 1.

Example:

VARB1=0UT ; Output status assigned to binary variable 1

VARB2=0UT.4 ; On-board output bit 4 assigned to binary variable 2

VARB2 ; Response if bit 4 is set to 1 (for 6K4, 6K6, & 6K8):
i *WARB2=XXX1_XXXX

IF(OUT=b110X1) ; If the output status contains 1's for outputs 1, 2, & 5,
; and a O for output 4, do the IF statement

TREV : Transfer revision level

NIF : End IF statement

176 6K Series Command Reference

OUTALL Output State for Multiple Outputs

Type Output Product Rev
Syntax <I>OUTALL<i><i> 6K 50
Units 1st i = beginning number of output range

2nd i = ending number of output range
b = enable/disable bit

Range Isti=1to n (nis max. number of outputs available)
2ndi = Firstito n
b =0 (off) or 1 (on)

Default 0

Response n/a

See Also OUT, OUTEN, OUTFNC, OUTLVL, TIO, TOUT

TheOUTALLcommand turns a range of output bits on and off. You may use this command to control any
contiguous range of the onboard outputs, as well as any outputs on external 1/QO bricks, as long as all outputs
in the range are left in the default functi@TFNCI-A). If you attempt to change the state of an output that

is not defined as aDUTFNCi-A (general-purpose) output, the controller will respond with an error message
(“OUTPUT BIT USED AS OUTFNC") and theOUTALLcommand will not be executed (but command

processing will continue).

The number of onboard and external outputs varies by the product and configuration of 1/O bricks used. Refer to
page 6 for details.

Example:
OUTALL1,4,1 ; Turn on on-board outputs 1-4
20UTALL3,8,1 ; On I/O brick 2, turn on outputs at I/O locations 3-8

; (/O pins 3-8 on SIM1)

OUTEN Output Enable

Type Output or Program Debug Tool

. Product Rev
Syntax <I>OUTEN<d><d><d><d>... (one <d> for each input)
Units n/a 6K 5.0
Range d = 0 (Disable output function and turn output off)

d = 1 (Disable output function and turn output on)
d = E (Enable output function)
d = X (don't change)
Default E
Response OUTEN: *OUTENEEEE_EEEE (onboard outputs)
10UTEN: *1OUTENEEEE_EEEE_EEEE_EEEE_EEEE_EEEE_EEEE_EEEE
10UTEN.3 *E

See Also OUT, OUTENC, OUTLVL, TIO, TOUT, TSTAT

The Output EnableQUTEN command allows the user to disable any of the outputs from their configured
function and set them on or off. This command is used for troubleshooting and initial start-up testing. It
allows you to simulate output operations by bypassing the configured output function.

TheOUTENcommand has no effect on onboard outputs (located oTRIEGERS/OUTPUTS” connector)
when they are configured as output-on-paosition outputs witbthéNCi-H command.

The number of onboard and external outputs varies by the product and configuration of 1/O bricks used. Refer to
page 6 for details.

Example:
; This allows the user to test if the fault output is working,
; without the inconvenience of trying to force a fault.

10UTENC1-1B ; Define output #1 on 1/O brick 1 as axis 1 moving/not moving
10UTENC2-2B ; Define output #2 on 1/O brick 1 as axis 2 moving/not moving
10OUTFNC3-A ; Define output #3 on 1/O brick 1 as programmable
10OUTFNC4-A ; Define output #4 on 1/O brick 1 as programmable
10OUTFNC5-F ; Define output #5 on 1/O brick 1 as fault output
1OUTENxxxx1 ; Disable programmed function of output #5 on 1/O brick 1

;and turns it on

Command Descriptions 177

OUTENC Output Function

Type Output Product Rev
Syntax <I>0OUTFNC<i><-<a>c> 6K 5.0
Units i = output #, a = axis, ¢ = function identifier (letter)
Range i =1-32 (I/O brick dependent — see page 6)

a = 1-8 (depends on product)

c=A-H
Default ¢ = A (programmable output function — default)
Response OUTFNC: (function and status of onboard outputs)

10UTFNC: (function and status of outputs on I/O brick 1)
10UTFNC1: *10UTFNC1-A PROGRAMMABLE OUTPUT - STATUS OFF

See Also DRFEN, OUT, OUTEN, OUTLVL, OUTP, OUTPLC, OUTTW, POUT, SMPER,
TIO, TSTAT

The Output FunctionUTFNE command defines the functions for each output. The factory setting for all
the outputs is programmable output b@JTFNCI-A). A limit of 32 output may be assign€@TFNC
functions; this excludes (“general-purpose”) function.

For the functions that are axis specific (B, D, and E), an optional axis specifier may be placed in front of the
function. By placing the axis specifier in front of the function letter, the output will only go active when the
specific axis specified has the corresponding condition. If an axis specifier is not specified, then if any of the
axes have the corresponding condition, the output will go active. The output functions are as follows:

Output bit assignments vary by product.The number of onboard and external outputs varies by the product
and configuration of I/O bricks used. Refer to page 6 for details.

Output Scan Rate The programmable outputs are scanned oncsygéem updaté milliseconds).

Multitasking . If the OUTFNGcommand does not include the task identifigrpfefix, the function affects

the task that executes to& TFNGommand. Only functionC’ may be directed to a specific task with the
prefix (e.g.,2%O0UTFNC3-@&ssigns onboard output 3 as a program-in-progress output for task 2). Multiple
tasks may share the same output, but the output may only be assigned one function.

Identifier Function Description

A Programmable Output : Standard output (default function). Turn on or off with the OUT, POUTR
or OUTALLcommands to affect external processes. To view the state of the outputs, use the
TOUTcommand. To use the state of the outputs as a basis for conditional branching or looping
statements (IF , REPEAT WHILE etc.), use thg OUT] command.

<a>B Moving/Not Moving Axis : Output activates when the axis is moving. As soon as the move is
completed, the output will change to the opposite state.

Servo Axes: With the target zone mode enabled (STRGTE]), the output will not change state
until the move completion criteria set with the STRGTDand STRGTVWommands has been met.
In this manner, the output functions as an In Position output.

C Program in Progress : Output activates when a program is being executed. After the program
is finished, the output's state is reversed.

<a>D End-of-Travel Limit Encountered : Output activates when a hard or soft end-of-travel limit has
been encountered. When a limit is encountered, you will not be able to move the motor in that
same direction until you clear the limit by changing direction (D) and issuing a GOcommand.
(An alternative is to disable the limits with the LHO command, but this is recommended only if
the motor is not coupled to the load.)

<a>E Stall Indicator (Stepper axes only): Output activates when a stall is detected. To detect a stall,
you must first connect an encoder and enable stall detection with the ESTALL1 command. For
details refer to the Programmer's Guide.

F Fault Indicator : Output activates when either the user fault input or the drive fault input
becomes active. The user fault input is a general-purpose input defined as a user fault input
with the INFNCi-F or LIMFNCi-F command. Make sure the drive fault input is enabled
(DRFEN and the drive fault active level (DRFLVL) is appropriate for the drive you are using.

178 6K Series Command Reference

<a>G Position Error Exceeds Max. Limit (Servos Only): Output activates when the maximum
allowable position error, as defined with the SMPERcommand, is exceeded. The position error
(TPER is defined as the difference between the commanded position (TPQ) and the actual
position as measured by the feedback device. When the maximum position error is exceeded
(usually due to instability or loss of position feedback from the feedback device), the controller
shuts down the drive and sets error status bit #12 (reported by the TERcommand). If the SMPER
command is set to zero (SMPERY), the position error will not be monitored; thus, the Maximum
Position Error Exceeded function will not be usable.

<a>H Output On Position : Output activates when the specified axis is at a specified position (servo
axes can use encoder position only; stepper axes can use commanded position or encoder
position, depending on the ENCCNTsetting for that axis). Applicable only to the onboard outputs
found on the “TRIGGERS/OUTPUTS" connectors. Output On Position function parameters are
configured with the OUTPncommands.

Example:
10UTFNC1-3B ; Define output #1 on 1/O brick 1 as axis 3 moving/not moving
10UTFNC2-D ; Define output #2 on I/0 brick 1 to go active when any of

; the limits are hit on any axis

OUTLVL Output Active Level

Type Output Product Rev
Syntax <I>0OUTLVL... 6K 5.0
Units n/a

Range b =0 (active low), 1 (active high) or X (don't change)

Default 0

Response OUTLVL: *OUTLVL0000_0000 (onboard outputs)
10UTLVL: *10OUTLVLO000_0000_0000_0000_0000_0000_0000_0000
10UTLVL.3 *0

See Also OUT, OUTEN, OUTFNC, OUTP, OUTPLC, OUTTW, POUT, TOUT

The Output Active Level@uTLVLD) command defines the active state of each programmable output. The
default state is active low. Refer to the 6K Series prohstallation Guidefor programmable output
schematics. ThOUTLVLsetting is NOT saved in battery-backed RAM; therefore, on power up or reset, the
OuUTLVLsetting will default to the factory default setting (thus,@uLVLcommand is a good candidate

for inclusion in yourSTARTPprogram).

The number of onboard and external outputs varies by the product and configuration of 1/O bricks used. Refer to
page 6 for details.

Using Outputs on Expansion 1/O Bricks

» Sinking vs. Sourcing Outputs. On power up, the 6K controller auto-detects the state of the jumper for
each output SIM on each external 1/O brick, and automatically changes/th&/Lsetting
accordingly. If sinking outputs are detected (factory default settingjjL VLis set to active low; if
sourcing outputs are detect€@lTLVLIis set to active high. For details on the jumper, refer to you
product’sinstallation Guide

 Disconnect I/O Brick. If the I/O brick is disconnected (or if it loses power), the controller will
perform a kill (all tasks) and set error bit #18. The controller will remember the brick configuration
(volatile memory) in effect at the time the disconnection occurred. When you reconnect the 1/O brick,
the controller checks to see if anything changed (SIM by SIM) from the state when it was
disconnected. If an existing SIM slot is changed (different SIM, vacant SIM slot, or jumper setting),
the controller will set the SIM to factory defalNiEN andOUTLVLsettings. If a new SIM is installed
where there was none before, the new SIM is auto-configured to factory defaults.

When an output is defined to be active lowQair1.command will cause a output to be pulled to ground.
When an output is defined to be active highpamr1command will cause a output to source current from
the power supply.

Example:

OUTLVL1x0 ; Configure onboard output 1 to be active high, output 2 unchanged,
; and output 3 as active low

Command Descriptions 179

OUTP

Output on Position — Axis Specific

Type Output Product Rev
Syntax <I>0UTPn<r><i> 6K 5.0
Units n = axis/output identifier letter
1%t &2 " b = enable/modal bits;
r = scalable distance
i =time (ms)
Range n = A-H (A for output 1, axis 1, B for output 2, axis 2, etc.)
1%t b =1 (enable output on position) or 0 (disable)
2" b = 1 (incremental position) or O (absolute position)
r=-999,999,999 to +999,999,999
i = 0-65535
Default 0,0,0,0
Response OUTPA: *OUTPAO0,0,+0,0
See Also AXSDEF, ENCCNT, [OUT], OUT, OUTFNC, PSET, SFB

Use the Output on Positio®TP) command to configure the respective onboard output (located on the
“TRIGGERS/OUTPUTS” connectors) to activate based on the specified position of the respective axis.

Onboard output 1 corresponds to axis 1, output 2 to axis 2, and so on. The position referenced is dependent
upon whether the axis is configured for servo or stepperrse8BEFcommand):

» Servo Axes: The referenced position is the encoder position (analog input position cannot be used).
Therefore, to use this feature, encoder feedback must be selected \gitiB ttemmand before the
OuTPncommand is executed. If ti##B command is changed, the output-on-position function is
disabled until a ne@uUTPncommand re-enables the function.

» Stepper Axes: The referenced position depends oBNBENTsetting at the time th@UTPn

command is executed. ENCCNT(factory default), the commanded position is useBNIECNT1
the encoder position is used.

To use th@dUTPncommand, you must first use tO& TFNCi-H command to configure the onboard output
to function as aoutput on positiomutput. (The *” in the OUTFNCi-H command represents the number of
the onboard output in the product's output bit pattern — see page 6 for output bit patterns for each product.)

Refer to the programming example below.

Syntax:
OUTP n_, , <r>, <i>

Axis/Output Specifier: j

A ... Turn on output 1 based on axis #1's position

B ... Turn on output 2 based on axis #2's position

C ... Turn on output 3 based on axis #3's position

D ... Turn on output 4 based on axis #4's position

E ... Turn on output 5 based on axis #5's position

F ... Turn on output 6 based on axis #6's position

G ... Turn on output 7 based on axis #7's position

H ... Turn on output 8 based on axis #8's position
Enable Bit: <

L.

Y

1 ... Enable the output-on-position function
0 ... Disable the output-on-position function

Servo Axes: If an SFBcommand is executed,
the function is disabled.

Increment or Absolute Position Comparison: <

1 ... Set position comparison to incremental
(measured from the last start-motion
command, such as GQ GOL GOWHENtc.)

0 ... Set position comparison to absolute

Time (milliseconds):

Time (milliseconds) the output is to stay active.
The output activates when the specified
position (<r>) is reached or exceeded, and
stays active for the specified time.

If this field is set to zero, the

output will stay active for as long as the actual
distance equals or exceeds the position
comparison distance (this is possible only for
an absolute position comparison).

Position:

Scalable distance (distance is either
incremental or absolute, depending on the
second data field).

Servo Axes:
Only the encoder position can be used.

Stepper Axes:
- If ENCCNTOQthe commanded position is used.
- If ENCCNT1the encoder position is used.

NOTE

The output activates only during motion; therefore, issuing a PSETcommand to set the
absolute position counter to activate the output on position will not turn on the output

until the next motion occurs.

180 6K Series Command Reference

Example (servo axes):

AXSDEF10 ; Define axis 1 as servo, axis 2 as stepper

SFB1 ; Select encoder feedback for axis 1

OUTFNC1-H ; Set onboard output #1 as an "output on position" output
OUTFNC2-H ; Set onboard output #2 as an "output on position" output

OUTPA1,0,+50000,50 ; Turn on onboard output #1 for 50 ms when the encoder
; position of axis #1 is > or = absolute position +50,000
OUTPB1,1,+30000,50 ; Turn on onboard output #2 for 50 ms when the axis #2's
; commanded position reaches > or = incremental position
; 30,000 (since the last GO)

OUTPLC Establish PLC Strobe Outputs

Type Output Product Rev
Syr_nax <I>QUTPLC<i>,<i-i>,<i> <i> 6K 5.0
Units See below

Range See below

Default 1,0-0,0,0

Response OUTPLC1: *0-0,0,0 (onboard outputs referenced)
10UTPLC1: *0-0,0,0 (outputs on I/O brick 1 referenced)

See Also INPLC, OUT, OUTEN, OUTENC, OUTLVL, OUTTW, [TW]

The Establish PLC Strobe Outp@UTPLG command with its correspondifigPLC command configure

the applicable inputs and outputs to read data from a parallel I/O device such as a PLC (Programmable
Logic Controller), or a passive thumbwheel module. The actual data transfer occurs Witlcdimemand.
Refer to therwcommand for a description of the data transfer process.

TheouTPLCcommand has four fieldsi¢, <i-i>,<i>,<i>):

Data Field Description

Field 1: <i> Set #: There are 4 possible OUTPLGsets (1-4). This field identifies which set to use.
Field 2: <i-i> Strobe Output #s : Data reads with the TWcommand are strobed by the outputs selected

in this field. The first number is the first output, and the second number is the last output.
The outputs must be consecutive. The number of outputs should equal half the number of
the maximum number of BCD digits required. If 6 digits are being read, then three outputs
are needed as each output strobe selects two BCD digits. Refer to page 6 for help in
identifying which output bits are available to place in this field.

Field 3: <i> TW Command Pending : This field identifies an output that becomes active on a TW
command and then turns off on completion of the TWcommand. This output can signal a
device that a TWcommand is pending. A zero in this field will not activate any output.

Field 4: <i

> Strobe Time : This field identifies the length of time an output will stay active in order to
read the BCD digits. The strobe time (in milliseconds) should be greater than the PLC
scan time, if a PLC is being used, or set greater than the minimal debounce time if using
thumbwheels. Range =1 - 5000 milliseconds.

To disable a specific PLC set, en@®ITPLCn,3-3,8,3 wheren is the PLC set (1-4).

Example:
INPLC2,1-8,9,10 ; Set INPLC set 2 as BCD digits on onboard inputs 1-8,
; with input 9 as the sign bit, and input 10 as the data valid
OUTPLC2,1-4,5,50 ; Set OUTPLC set 2 as output strobes on onboard outputs 1-4,
; with output 5 as the command pending bit, and strobe time
: of 50 milliseconds
A(TW6) ; Read data into axis 1 acceleration using INPLC set 2
; and OUTPLC set 2 as the data configuration

Command Descriptions 181

OUTTW Establish Thumbwheel Strobe Outputs

Type Output Product Rev
Syr_1tax <I>OUTTWK<i> <i-i> <i> <i> 6K 5.0
Units See below

Range See below

Default 1,0-0,0,0

Response OUTTW1: *0-0,0,0 (onboard outputs referenced)
10UTTW1: *0-0,0,0 (outputs on I/O brick 1 referenced)

See Also INSTW, OUT, OUTEN,OUTFNC,OUTLVL, OUTPLC,[TW]

The Establish Thumbwheel Strobe Outp@s{TWcommand with its correspondimgSTWcommand

configure the applicable inputs and outputs to read data from an active thumbwheel device. The actual data
transfer occurs with thewcommand. Refer to thBwcommand for a description of the data transfer

process.

TheouTTwommand has four fieldsi¢,<i-i>,<i>,<i>):

Data Field Description

Field 1: <i> Set #: There are 4 possible OUTTWsets (1-4). This field identifies which set to use.

Field 2: <i-i> Strobe Output #s : Data reads with the TWcommand are strobed by the outputs selected

in this field. The first number is the first output, and the second number is the last output.
The outputs must be consecutive. The number of outputs should be compatible to the
thumbwheel device. Refer to page 6 for help in identifying which output bits are available
to place in this field.

Field 3: <i> Thumbwheel Enable Output : This field identifies an output that becomes active on a TW
command and then turns off on completion of the TWcommand. This output can enable a
thumbwheel module to respond, thus allowing multiple thumbwheels to be wired to the
inputs and outputs. A zero in this field will not activate any output.

Field 4: <i> Strobe Time : This field identifies the length of time an output will stay active to read the
BCD digits. The strobe time (in milliseconds) should be set to a minimal debounce time.
Range = 1-5000 milliseconds.

Example:

INSTW2,1-4,5 ; Set INSTW set 2 as BCD digits on onboard inputs 1-4, with
; input 5 as the sign bit

OUTTW2,1-3,4,50 ; Set OUTTW set 2 as output strobes on onboard outputs 1-3,
; with onboard output 4 as the output enable bit, and
: strobe time of 50 milliseconds

A(TW2) ; Read data into axis 1 acceleration using INSTW set 2 and
; OUTTW set 2 as the data configuration

182 6K Series Command Reference

PA

Path Acceleration

Type Path Contouring or Motion (Linear Interpolated) Product Rev
Syntax <I>PA<r> 6K 5.0
Units r = units/sec/sec (scalable by SCLD)

Range 0.00001-39,999,998 (depending on the scaling factor)

Default 10.0000

Response PA: *PA10.0000

See Also GOL, PAA, PAD, PADA, SCLD, SCALE

The Path AcceleratiorPf) command specifies the path acceleration to be used with linearly interpolated

moves GOL), and all contouring move®I(IN, PARCMPARCOMPARCOPPARCR. For both the linear

interpolated and the contouring moves, the path acceleration refers to the acceleration experienced by the load
as motion gains speed along the path. For linearly interpolated moves, the acceleration of each individual axis
is dependent on the distance it contributes to the total path traveled by the load. In contouring paths, the

acceleration of each individual axis is dependent on the direction of travel in the X-YNudare. The PA
value can be altered between path segments, but not within a path segment.

Contouring and linear interpolation are discussed in detail in the Custom Profiling chapter of the
Programmer's Guide

UNITS OF MEASURE andSCALING : refer to page 16.

The path acceleration remains set until you change it with a subsequent path acceleration command.
Accelerations outside the valid range are flagged as an error, with a nteNs@gedD DATA-FIELD x,
where x is the field number. When an invalid acceleration is entered the previous acceleration value is

retained.

If the path deceleratiorPAD command has not been entered, the path acceleraipngmmand will set the
path deceleration rate. Once the path decelera®iaD command has been entered, the path acceleration
(PA) command no longer affects path deceleration.

Example:
PV5 ; Set path velocity to 5 units/sec
PA50 ; Set path acceleration to 50 units/sec/sec
PAD100 ; Set path deceleration to 100 units/sec/sec
DEF progl ; Begin definition of path named progl
PAXES1,2 ; Set axes 1 and 2 as the X and Y contouring axes
PABO : Set to incremental coordinates
PLIN1,1 ; Specify X-Y endpoint position to create a 45 degree
; angle line segment
END ; End definition of path progl
PCOMP progl ; Compile path progl
PRUN progl ; Execute path progl
PAA Path Average Acceleration
Type Motion (S-Curve); Motion (Linear Interpolated) Product Rev
Syntax <I>PAA<r> 6K 5.0
Units r = units/sec/sec (scalable by SCLD)
Range 0.00001-39,999,998 (depending on the scaling factor)
Default 10.00 (trapezoidal profiling is default, where PAA tracks PA)
Response PAA: *PAA10.0000
See Also DRES, PA, PAD, PADA, SCLD, SCALE

The Path Average AcceleratiorAA) command allows you to specify the average acceleration for an S-curve

path profile. S-curve profiling provides smoother motion control by reducing the rate of change in
acceleration and deceleration; this accel/decel rate of change is knjssk &scurve profiling improves

position tracking performance in linear interpolation applications (not contouring). S-curve profiling is not

available for contouring applications. Refer to page 13 for details on S-curve profiling.

Command Descriptions 183

NOTE: Path scalinggCLD affectsPAAthe same as it does feA Refer to page 16 for details on scaling.

Example:

PV5 ; Set path velocity to 5 units/sec

PA50 ; Set path acceleration to 50 units/sec/sec

PAA40 ; Set path s-curve (average) acceleration to 40 units/sec/sec

PAD100 ; Set path deceleration to 100 units/sec/sec

PADA70 ; Set path s-curve (average) deceleration to 70 units/sec/sec

DEF progl ; Begin definition of path named progl

D10,5,2,11 : Set distance values, axes 1-4

GOL1111 ; Initiate linear interpolation motion

END ; End definition of path progl

PAB Path Absolute

Type Path Contouring Product Rev
Syntax <I>PAB 6K 5.0
Units n/a

Range b =0 (incremental) or 1 (absolute)

Default 0

Response No response - Must be defining a path (DEF)

See Also PL, PLC, SCLD, PWC,SCALE

The Path AbsoluteP@B) command is used to indicate whether the subsequent segment endpoints are specified in
either incrementald) or absoluteX) coordinates. Segment endpoint position specifications may be either absolute
with respect to the user-defined coordinate system, or incremental, relative to the start of each individual segment.
At any point along a path definition, coordinates may be switched from incremental to absolute.

The absolute coordinate system may be eithewtrk coordinate system or thecal coordinate system (s&).

PAD Path Deceleration

Type Path Contouring or Motion (Linear Interpolated) Product Rev
Syntax <I>PAD<r> 6K 5.0
Units r = units/sec/sec (scalable by SCLD)

Range 0.00001-39,999,998 (depending on the scaling factor)

Default 10.0000 (PAD tracks PA)

Response PAD: *PAD10.0000

See Also GOL, PA, PAA, PADA, SCLD, SCALE

The Path Deceleratio®AD command specifies the path deceleration to be used with linearly interpolated

moves GOL), and all contouring move®I(IN, PARCMPARCOMPARCOPPARCR. For both the linear

interpolated and the contouring moves, the path deceleration refers to the deceleration experienced by the load
as motion slows along the path. For linearly interpolated moves, the deceleration of each individual axis is
dependent on the distance it contributes to the total path traveled by the load. In contouring paths, the
deceleration of each individual axis is dependent on the direction of travel in the X-Y plane.

UNITS OF MEASURE andSCALING: refer to page 16.

The path deceleration remains set until you change it with a subsequent path deceleration command.
Decelerations outside the valid range are flagged as an error, with a nésgageéd DATA-FIELD x, where x
is the field number. When an invalid deceleration is entered the previous deceleration value is retained.

If the path deceleratiorPAD command has not been entered, the path acceleraipnpdmmand will set the

path deceleration rate. Once the path decelera®iab) command has been entered, the path acceleration

(PA) command no longer affects path deceleratiorAlbis set to zeroRADY), then the path deceleration will
once again track whatever thé command is set to.

Example: Refer to the path acceleration (PA) command example.

184 6K Series Command Reference

PADA Path Average Deceleration

Type Motion (S-Curve); Motion (Linear Interpolated) Product Rev
Syntax <I>PADA<r> 6K 5.0
Units r = units/sec/sec (scalable by SCLD)

Range 0.00001-39,999,998 (depending on the scaling factor)

Default 10.00 (PADA tracks PAA)

Response PADA: *PADA10.0000

See Also DRES, PA, PAA, PAD, SCLD, SCALE

Use the Path Average Decelerati®ADA command to specify the average deceleration for an S-curve path
profile. S-curve profiling provides smoother motion control by reducing the rate of change in acceleration and
deceleration; this accel/decel rate of change is knovarlkass-curve profiling can improve position tracking
performance in linear interpolation applications (not contouring). S-curve profiling is not available for
contouring applications. Refer to page 13 for details on S-curve profiling.

NOTE: Path scalinggCLD affectsPADAthe same as it does feAD Refer to page 16 for details on scaling.

Example: Refer to the path average acceleration (PAA command example.

[PANI] Position of ANI Inputs

Type Assignment or comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [ANI], ANIRNG, [FB],[CA], CMDDIR, PSET, SCALE, SCLD,

SFB, TANI, TPANI, TFB

This command is available only to servo axes, and only if you have an analog input SIM in an extended
I/O brick.

ThePANI operator is used to assign the analog input’s position information to a variable, or to make a
comparison against another value. Pl value represents the analog input position after the affects of
distance scalingSCLD), offset PSET), and commanded direction polarityMqDDIR.

The TPANI andPANI commands are designed for applications in which analog input is scaled and/or used as
position feedback. If you are using analog input to monitor an analog signeiNh@andANI commands

would be more appropriatgANI andANI values are measured in volts and are unaffected by scaling, offset,
or command direction polarity).

ThePANI value is represented in analog-to-digital converter (ADC) units if scaling is dissldedgg. The
ADC has a 12-bit resolution, giving a range of +2047 to -2048 counts when using #i®¥ltange of the
analog input (205 counts/volt). If scaling is enableGALE), anSCLDscale factor of 205 (the default value
when analog input feedback is selected) allows units of volts to be used.

NOTE: If you change the voltage range of the analog input (witAthBNGcommand), the resolution of the
PANI response will change accordingly. The defaultli8V (+2047 to -2048 counts).

Syntax: VARn=PANLi where ‘h” is the variable number" is the number of the I/O brick, and™
is I/O brick address where the analog input resideBASH can be used in an expression such as
IF(1PANL10=2.3) . If no brick identifier €B>) is provided, it defaults to 1. To understand the
I/O brick addressing convention, refer to page 6.

Command Descriptions 185

Example:

SCLD205 ; Set distance scaling to accommodate values in volts
; (205 counts/volt)

SCALE1 ; Enable scaling

DEL proge ; Delete program called proge

DEF proge ; Begin definition of program called proge

VAR4=1PANI.10 : Position of the 2
; is assigned to variable 4
; If position of 1 st analog input on SIM2 of I/O brick 1

;is < 8.2 volts, do the commands between IF and NIF

nd analog input on SIM2 of 1/0 brick 1

IF(LPANI.9<8.2)

TREV : Transfer revision level

NIF : End if statement

END ; End definition of proge

PARCM Radius Specified CCW Arc Segment

Type Path Contouring Product Rev
Syntax <ISPARCM<r><r>,<r> 6K 50
Units r = units (scalable by the SCLD value)

Range 0.00000 - +£999,999,999

Default n/a

Response No response - Must be defining a path (DEF)

See Also PARCP, PARCOM, PARCOP, PRTOL, SCLD, SCALE

The Radius Specified CCW Arc SegmePARCYIcommand is used to specify the endpoints and the radius of
a counter-clockwise arc segment. The placement, length, radius of curvature, and orientation of the arc are
completely specified by the endpoint and radius specifications of the arc segment and the endpoint of the
previous segment (current position). The direction of rotation in the X-Y plane will be counter-clockwise.

A complete circle cannot be specified witRaRCMommand, because the center is arbitréige the
PARCOMommand for circles.

Command SyntaxPARCM<Xend>,<Yend>,<Radius>

Segment endpoint position specifications may be either absblgd)(with respect to user defined segment
start coordinates, or incrementBAB84), relative to the start of each individual segment. The first two
numbers following th€ARCMcommand specify the X endpoint and the Y endpoint, respectively.

Radius specifications are signed values. A positive radius specifies an arc which is 180 degrees or less. A
negative radius specifies an arc which is 180 degrees or more. The last numbergfidtieommand
specifies the radius.

UNITS OF MEASURE andSCALING : refer to page 16 or to tfgCLDdescription.

Example

PV5 ; Set path velocity to 5 units/sec

PA50 ; Set path acceleration to 50 units/sec/sec

PAD100 ; Set path deceleration to 100 units/sec/sec

PSETO0,0 ; Set absolute position to 0,0

DEF progl ; Begin definition of path named progl

PAXES1,2 ; Set axes 1 and 2 as the X and Y contouring axes

PABO : Set to incremental coordinates

POUT1001 ; Output pattern during first arc: onboard outputs 1 & 4 are
; on and outputs 2 & 3 are off

PARCMS5,5,5 ; Specify incremental X-Y endpoint position and radius arc
; <180 degrees for 1/4 circle counter-clockwise arc

POUT1100 ; Output pattern during second arc: onboard outputs 1 & 2 are
; on and outputs 3 & 4 are off

PARCP5,-5,-5 ; Specify incremental X-Y endpoint position and radius arc
; >180 degrees for 3/4 circle clockwise arc

END ; End definition of path progl

PCOMP progl ; Compile path progl

PRUN progl ; Execute path progl

OUTO0000 ; Turn off the first four onboard outputs

186 6K Series Command Reference

PARCOM Origin Specified CCW Arc Segment

Type Path Contouring Product Rev
Syntax <I>SPARCOM<r>,<r>,<r>,<r> 6K 5.0
Units r = units (scalable with the SCLD value)

Range 0.00000 - +999,999,999

Default n/a

Response Noresponse - Must be defining apath (DEF)
See Also PARCOP,PARCM,PARCP, PRTOL, SCLD, SCALE

The Origin Specified CCW Arc SegmemARCOMcommand is used to specify the coordinates necessary to
create a counter-clockwisgc segment. The placement, length, radius of curvature, and orientation of the arc
are completely specified by the endpoint and center specifications of the arc segment and the endpoint of the
previous segment (current position). The direction of rotation in the X-Y plane will be counter-clockwise.

Command SyntaxPARCOM<Xend>,<Yend>,<Xcenter>,<Ycenter>

Segment endpoint position specifications may be either absbld)(with respect to user defined segment
start coordinates, or incrementaAB¢), relative to the start of each individual segment. The first two
numbers following theARCOMommand specify the X endpoint and the Y endpoint, respectively.

Center position specifications are always incrementatelative to the start of the arc segment. The last two
numbers following theARCOMommand specify the X center point and Y center point coordinates,
respectively.

UNITS OF MEASURE andSCALING : refer to page 16 or to tt&cLDdescription.

Example:

PV5 ; Set path velocity to 5 units/sec

PA50 ; Set path acceleration to 50 units/sec/sec

PAD100 ; Set path deceleration to 100 units/sec/sec

PSETO,0 ; Set absolute position to 0,0

DEF progl ; Begin definition of path named progl

PAXES1,2 ; Set axes 1 and 2 as the X and Y contouring axes

PABO ; Set to incremental coordinates

POUT1001 ; Output pattern during first arc: onboard outputs 1 & 4 are
; on and outputs 2 & 3 are off

PARCOMS5,5,0,5 ; Specify incremental X-Y endpoint position and X-Y center
; position for quarter circle counter-clockwise arc

POUT1100 ; Output pattern during second arc: onboard outputs 1 & 2 are

; on and outputs 3 & 4 are off
PARCOPO0,0,5,0 ; Specify incremental X-Y endpoint position and X-Y center
; position for full circle clockwise arc

END ; End definition of path progl

PCOMP progl ; Compile path progl

PRUN prog1l ; Execute path progl

OUT0000 ; Turn off the first four onboard outputs

Command Descriptions 187

PARCOP Origin Specified CW Arc Segment

Type Path Contouring Product Rev
Syntax <I>SPARCOP<r>,<r>,<r>,<r> 6K 5.0
Units r = units (scalable by the SCLD value)

Range 0.00000 - %£999,999,999

Default n/a

Response Noresponse - Must be defining a path (DEF)
See Also PARCOMPARCM,PARCP, PRTOL, SCLD, SCALE

The Origin Specified CW Arc SegmemARCOPcommand is used to specify the coordinates necessary to
create a clockwisarc segment. The placement, length, radius of curvature, and orientation of the arc are
completely specified by the endpoint and center specifications of the arc segment and the endpoint of the
previous segment (current position). The direction of rotation in the X-Y plane will be clockwise.

Command SyntaxPARCOP<Xend>,<Yend>,<Xcenter>,<Ycenter>

Segment endpoint position specifications may be either absbha)(with respect to user defined segment
start coordinates, or incrementBA84, relative to the start of each individual segment. The first two
numbers following th€ARCORRommand specify the X endpoint and the Y endpoint, respectively.

Center position specifications are always incrementatelative to the start of the arc segment. The last two
numbers following th€ARCORRommand specify the X center point and Y center point coordinates,
respectively.

UNITS OF MEASURE andSCALING : refer to page 16 or to tfgCLDdescription.

Example: Refer to the PARCOMommand example.

PARCP Radius Specified CW Arc Segment

Type Path Contouring Product Rev
Syntax <I>SPARCP<r><r>,<r> 6K 5.0
Units r = units (scalable by the SCLD value)

Range 0.00000 - *999,999,999

Default n/a

Response No response - Must be defining a path (DEF)

See Also PARCM, PARCOM, PARCOP, PRTOL, SCLD, SCALE

The Radius Specified CW Arc SegmeRARCE command is used to specify the endpoints and the radius of a
clockwisearc segment. The placement, length, radius of curvature, and orientation of the arc are completely
specified by the endpoint and radius specifications of the arc segment and the endpoint of the previous
segment (current position). The direction of rotation in the X-Y plane will be clockwise.

A complete circle cannot be specified witRARCFcommand, because the center is arbitréige the
PARCORrROmmand for circles.

Command SyntaxPARCP<Xend>,<Yend>,<Radius>

Segment endpoint position specifications may be either absbhia)(vith respect to user defined segment
start coordinates, or incrementBA84, relative to the start of each individual segment. The first two
numbers following th€ARCPcommand specify the X endpoint and the Y endpoint, respectively.

Radius specifications are signed values. A positive radius specifies an arc which is 180 degrees or less. A
negative radius specifies an arc which is 180 degrees or more. The last numbersfthReommand
specifies the radius.

UNITS OF MEASURE andSCALING : refer to page 16 or to tf&CLDdescription.

Example: Refer to the PARCMommand example.

188 6K Series Command Reference

PAXES Set Contouring Axes

Type Path Contouring Product Rev
Syntax <I>PAXES<i><i> <i> <i> 6K 50
Units Each <i>: X axis, Y axis, Tangent axis, Proportional axis

Range i = 1-8 (product dependent)

Default 1,2,0,0

Response No response - Must be defining a path (DEF)

See Also DEF, DRES, END, ERES, PCOMP, PPRO, PRUN, SCLD, TSKAX

The Set Contouring Axe®AXE9 command defines the axes to be used in the current path definition (syntax:
PAXES<Xaxis>,<Yaxis>,<Tangent>,<Proportional>). The X and Y axes must be specified, but the Tangent
and Proportional axes are optional.

If no axis number is specified for the Tangent or Proportional axes, it signifies that the Tangent or
Proportional axes are not included in that path definition. The axis specification for the entire path is done
with this command. TheAXEScommand should be given prior to any contour segments.

NOTES

» For products that control only 2 axes of motion, the Tangent and Proportional axes are not available.

* When using scaling (SCALEJ), the units used for path distance, acceleration, and velocity is determined
by the SCLDvalue. For example, suppose you have 2 servo axes (axes 1 & 2) involved in contouring,
both axes use encoder feedback with a resolution of 4000 counts/rev, axis 1 uses a 10:1 (10 turns per
inch) leadscrew and axis 2 uses a 5:1 (5 turns per inch) lead screw, and you want to program in inches.
For this application you would use the SCLD40000,20000 command to establish path motion units in
inches: distance is inches, acceleration is inches/sec/sec, and velocity is inches/sec.

* When not using scaling (SCALEQ, path motion units are based on the resolution (DRESfor steppers,
ERESfor servos) of axis 1. If multi-tasking is used, path motion units are based on the resolution of the
first (lowest number) axis associated with the task (TSKAX.

Example: (see PCOMP

[PC] Position Commanded

Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also ERES, [FB], GOWHEN, [PCC], [PE], [PER], PSET, SCALE,
SCLD, SMPER, TAS, TFB, TPC, TPCC, TPE, TPER

UsePC operator to assign the curremimmanded positiofscalable bysCLD of each axis to a variable, or to
make a comparison against another value. If you ise@Eacommand, the commanded position value will
be offset by th®SETcommand value.

Servo Axes ThePCvalue is measured in encoder or analog input (ANI) counts. The commanded position
(PO and the actual positioF) are used in the control algorithm to calculate the position
error PC- FB = PER) and thereby determine the corrective control signal.

Stepper Axes ThePCvalue is measured in commanded counts (“motor counts”).

UNITS OF MEASURE andSCALING : refer to page 16.

Syntax: VARn=aPCwhere ‘h” is the variable number, and™is the axis, oPCcan be used in an expression
such asF(1PC>5@). ThePCcommand must be used with an axis specifier or it will default to
axis 1 (e.g.1PC, 2PC, etc.).

Example:

VAR1=1PC ; Commanded position for axis 1 is assigned to variable 1
IF(2PC<50) ; If the commanded position for axis 2 is <50, do the IF statement
VAR2=2PC+500 ; Commanded position for axis 2 plus 500 is assigned to variable 2
NIF : End IF statement

Command Descriptions 189

[PCC] Captured Commanded Position

Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a
Range n/a
Default n/a

Response n/a

See Also CMDDIR, ENCCNT, INFNC, [PC], [PCMS], PSET, SCALE, SCLD,
SFB, [TRIG], TRGLOT, TPC, TPCC, TTRIG

Use thePCCoperator to assign the captured commanded position of a specific axis to a variable, or to make a
comparison against another value.

Syntax: VARn=aPCCcwhere “n” is the variable number, “a” is the axis, and “c” designates trigger A or B for the axis, or
Mfor the MASTER TRIG input (see table below); or PCCcan be used in an expression such as IF(1IPCCB>2345(@) . The
PCCoperator must be used with an axis specifier or it will default to axis 1 (e.g., 1PCCA 2PCCB 5PCCMetc.).

Trigger Input (Axis 1-4 Dedicated PCC Trigger Input (Axis 5-8 Dedicated PCC

“ TRIGGERS/OUTPUTS” connector) * Axis Syntax “ TRIGGERS/OUTPUTS” connector) * Axis Syntax
Pin 23, Trigger 1A 1 1PCCA Pin 23, Trigger 5A 5 S5PCCA
Pin 21, Trigger 1B 1 1PCCB Pin 21, Trigger 5B 5 5PCCB
Pin 19, Trigger 2A 2 2PCCA Pin 19, Trigger 6A 6 6PCCA
Pin 17, Trigger 2B 2 2PCCB Pin 17, Trigger 6B 6 6PCCB
Pin 15, Trigger 3A 3 3PCCA Pin 15, Trigger 7A 7 7TPCCA
Pin 13, Trigger 3B 3 3PCCB Pin 13, Trigger 7B 7 7PCCB
Pin 11, Trigger 4A 4 4PCCA Pin 11, Trigger 8A 8 8PCCA
Pin9, Trigger 4B 4 4PCCB Pin9, Trigger 8B 8 8PCCB

* The number of trigger inputs available varies by product (refer to your product’s Installation Guide).

To use an axis position captured with the MASTER TRIG input, use aPCCMwhere “a” can be any axis number.

About Position Capture: The commanded position can be captured only by a trigger input that is defined as
“trigger interrupt” input with theNFNCi-H command (seBNFNC for details). Each trigger input, when
configured as a “trigger interrupt” input, is dedicated to capture the position of a specific axis (see table
above). When a “trigger interrupt” input is activated, the commanded position of the dedicated axis is
captured and the position is available through the use #fdbeperator and thePCCdisplay command.

Note for Stepper Axes By default, stepper axes capture only the commanded position. However, if the axis
has Encoder Capture Mode enabled witheBR€CNTcommand, only the encoder position is captured.

Position Capture Status, Longevity of Captured PositionUse theTTRIG andTRIG commands to ascertain

if a trigger interrupt input has been activatetRIG displays the status as a binary report, BRI is an
assignment/comparison operator for using the status information in a conditional expression (€., in an
statement). Once the captured commanded position value is assigned/comparedhgi¢ofierator, the
TTRIG/TRIG status bit for that trigger input is cleared; but the position information remains available until it is
overwritten by a subsequent position capture from the same trigger input.

Position Capture Accuracy. The commanded position capture accuracy is +1 count.

Scaling and Position Offsetlf scaling is enabledSCALE), the commanded position is scaled by the
distance scaling factosCLD. If scaling is not enableCALE®, the value assigned will be actual
commanded counts. If you issu@SET (establish absolute position reference) command, any previously
captured commanded positions will be offset byRBET command value.

Example:

INFN%l-H ; Assign trigger input 1A as trigger interrupt input for axis 1

INFNC3-H ; Assign trigger input 2A as trigger interrupt input for axis 2

VAR1=1PCCA ; Assign captured commanded position of axis 1 to variable 1
; (position was captured when trigger input 1A became active)

IF(2PCCA<40) ; If the captured commanded position on axis 2

; (captured when trigger input 2A became active) is
; less than 40, do the IF statement
VAR2=1PCCA+10 ; Add 10 to the captured commanded position on axis 1
; (captured when trigger input 1A became active) and
; assign the sum to variable #2
NIF ; End IF statement

190 6K Series Command Reference

[PCE] Position of Captured Encoder

Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also CMDDIR, ENCCNT, ENCPOL, INFNC, [PCMS], [PE], PSET, SCALE,

SCLD, SFB, TPCE, [TRIG], TRGLOT, TTRIG

Use thePCEoperator to assign the captured encoder position of a specific axis to a variable, or to make a
comparison against another value.

Syntax: VARn=aPCEcwhere “n” is the variable number, “a” is the axis, and “c” designates trigger A or B for the axis, or
Mfor the MASTER TRIG input (see table below); or PCEcan be used in an expression such as IF(1IPCEB>2345@) . The
PCEoperator must be used with an axis specifier or it will default to axis 1 (e.g., 1PCEA 2PCEB 5PCEM etc.).

Trigger Input (Axis 1-4 Dedicated PCE Trigger Input (Axis 5-8 Dedicated PCE

“ TRIGGERS/OUTPUTS” connector) * Axis Syntax “ TRIGGERS/OUTPUTS” connector) * Axis Syntax
Pin 23, Trigger 1A 1 1PCEA Pin23, Trigger 5A 5 SPCEA
Pin 21, Trigger 1B 1 1PCEB Pin21, Trigger 5B 5 5PCEB
Pin 19, Trigger 2A 2 2PCEA Pin19, Trigger 6A 6 6PCEA
Pin 17, Trigger 2B 2 2PCEB Pin 17, Trigger 6B 6 6PCEB
Pin 15, Trigger 3A 3 3PCEA Pin15, Trigger 7A 7 7PCEA
Pin 13, Trigger 3B 3 3PCEB Pin13, Trigger 7B 7 7PCEB
Pin 11, Trigger 4A 4 4PCEA Pin11, Trigger 8A 8 8PCEA
Pin9, Trigger 4B 4 4PCEB Pin9, Trigger 8B 8 8PCEB

* The number of trigger inputs available varies by product (refer to your product’s Installation Guide).

To use an axis position captured with the MASTER TRIG input, use aPCEMwhere “a” can be any axis number.

About Position Capture: The encoder position can be captured only by a trigger input that is defined as
“trigger interrupt” input with theNFNCi-H command (seeNFNC command). Each trigger input, when
configured as a “trigger interrupt” input, is dedicated to capture the position of a specific axis (see table
above). When a “trigger interrupt” input is activated, the encoder position of the dedicated axis is captured
and the position is available through the use oPtbEoperator and thEPCEdisplay commandStepper

Axes By default, stepper axes capture only the commanded position. To capture the encoder position, the
axis must be in the Encoder Capture Mode BB¢@CNTcommand).

Position Capture Status, Longevity of Captured PositionUse theTTRIG andTRIG commands to ascertain

if a trigger interrupt input has been activat€tiRIG displays the status as a binary report, BRI is an
assignment/comparison operator for using the status information in a conditional expression (€f., in an
statement). Once the captured encoder position value is assigned/comparedrdthaperator, the

TTRIG/TRIG status bit for that trigger input is cleared; but the position information remains available until it is
overwritten by a subsequent position capture from the same trigger input.

Position Capture Accuracy. The encoder position capture accuracy is +1 encoder count.

Scaling and Position Offsetlf scaling is enabledSCALEY), the encoder position is scaled by the distance
scaling factor $CLD. If scaling is not enableCALEQ, the value assigned will be actual encoder counts. If

you issue #@SET (establish absolute position reference) command, any previously captured encoder positions
will be offset by the>SET command value.

Example:

INFNC1-H ; Assign trigger input 1A as trigger interrupt input for axis 1
INFNC3-H ; Assign trigger input 2A as trigger interrupt input for axis 2
VAR1=1PCEA ; Assign captured encoder position of axis 1 to variable 1

; (position was captured when trigger input 1A became active)
IF(2PCEA<4000) ; If the captured encoder position on axis 2

; (captured when trigger input 2A became active) is

: less than 4000, do the IF statement
VAR2=1PCEA+10 ; Add 10 to the captured encoder position on axis 1

; (captured when trigger input 1A became active) and

; assign the sum to variable #2
NIF : End IF statement

Command Descriptions 191

[PCME] Position of Captured Master Encoder

Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also INFNC, MEPOL, MESND, [PME], [PCMS], PMECLR, PMESET, TPCME,

TPME, TPCMS

Use thePCMEoperator to assign the captured master encoder position to a variable, or to make a comparison
against another value. The master encoder is connected to the connector labeled “Master Encoder.”

Syntax VARn=PCMBvhere ‘h” is the variable number; ®@CMEcan be used in an expression such as
IF(PCME>23450) .

About Position Capture: The master encoder position can be captured only by the Master Trigger input
(labeled “MASTER TRIG”"), and only when that input is defined as a “trigger interrupt” input with the
INFNC17-H command (se®NFNC command). When the “trigger interrupt” input is activated (active edge),
the master encoder position is captured and the position is available through the usepfat@erator and
the TPCMEisplay command.

Position Capture Status, Longevity of Captured PositionUse theTTRIG andTRIG commands to ascertain

if a trigger interrupt input has been activat€tRIG displays the status as a binary report, BRI is an
assignment/comparison operator for using the status information in a conditional expression (€., in an
statement). Once the captured master encoder position value is assigned/compare@®@itizdperator,
TTRIG/TRIG status bit #17 is cleared; but the position information remains available until it is overwritten by
a subsequent position capture from the master trigger input.

Position Capture Accuracy The master encoder position capture accuracy is +1 encoder count.

Scaling and Position OffsetThePCMEvalue is always in master encoder counts; it is never scaled. If you
issue &?MESET(establish absolute position reference) command, any previously captured master encoder
positions will be offset by theMESETcommand value.

Example:
INFNC17-H ; Assign master trigger as trigger interrupt input for the
; master encoder
VAR1=PCME ; Assign captured master encoder position to variable 1

; (position was captured when master trigger became active)
IF(PCME<4000) ; If the captured master encoder position

; (captured when master trigger input became active) is

; less than 4000, do the IF statement
VAR2=PCME+10 ; Add 10 to the captured master encoder position

; (captured when master trigger input became active) and

; assign the sum to variable #2
NIF ; End IF statement

192 6K Series Command Reference

[PCMS] Captured Master Cycle Position

Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a
Range n/a
Default n/a
Response n/a
See Also CMDDIR, ENCCNT, ENCPOL, FOLMAS, INFNC, [PCC], [PCE],
[PE], PSET, SCALE, SCLMAS, SFB, TPCMS, [TRIG], TRGLOT,
TTRIG

Use thePCMSoperator to assign the captured master cycle position for a specific follower axis to a variable, or
to make a comparison against another value.

PCMY(like PMAS is unique among position assignment variables, because its value rolls over to zero each
time the entire master cycle lengdMCLEN has been traveled. Thus, the captiréiSvalue is essentially a
snap-shot of the position relative to the master cycle at the time of the capture.

The master must be assigned firstHOLMAScommand) before this operator will be useful.

Syntax: VARn=aPCMSavhere “n” is the variable number, “a” is the axis, and “c” designates trigger A or B for the axis, or
Mfor the MASTER TRIG input (see table below); or PCMSan be used in an expression such as IF(1IPCMSB>2311) . The
PCMSoperator must be used with an axis specifier or it will default to axis 1 (e.g., IPCMSA2PCMSB5PCMSMetc.).

Trigger Input (Axis 1-4 Dedicated @ PCMS Trigger Input (Axis 5-8 Dedicated PCMS

“ TRIGGERS/OUTPUTS” connector) * Axis Syntax “ TRIGGERS/OUTPUTS” connector) * Axis Syntax

Pin23, Trigger 1A 1 1PCMSA Pin 23, Trigger 5A 5 5PCMSA
Pin 21, Trigger 1B 1 1PCMSB Pin21, Trigger 5B 5 5PCMSB
Pin 19, Trigger 2A 2 2PCMSA Ppin19, Trigger 6A 6 6PCMSA
Pin 17, Trigger 2B 2 2PCMSB Pin17, Trigger 6B 6 6PCMSB
Pin 15, Trigger 3A 3 3PCMSA Pin15, Trigger 7A 7 7PCMSA
Pin 13, Trigger 3B 3 3PCMSB Pin 13, Trigger 7B 7 7PCMSB
Pin 11, Trigger 4A 4 4PCMSA Pin11, Trigger 8A 8 8PCMSA
Pin9, Trigger 4B 4 4PCMSB Pin9, Trigger 8B 8 8PCMSB

* The number of trigger inputs available varies by product (refer to your product’s Installation Guide).

To use a position captured with the MASTER TRIG input, use aPCMSMwhere “a” can be any axis number.

About Position Capture: The master cycle position can be captured only by a trigger input that is defined as
“trigger interrupt” input with theNFNCi-H command (seeNFNC command). Each trigger input, when

configured as a “trigger interrupt” input, is dedicated to capture the position of a specific axis (see table above).
When a “trigger interrupt” input is activated, the master cycle position of the dedicated axis is captured and the
position is available through the use of BE@vSoperator and thePCMdisplay command.

Position Capture Status, Longevity of Captured PositionUse theTTRIG andTRIG commands to ascertain

if a trigger interrupt input has been activat€tiRIG displays the status as a binary report, BRI is an
assignment/comparison operator for using the status information in a conditional expression (€f., in an
statement). Once the captured master cycle position value is assigned/comparedr@thteerator, the
TTRIG/TRIG status bit for that trigger input is cleared; but the position information remains available until it is
overwritten by a subsequent position capture from the same trigger input.

Position Capture Accuracy. The master cycle position is interpolated; the capture accuracys 50
multiplied by the velocity of the axis at the time the trigger input was activated.

Scaling and Position Offsetlf scaling is enabledSCALE1), the master source position is scaled by the

distance scaling factoBCLMAS. If scaling is not enableCALEQ, the value assigned will be actual counts

from the commanded or encoder master source as selected viAtLtMaScommand. If you issueRSET

(establish absolute position reference) command, any previously captured master cycle positions will be offset
by thePSETcommand value.

Command Descriptions 193

PCOMP Compile a Profile or Program

Type
Syntax
Units
Range
Default

Compiled Motion; Path Contouring; PLC Program Product Rev
<I>PCOMP<t> 6K 50
t = text (name of program/path)

Text name of 6 characters or less

n/a

Response n/a
See Also DEF, DRES, END, GOBUF, GOWHEN, MEMORY, PA, PAA, PAD, PADA,

PAB, PARCOM, PARCOP, PARCM, PARCP, PAXES, PEXE, PLOOP, PL,
PLC, PLCP, PLIN, PLN, POUTn, PRUN, SCLD, PUCOMP, PULSE, SCANP,
[SEG],[SS], TDIR, TMEM, TRGFN, TSEG, TSS

Use thePCOMRommand to compile multi-axis contours, compile@®BU profiles for individual axes, and
compiledPLCP programs for PLC Scan Mode. (For additional detail on contouring and compiled motion,
refer to the Custom Profiling chapter in fiegrammer's Guidég

“Programs” vs. “Compiled Profiles & Programs”:

* Programs are defined with tbie€FandENDcommands, as demonstrated in the Program
Development Scenario in tiFogrammer's Guide

e Compiled Profiles are defined like programs (usingdBE andENDcommands), but are compiled
with thePCOMREommand and executed with tRRUNcommand. A compiled profile could be a
multi-axis contour (a series of arcs and lines), an individual axis profile (a seGeBof~
commands), or a compound profile (combination of multi-axis contours and individual axis
profiles).

» Compiled PLC programs are defined withF PLCPi andEND compiled withPCOMPand are
normally executed in the PLC Scan Mode with SIGANP

Compiling and Storing Compiled Paths & Programs:

194

Your controller's memory has two partitions: one for storing programs (“program” memory) and one
for storing profiles & program segments compiled withrRk®Mrommand (“compiled” memaory).
The allocation of memory to these two areas is controlled withiEMOREommand.

Programs intended to be compiled are stored in program memory. After they are compiled with the
PCOMRommand, they remain in program memory and the segments (see segment command list
below) from the compiled profile are stored in compiled memory.

» Contouring segmentsPARCYMPARCONMPARCOPPARCRPLIN

» Compiled Motion segmentssOBUFPLOOR GOWHENRGFN POUTAPOUTBPOUTCPOUTD

* PLC Program segments$F , ELSE, NIF, L, LN, OUT EXE PEXE VARI, VARB

TheTDIR command usesCOMPILED AS A PATH” to denote the programs compiled as a compiled
profile, and ‘COMPILED AS A PLC PROGRAM to denote the programs compiled as a PLC programs.
TDIR also reports the amount of program storage available, as doesEieommand. System

status bit #29 indicates that compiled memory is 75% full, and system status bit #30 indicates that
compiled memory is completely full. (U3SSF, TSS andSS to work with system status bits.)

If a compile PCOMJPfails, system status bit #31 (SE®SF, TSS andSS) will be set. This status bit is
cleared on power-up, reset, or after a successful compile. Possible causes for a failed compile are:
« Errors in profile design (e.g., change direction while at non-zero velocity; distance and velocity
equate to < 1 count/system update; preset move profile ends in non-zero velocity).
* Profile will cause a Following error (S8€SF, TFS and FS] commands).
« Out of memory (see system status bit #30).
« Axis already in motion at the time ofPCOMROmmand.
« Loop programming errors (e.g., no matchinigbOPor PLN; more than four embedded
PLOOMENDIoopS).
* PLCPprogram contains invalid commands or command parameters.

6K Series Command Reference

Conditions That Require a Re-Compile (Contouring and Compiled Motion only):
« Ifitis desired to change a compiled path's velocity, acceleration, or deceleration, the values must
be changed and then the path must be re-compiled.
« If the scaling factors are changed, the program must be downloaded again.

e Compiled Motion ONLY: After compilinggCOMPand runningBRUN a compiled profile, the
profile segments will be deleted from compiled memory if you cycle power or iSSESET
command.

COMPILED MOTION

When using compiled loops (PLOOPand PLN), the last segment within the loop must end at zero velocity or
there must be a final GOBUFsegment placed outside the loop. Otherwise an error will result when the
profile is compiled. The error is “ERROR: MOTION ENDS IN NON-ZERO VELOCITY-AXIS n .

PLC PROGRAM EXAMPLE : see PLCPcommand description.

CONTOURING EXAMPLE

DEF progl ; Begin definition of program named progl

PAXES1,2,3,4 ; Setaxes 1, 2, 3, & 4 as the X, Y, Tangent, &
; Proportional axes, respectively

PPRO2.25 ; Proportional axis path ratio = 2.25
e put :

; * MULTIPLE MOTION SEGMENT DEFINITIONS *
; * Here *

END ; End definition of path progl
PCOMP progl ; Compile path progl

PRUN progl ; Execute path progl

COMPILED MOTION EXAMPLE (see profile below)

DEF prog2 ; Begin definition of program named prog2
A10,10 ; Set A, V, and D values for axes 1 and 2
V2,2
D2000,2000
GOBUF11 ; First segment of motion for axes 1 and 2
V4,4 ; New A,V, and D values
AD50,50
D1000,1000
GOBUF11 ; Second segment
END ; End definition of prog2
PCOMP prog2 ; Compile prog2
PRUN prog2 ; Execute prog2
velocity
4
2
| | —> distance
1000 2000 3000

Command Descriptions 195

[PE] Position of Encoder

Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units Encoder counts, or scaled by SCLD

Range n/a

Default n/a

Response n/a

See Also CMDDIR, ENCCNT, ENCPOL, ENCSND, [FB], GOWHEN, INFNC, [PC]],

[PCE], [PER], PESET, PSET, SCALE, SCLD, SFB, TFB, TPE

The Position of EncodePE) operator is used to assign one of the encoder register values to a variable, or to
make a comparison against another value. If the encoder has been configured to receive step and direction input
(ENCSNDp thePE operator will report the position as counted from the step and direction signal.

Stepper axes: If thENCCNTImode is enableBE reports the encoder position, butBRCCNTMode (the
factory default setting) theE report represents the commanded position.

| UNITS OF MEASURE andSCALING : refer to page 16 or to tleCLDcommand. |

If you issue @SETcommand, the encoder position value will be offset byPBET command value. If you
are using a stepper axis in tBeSCCNTImode, use theESETcommand instead.

Syntax: VARn=aPEwhere ‘h” is the variable number, and™is the axis, olPE can be used in an
expression such as(1PE>2345@) . ThePE command must be used with an axis specifier or it
will default to axis 1 (e.g1PE, 2PE, etc.).

Example:
VAR1=1PE ; Encoder position for axis 1 is assigned to variable 1
IF(2PE<4000) ; If the encoder count for axis 2 is less than 4000,

; do the IF statement
VAR2=3PE+4000 ; Encoder position for axis 3 plus 4000 is assigned

; to variable 2

NIF ; End IF statement
[PER] Position Error
Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a
Range n/a (applicable to servo
Default n/a axes 0n|y)
Response n/a
See Also CMDDIR, DRES, ENCPOL, ERES, SCLD, SFB, SMPER, TAS, TPER, TPE,

TPC

The Position ErrorRER operator is used to assign the current position error of each axis to a variable, or to
make a comparison against another value. The value assigned to the variable or the value against which the
comparison is made is measured in feedback device counts and is scaled by the distance scal@ factor (

if scaling is enabled with th@CALE1command.

The position error is the difference between the commanded position and the actual position read by the
feedback device. This error is calculated every sample period and can be displayed at any timeTir#ER) the
command.

Syntax: VARn=aPERwhere ‘h” is the variable number, and™is the axis, oiPERcan be used in an
expression such a5(1PER>5¢) . ThePERcommand must be used with an axis specifier or it
will default to axis 1 (e.g1PER 2PER etc.).

Example:

VAR1=1PER ; Position error for axis 1 is assigned to variable 1

IF(2PER>2000) ; If the position error for axis 2 is >2000 encoder counts,
; do the IF statement (enable output #4)

OUTXXX1 ; Enable onboard output #4

NIF : End IF statement

196 6K Series Command Reference

PESET Encoder Absolute Position Reference - Stepper Axes

Type Motion Product Rev
Syntax <I><@>PESET<r><r>,<r>,<r> <r> <r>,<r>,<r> 6K 5.0
Units r = units (absolute position of encoder)

Range +999,999,999.99999 (applicable to stepper
Default n/a axes only)

Response n/a

See Also AXSDEF, ENCCNT, ENCPOL, INFNC, [PCE], [PE], PMESET, PSET,
SCALE, SCLD, TPCE, TPE

Use thePESETcommand to offset the current absolute encoder position to estabisis@nte position
referencefor the encoder reportIRE, PE, TPCE PCE. NOTE: PESETcan only be used for axes that are
defined as stepper axes with #k¢SDEFcommand. AIIPESETvalues entered are in encoder steps, scalable by
the SCLDvalue if scaling is enabled.

NOTE: If you issue 2ESETcommand, any previously captured encoder positiddENCi-H or LIMFNCi- H
function) will be offset by th@ESETvalue.

Example:
AXSDEF0000 ; Define axes 1-4 as stepper axes
ENCCNT1111 ; Place axes 1-4 in the encoder count referencing mode

PESETO0,0,0,1000 ; Set absolute position on axes 1, 2, and 3 to zero,
; and axis 4 to 1000 units

TPE ; Display the new positions. The new encoder position
; report should be: *TPEO,0,0,1000

PEXE Execute a Compiled Program
Type PLC Mode Compiled Program Execution Product Rev
Units i = Task Number
t = Program Name (6 characters or less)
Range i=1-10
Default n/a
Response n/a
See Also EXE, GOBUF, PCOMP, PLCP, SCANP

Use thePEXEcommand to start a compil@lCP program, compiled contouring path, or compi&oBUF

profile from within a compiledPLCP program. Th&EXEcommand specifies the name of the compiled
program, and the task in which it will be launched. The program namedmEXEcommand need not be
defined or compiled at the time theCP program is compiled; however, the program must be defined and
compiled before th6CANPor PRUNis issued. If no task number is assigned withpaefix, then the task in
which thePLCP program is compiled@COMPwill be the task that runs the compiled program. Note, however,
that thePEXEprogram cannot be executed in the Task Supervisor (task 0).

ThePLCPprogram will ignore th€EXEcommand if a currently running program is detected within the
specified task; therefore, tlREXEcommand can essentially only be used to initiate a new task with the
program it is launching. Like tH8ISELP command, the program launched by REXEcommand will not
interrupt a currently running program, nor will it interrupivValT or T command. Also, if launching a
compiled contouring path @OBURrofile, thePEXEwill not interrupt motion already in progress.

CAUTION : Using theSCANPcommand to run RLCP program in Scan mode will cause #1eCP program to

execute as often as every system update period (2 mREXBcommand used withinRLCP program

running in Scan mode could therefore attempt to launch a program in the specified task as often as every 2 ms.
This may not allow enough time for the program launched in the specified taskABXtBeommand to

complete before the sarREXEcommand is issued again. As stated pth@P program will ignore th@EXE

command if a currently running program is detected or motion is in progress on the participating axes, so
timing must be considered when launching programs witPEx&Ecommand.

To execute a non-compiled program from within a com@ledP program, use thEXE command.

Example:

DEF PLCP1 ; Define PLC program PLCP1

1%PEXE PLCP2 ; Launch compiled program PLCP2 in task 1
END

DEF PLCP2 ; Define PLC program PLCP2

OUT(VARB1) ; Modify outputs

END

Command Descriptions 197

PCOMP PLCP1
PCOMP PLCP2
SCANP PLCP1
VARB1=h0000
TOUT
VARB1=b1010
TOUT

; Compile PLCP1
; Compile PLCP2
; Scan with program PLCP1
; Set VARB1
; Check outputs (response is *TOUT0000_0000_0000_0000)
; Reassign VARB1
; Check outputs again (response is *TOUT1010_0000_0000_0000)

[PI] PI (1)
Type Operator (Trigonometric) Product Rev
Syntax See examples below 6K 5.0
Units n/a
Range n/a
Default n/a
Response n/a
See Also (=1 [+L [-L [*)L [/ [&lL 1) [~ [~1 [ATAN],
[COS|, IF, [SIN], [SQRT], [TAN], VAR

The PI) command is assigned the value 3.14159265. Thergmaans in 360°. This command is useful
for doing trigonometric functions in radian uniEADIAN command).

Example:

VAR1=PI ; 3.14159265 is assigned to variable 1

VAR2=2 * PI ; 2 piis assigned to variable 2

PL Define Path Local Mode

Type Path Contouring Product Rev
Syntax <I>PL 6K 5.0
Units n/a

Range b = 0 (work coordinates) or 1 (local coordinates)

Default 0

Response No response - Must be defining a path (DEF)

See Also PAB, PLC, PWC

The Define Path Local Mod®)) command is used to specify the use of either the Local coordinate system or
the Work coordinate system. Endpoints are allowed to be specified as absolute positions, and these positions
may either be in the Work or the Local coordinate system. Programming may switch between Local and Work
coordinates before any segment or group of segments.

When switching to Local coordinates, the starting coordinates of the next segment in the Local coordinate
system must be specified with theC command before theL.1 command is issued.

When using the Work coordinate systephd), the starting coordinates of the next segment in the Work
coordinate system may be specified withRieGzommand for the purpose of shifting the Work coordinate
system. If theewacommand is not given, the previous Work coordinate system is used.

Example:
PV5

PA50
PAD100
DEF progl
PAXES1,2
PAB1
PWCO0,0
PLO
PLIN1,1
PLCO,0
PL1
PARCOPO0,0,5,0

PLINO,11
PLCO0,0

PL1
PARCOPO0,0,5,0

PLO

PLINO,O

END

PCOMP progl
PRUN prog1

198

; Set path velocity to 5 units/sec
; Set path acceleration to 50 units/sec/sec
; Set path deceleration to 100 units/sec/sec
; Begin definition of path named prog1
; Set axes 1 and 2 as the X and Y contouring axes
; Set to absolute coordinates
; Specify X and Y data, work coordinates
; Specify work coordinate system
; Specify X-Y endpoint position to create a 45 degree angle line segment
; Specify X and Y data, local coordinates
; Specify local coordinate system
; Specify incremental X-Y endpoint position and X-Y center
; position for full circle clockwise arc

; Specify X-Y endpoint position to create a 90 degree angle line segment

; Specify X and Y data, local coordinates
; Specify local coordinate system
; Specify incremental X-Y endpoint position and X-Y center
; position for full circle clockwise arc
; Specify work coordinate system
; Specify X-Y endpoint position to create a line segment back to 0,0
; End definition of path progl
; Compile path progl
; Execute path progl

6K Series Command Reference

PLC Define Path Local Coordinates

Type Path Contouring Product Rev
Syntax <I>PLC<r><r> 6K 5.0
Units 1% r = X coordinate units (scalable by the SCLD value)
2" r = Y coordinate units (scalable by the SCLD value)
Range 0.00000 - *999,999,999
Default n/a
Response No response - Must be defining a path (DEF)
See Also PAB, PL, SCLD, PWC, SCALE

The Define Path Local Coordinaté®) command is used to specify the Local X -Y coordinate data required
for subsequent segment definitionthe Local coordinate system. This command places the X -Y coordinate
value of the Local coordinate system at the beginning of the next segment. (The fiilsthe X coordinate, the
secondkr> is the Y coordinate.) This command must be used befofre.theommand is given.

UNITS OF MEASURE andSCALING: refer to page 16 or to tt&cLDdescription.

Example: Refer to Define Path Local Mode (PL) command example.

PLCP Compiled PLC Program

Type PLC Scan Program Product Rev
Syntax <I>PLCPi 6K 5.0
Units i = number of PLC program

Range 1-99

Default n/a

Response n/a

See Also DEF, ELSE, EXE, IF, L, LN, MEMORY, NIF, OUT, PCOMP, PEXE,

PRUN, PUCOMP, SCANP, TSCAN, VARI, VARB

PLCPis not a command; it is used to identify a PLCP program to be defined@rgPLCP2), compiled
(e.g.,PCOMP PLCP2, and_executed (e.g5CANP PLCP20r PRUN PLCP2. Up to 99 PLCP programs may be
defined, identified aBLCP1, PLCP2, PLCP3, and so on. The purpose of PLCP programs is to facilitate fast
I/O scanning.

The process of creating and executing a PLCP program is:

1. Define the PLCP prograrDEF PLCPi statement, followed by commands from the list below, followed
by END. Only these commands are allowed in a PLCP program:

e IF, ELSE andNIF (conditional branching) — see note below for limitations

e L andLN (loops)

e OUT(turn on a digital output)

e EXE(execute a program in a specific task — @gEXE MOVE

* PEXE(execute a program in a specific task — @@PEXE PLCP)

* VARI (integer variables).

« VARB(binary variables). Bitwise operations are limited to Boolean &h)dBoolean Inclusive Or
(1), and Boolean Exclusive Ot

2. Compile the PLCP prograrR@OMP PLCP). A compiled program runs much faster than a standard
program.

3. Execute the PLCP progra®dANP PLCPi). When the PLCP program is launched withSIGaNP
command, it is executed in the “PLC Scan Mode”. The advantage of the PLC Scan Mode is that the
PLCP program is executed within a dedicated 0.5 ms time slot during every 2 ms system update period.
This gives the PLCP program faster throughput for monitoring and manipulatingaé@ore
information on how the PLCP program is executed WTANR refer to theSCANPcommand
description.

An alternative execution method is to useRRNcommand BRUN PLCPi). This method is similar to
the SCANP PLCPi method, but will only run through the PLCP program once.

Command Descriptions 199

Memory Requirements Most commands allowed in a PLCP program consume one segment of compiled
memory after the program is compiled witBOMPthe exceptions aréARI andVARB(each consume 2
segments) andr statements. EadR conditional evaluation compounded with eitherDor anOR

operator consumes an additional segment (E@\.1=b1 AND 1AS.1=b0) consumes three segments of
compiled memory). The number of compounds is limited only by the memory available.

Conditional Expressions !

 Order of Evaluation. Because only Get Next Conditional
one level of parenthesis is allowed,
the order of evaluation ¢F
conditionals is from left to right. FALSE TRUE
Refer to the flowchart for the
evaluation logic.

Compound = OR? Compound = AND?
« Conditional expressions in a PLC
_ 1 Statement Statement
R‘rogr"am use thie non Scaled Integer Evaluates FALSE Evaluates TRUE
(“raw”) operand values. Examples

of the “raw” operand values are:

— ThePE operator reports encoder counts not scale8®yDand not scaled bgRES

— The ANI operator reports ADC counts from an analog input, not scal&Chyp Assuming the
defaultANIRNG4setting (+/-10V voltage range), 205 ADC counts = 1 volt.

- The DACoperator reports DAC counts (commanded position) not scal8€hbia

The only operands that are not allowed &ii:, COS TAN ATAN VCVT, SQRT VAR TW READ DREAD
DREADEDAT, DPTR andPI .

Programming Example: Refer to the detailed, illustrated example in$i@ANPcommand description.

PLIN Move in a Line
Type Path Contouring Product Rev
Syntax <I><@>PLIN<r><r> 6K 5.0
Units 1% r = X endpoint coordinate (scalable by the SCLD value)

2" r = Y endpoint coordinate (scalable by the SCLD value)
Range 0.00000 - +999,999,999
Default n/a

Response Noresponse - Must be defining apath (DEF)
See Also PAB, PL, PLC, SCLD, PWC,SCALE

The Define Line SegmenPIN) command is used to specify a line segment. The placement, length, and
orientation of the line are completely specified by the endpoint of the line segment and the endpoint of the
previous segment (current position). Segment endpoint position specifications may be either &#gilute (
with respect to the user defined coordinate system, or incremeassd)(relative to the start of each

individual segment.

When thePLIN command is received, the first value is taken as the X endpoint coordinate and the second
value is taken as the Y endpoint coordinate.

UNITS OF MEASURE andSCALING : refer to page 16 or to tf&CLDdescription.

Example: Refer to Define Path Local Mode (PL) command example.

200 6K Series Command Reference

PLN Loop End, Compiled Motion

Type Compiled Motion Product Rev
Syntax <@>PLN 6K 5.0
Units n/a

Range b =1 (end loop), 0 or X (don’t end loop)

Default n/a

Response No response; instead ends loop for compiled motion

See Also GOBUF, PCOMP, PLOOP, PRUN, PUCOMP

The Loop End, Compiled MotiorPN) command specifies the end of an axis-specific compiled motion
profile loop, as initiated with theLOOPcommand.

Programming Example: s@&OO0P

PLOOP Loop Start, Compiled Motion
Type Compiled Motion Product Rev
Syntax <@>PLOOP<i><i><i> <i> <i> <i> <> <i> 6K 5.0
Units i = designated number of loops for specified axis
Range 0-2,147,483,647 (2 L)
0 = infinite loop
Default n/a
Response No response; instead starts loop for compiled motion
See Also GOBUF, PCOMP, PLN, PRUN, PUCOMP

ThePLOOPcommand specifies the beginning of an axis-specific profile loop. All subsequent segments defined
before thePLN command are included within that loop. The number in a given axis field specifies the number
of loops to be executed for that axis. If that number is a zero or blank, then the loop will be executed infinitely.
ThePLOOPcommand can be nested up to four levels deep within a program

When using compiled loop®I(OOPandPLN), the last segment within the loop must end at zero velocity or
there must be a fin@dOBURsegment placed outside (after) the loop. Otherwise an error will result when the
profile is compiled. The error iERROR: MOTION ENDS IN NON-ZERO VELOCITY-AXISn ",

ThePLOOPcommand will consume one segment of compiled space

Example:
DEF progl ; Begin definition of progl
Vi ; Set velocity to 1 unit/sec

D1000 : Set distance to 1000 units
GOBUF1 ; Segment of motion sent to buffer
PLOOP3 ; Start loop of the subsequent move profile

V10 ; Set velocity to 10 units/sec
D25000 ; Set distance to 25000 units
GOBUF1 ; First segment within loop sent to buffer

V2 ; Set velocity to 2 units/sec
D1000 : Set distance to 1000 units
GOBUF1 ; Second segment of motion within loop sent to buffer

Vi ; Set velocity to 1 unit/sec

D25000 ; Set distance to 25000 units

GOBUF1 ; Third segment within loop sent to buffer

PLN1 ; Close loop

V.5 ; Set velocity to 0.5 units/sec

D100 ; Set distance to 100 units

GOBUF1 ; Segment of motion sent to buffer (outside loop)
END ; End definition of progl

PCOMP progl ; Compile progl

PRUN progl ; Execute progl

Command Descriptions

201

[PMAS] Current Master Cycle Position

Type Following and Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also FMCNEW, FMCP, FOLMAS, FOLMD, [FS], GOWHEN, [PCMS], SCALE,

SCLMAS, TPMAS, TFS

The PMASoperator is used to assign the master position register value to a variable, or to make a comparison
against another value. This value may be used for subsequent decision making, or for recording the cycle
position corresponding to some other event.

PMASIs unigue among position assignment variables, because its value rolls over to zero each time the entire
master cycle lengtlFMCLENvalue) has been traveled. If it is desire@sIT or GOWHENN a master cycle

position of the next master cycle, one master cycle length (vak@EN should be added to the master

cycle position specified in the argument. This allows commands that sequence follower events through a
master cycle to be placed in a loop. Wt&IT or GOWHEKommand at the top of the loop could execute, even
though the actual master travel had not finished the previous cycle. This is done torMa®value which

is equal to the master cycle length to be specified and reliably detected. WhePMis8vgth IF , UNTIL, or

WHILE arguments, the instantanedWgASvalue is used. Be careful to avoid specifyigASvalues that are

nearly equal to the master cycle lendgthCLEN, because rollover may occur beforeASsample is read.

The master must be assigned firstHOLMAScommand) before this command will be useful.

If scaling is enabledSCALEJ), thePMASvalue is scaled by the master scaling facs@LMAS$. If scaling is
disabled $§CALE®, thePMASvalue is in counts.

Syntax: VARn=aPMASwhere ‘h” is the variable number and “a” is the axis numbePMAScan be used in
an expression such BE§2PMAS>2345@) . ThePMAScommand must be used with an axis
specifier, or it will default to axis 1 (e.0/AR1=1PMASIF(2PMAS>5@@), etc.).

Example: (refer also to FOLENexample #2)
IF(2PMAS>4.3) ; If the master for axis 2 has traveled more than 4.3
; master user units then do the IF statement

OUT.2=b1l ; Set onboard output #2 to 1
NIF : End of IF statement
VAR14=1PMAS ; Set VAR14 to axis 1's master cycle position

202 6K Series Command Reference

[PME] Position of Master Encoder

Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units Master Encoder counts

Range n/a

Default n/a

Response n/a

See Also MEPOL, MESND, [PCMH,[PE], PMECLR, PMESET, TPCME,
TPME

Use thePMEoperator to assign the current master encoder position to a variable, or to make a comparison
against another value. The master encoder is connected to the connector labeled “Master Encoder”. If you
issue &MESETcommand, the encoder position value will be offset byptMESETcommand value. TheME

value is always in encoder counts, it is never scaled.

Syntax: VARn=PMEwhere ‘h” is the variable number, ®Ecan be used in an expression such as

IF(PME>16@03).
Example:
VAR1=PME ; Master encoder position is assigned to variable 1
IF(PME<4000) ; If the master encoder count is less than 4000,

; do the IF statement
VAR2=PME+4000 ; Master encoder position plus 4000 is assigned to variable 2
NIF : End IF statement

PMECLR Clear Master Encoder Absolute Position Reference

Type Motion Product Rev
Syntax <I>PMECLR<r> 6K 5.0
Units r = master encoder counts (not scalable)

Range +999,999,999.99999

Default n/a

Response n/a
See Also MEPOL, MESND, [PCMH,[PMHE, PMESET, PSET, TPCME, TPME

Use thePMECLRcommand to remove any offset on the master encoder position reports (offset to master
encoder position is established with fiESETcommand).

Example:
TPME ; Report master encoder position. For the sake of this example,
; let's say the response is *TPME10000 (master encoder is at
; absolute position 10,000).
PMESET20000 ; Change relative position of master encoder with offset
TPME ; Report new master encoder position with offset. New position
; response should now be: *TPME20000 (what was considered
; position 10,000 is now considered position 20,000).
PMECLR ; Clear any offset applied to the master encoder position
TPME ; Report master encoder position with no offsets.
; Response should be: *TPME10000.
PMESET Establish Master Encoder Absolute Position Reference
Type Motion Product Rev
Syntax <I>PMESET<r> 6K 5.0
Units r = master encoder counts (not scalable)
Range +999,999,999.99999
Default n/a
Response n/a

See Also MEPOL, MESND, [PCMH,[PMH, PMECLR, PSET, TPCME, TPME

Use thePMESETcommand to offset the current absolute position of the master encoder (connected to the
connector labeled “Master Encoder”) to establiskasolute position referenc&o remove the offset, issue
thePMECLReommand.

Command Descriptions 203

All PMESETvalues entered are in master encoder counts; this value is never scaled.

Example:
TPME ; Report master encoder position. For the sake of this example,
; let's say the response is *TPME10000 (master encoder is at
; absolute position 10,000).
PMESET20000 ; Change relative position of master encoder with offset
TPME ; Report new master encoder position with offset. New position
; response should now be: *TPME20000 (what was considered
; position 10,000 is now considered position 20,000).
PMECLR ; Clear any offset applied to the master encoder position
TPME ; Report master encoder position with no offsets.
; Response should be: *TPME10000.
PORT Designate Destination Communication (“COM”) Port
Type Communication Interface Product Rev
Syntax <I>PORT<i> 6K 5.0
Units i = port number
Range 1 (COM1), 2 (COM2)
NOTE: “COM1” is the “RS-232" or “ETHERNET” connector.
“COM2" is the “RS-232/485" connector.
Default 1
Response n/a
See Also 1, [, BOT, DRPCHK, E, EOL, EOT, ERRDEF, ERRLVL, ERROK, ERRBAD,

LOCK, [READ], WRITE, XONXOFF

The Designate Destination PoRtdR7 command is used to determine which COM port is affected by the
DRPCHKE, ECHQBOT, EOL EOT, ERROKERRBADERRDEFERRLVL andXONOFFEommands. It also
specifies the port to which responses and prompts from stored programs should be sent.

ThePORTcommand also selects the target port through whiciWwgidgEandREADcommands transmit

ASCII text strings. Th®WRITEcommand (as well as all other RP240 commands) will affect the RP240
regardless of theORTcommand setting. If no RP240 is detected, the commands are sent to the COM2 port.
DWRITEtext strings are always terminated with a carriage return.

Example (The PORTcommand can be used to designate EOTparameters for both ports. Assume that port COM1 is
being used to communicate to the controller.)

PORT1 ; Select COM1 for EOT setup
EOT45,49,10 ; EOT for COML1 is -1<If>
TPE ; Send "Transfer Position of Encoder" response to COM1
; using EOT 45,49,10
PORT2 ; Select COM2 for EOT setup
EOT45,50,10 ; EOT for COM2 is -2<If>
TPC ; Send "Transfer Commanded Position" response to COM2

; using EOT 45,50,10

Example (The PORTcommand specifies both port setups and response destinations in a stored program.)

DEF qwe ; Begin definition of qwe

PORT1

EOT45,49,10 ; EOT for COM1 is -1<If>

TPE ; Send "Transfer Position of Encoder” response to COM1
; using EOT 45,49,10

PORT2

EOT45,50,10 ; EOT for COM2 is -2<If>

TPC ; Send "Transfer Commanded Position" response to COM2
; using EOT 45,50,10

END ; End definition of qwe

204 6K Series Command Reference

POUT Compiled Output

Type Path Contouring; Compiled Motion Product Rev
Syntax <I>POUT<n> ... 6K 5.0
Units n = axis identifier letter (for compiled motion only);
b = enable bit specific outputs (see page 6)
Range n = A-H for axes 1-8, respectively (for compiled motion only);
b =0 (off), 1 (on), or X (don't change)
Default 0
Response n/a
See Also GOBUF, OUT, OUTEN, OUTENC, OUTLVL, PCOMP, PRUN, PUCOMP

Use thePOUTcommand to control outputs during Contouring Motion or Compiled Motion. The syntax for the
POUTcommand depends on whether you are using it for Contouring or Compiled Motion:

Contouring: POUT Compiled Motion: POUTA(apply output pattern to the profile for axis #1
POUTB(apply output pattern to the profile for axis #2
POUT(apply output pattern to the profile for axis #3
POUTD(apply output pattern to the profile for axis #4
POUTE(apply output pattern to the profile for axis #5
POUTF(apply output pattern to the profile for axis #6
POUTQapply output pattern to the profile for axis #7
POUTHapply output pattern to the profile for axis #8

— — — — — — — —

You may use theouTcommand to control any of the onboard outputs, as well as any outputs on external 1/O
bricks, as long as they are left in the default funct@dTENCI-A). Refer to page 6 to understand how to
address the outputs (onboard and on optional expansion I/O bricks) available on your 6K product.

If you attempt to change the state of an output that is not definedsT@®nNCi-A (general-purpose) output,
the controller will respond with an error messag@TPUT BIT USED AS OUTFNC”) and thePOUT
command will not be executed (but command processing will continue).

If you wish to set only one output value, instead of all outputs, use the bit select (.) operator, followed by the
number of the specified output. Contouring examg#e@©UT.12-1 turns on only output 12 on I/O brick 2.
Compiled Motion example2POUTA.12-1 turns on only output 12 on I/O brick 2 for the axis 1 profile.

ThePOUTcommand consumes one segment of compiled memory.
The programmable outputs are sampled once per “system update” (2 ms).
Contouring ONLY:

ThePOUTcommand specifies the programmable output bit pattern to be applied to the outputs at the
beginning of the next segment and remain throughout that segmemOUfeommand may be issued

before any segment definition command, and will affect all subsequent segments untit@uiew

command is issued. AOUTcommand will not take affect if there is no segment definition command
following it. To change the programmable outputs at the end of a path, the standarddauifput (

command must be used after the path is executed. These segment-defined output patterns are stored as
part of the compiled path definition.

CONTOURING EXAMPLE: Refer to the PARCOMommand example.

COMPILED MOTION EXAMPLES: (see next page)

Command Descriptions 205

COMPILED MOTION EXAMPLES:

OUTFNCS-A ; Default output function for onboard output 3
OUTFNCB6-A ; Default output function for onboard output 6
DEF P1 ; Define program P1
D1000,25000 : Set distance to travel
GOBUF11 ; Motion segments for axes 1 and 2
POUTA.3-1 ; Turn on onboard output 3 when axis 1 travels to 1000 steps
D2000,50000 : New distance commanded
GOBUF11 ; Motion segments for axes 1 and 2
POUTA.3-0 ; Turn off onboard output 3 when axis 1 travels 2000
; additional steps
POUTB.6-1 ; Turn on onboard output 6 when axis 2 travels to 75000 steps
D1000,25000 : New distance commanded
GOBUF11 ; Motion segment for axes 1 and 2
POUTB.6-0 ; Turn off onboard output 6 when axis 2 travels 25000
; additional steps
END ; End program definition
PCOMP P1 ; Compiled program P1
PRUN P1 ; Execute program P1

When executing a Compiled Following profile, th@UTnstatement is always executed as programmed.
Therefore, in order to make sure an output is on for a given motion segment no matter what direction the
master is traveling, you should use tR@UTnstatements (see example below).

POUTA.3-0 ; Turn off onboard output 3 for axis 1 - master going backwards
POUTA.3-1 ; Turn on onboard output 3 for axis 1 - master going forwards
GOBUF1 ; Motion segments for axes 1

POUTA.3-1 ; Turn on onboard output 3 for axis 1 - master going backwards
POUTA.3-0 ; Turn off onboard output 3 for axis 1 - master going forwards

If you desire to “pulse” an output (turn on for a given amount of time), then us®tlieEncommand along
with theGOWHEN(T=n)}command. For example:

POUTA.1-1 ; Turn on onboard output 1

GOWHEN(T=120) ; Wait for 120 milliseconds

POUTA.1-0 ; Turn off onboard output 1

PPRO Path Proportional Axis

Type Path Contouring Product Rev
Syntax <I>PPRO<r> 6K 5.0
Units r = ratio value

Range +0.001 - 1000.000

Default n/a

Response No response - Must be defining a path (DEF)

See Also PAXES

The Path Proportional AxXi®PRQ command is used to specify the proportional axis to path travel ratio. The
proportional axis will keep a position that is proportional to the distance traveled along the X-Y path as the
path is executed. This allows the proportional axis to act as the Z axis in helical interpolation or to control the
motion of any object which moves with distance and velocity proportional to the path.

The PPROcommand should be given prior to any contour segments during a path definition. A negative value
for the proportional axis ratio simply causes motion in the negative direction as path travel in the X-Y plane
gets larger.

Example: (see contouring programming example in the PRUNcommand description)

206 6K Series Command Reference

PRTOL Path Radius Tolerance

Type Path Contouring Product Rev
Syntax <I>PRTOL<r> 6K 5.0
Units r = allowable radius error (scalable by the SCLD value)

Range +999,999,999.99999

Default 1

Response No response - Must be defining a path (DEF)
See Also PARCM, PARCOM, PARCOP, PARCP, SCLD, SCALE

The Path Radius TolerandeRTOL command is used to specify the allowable radius error that is encountered
when contouring.

The radius error is encountered in one of two ways. The first way is through uséaRibkebr PARCP

commands. This error is the difference between the radius value specifie® ARtbebr PARCPcommand

and the minimum radius implied by the starting point and endpoint. If the radius provided in the command is
smaller than the minimum radius implied by the distance from starting to endpoints and the error is within the
radius tolerance then just enough is added to the radius to make a half circle.

A second way to encounter a radius tolerance error is withbAREONIr PARCORROmmands. This error is

the difference between the radius implied by the start point and center point and the radius implied by the end
point and center point. If the difference in the two radius values is within the radius tolerance specified, then
the center point is moved such that an arc can be traveled through the start point and endgRTOThe
command can be executed many times within a path definition allowing some arcs to be exactly known and
others to be approximated.

If the radius error exceeds tR®TOLvalue, an error message is sent.

UNITS OF MEASURE andSCALING: refer to page 16 or to tt&CLDdescription.

Example:
PV5 ; Set path velocity to 5 units/sec
PA50 ; Set path acceleration to 50 units/sec/sec
PAD100 ; Set path deceleration to 100 units/sec/sec
DEFprogl ; Begin definition of path named prog1l
PAXES1,2 ; Set axes 1 and 2 as the X and Y contouring axes
PABO : Set to incremental coordinates
PRTOL0.001 ; Allow 25 steps (0.001 x 25000) radius error
PARCMS5,5,5 ; Specify incremental X-Y endpoint position and radius
; arc <180 degree for quarter circle counter-clockwise arc
PARCP5,-5,-5 ; Specify incremental X-Y endpoint position and radius
; arc >180 degree for three quarter circle clockwise arc
END ; End definition of path progl
PCOMProgl ; Compile path progl
PRUNprog1 ; Execute path progl

Command Descriptions 207

PRUN Run a Compiled Profile

Type Compiled Motion; Path Contouring; PLC Program Product Rev
Syntax <I>PRUN<t> 6K 5.0
Units t = text (name of path program)
Range text name of 6 characters or less
Default n/a
Response n/a
See Also COMEXC, DEF, END, PCOMP, PUCOMP, GOBUF, PLCP, PLOOP, PLN,
SCANP

Use thePRUNcommand to start execution of a previously compiled program (multi-axis contOB@F

profile, or aPLCPprogram). All the required information about the program or path whose name is specified
in thePRUNcommand has already been stored by the definition commaB8sidEND and compiled by
thePCOMROmMmMand.

Executing compiled contouring a@DBURrofiles: If any of the axes included in the specified path or profile
are not ready, the path will not be executed. An axis is not ready if it is shutdown, moving, or in joystick
mode. When execution of a pre-compiled program begins, all included axes become busy until motion has
completed.

Executing PLC programs: When usiRBUNto execute #LCP program, thé’LCP program is run only once
(as opposed to invoking a continual scan loop when exedeitibg programs with th& CANPcommand).

COMEXCmode must be enabled in order for command processing to continue once a motion invoking
command has been initiated wRRUN If you use theeRUNcommand within a program while Z®OMEXC1

mode, it functions as@Oand returns control back to the original program after the embedded program'’s
motion is started (control is returned to the first command immediately followirRRiiscommand). If in
COMEXC@#ode, command processing will not continue until the motion invoking command has completed its
movement.

CONTOURING EXAMPLE:

DEL progl ; Delete progl

DEF progl ; Begin definition of path named progl

PAXES1,2,3,4 ; Set axes 1,2,3,4 as the X, Y, Tangent, and
; Proportional axes respectively

PPRO2.25 ; Proportional axis path ratio = 2.25

; * Add multiple path segment *

;. * definitions in this *

; * portion of the *

; * program *

END ; End definition of path progl

PCOMP progl ; Compile path progl

PRUN progl ; Execute path progl

COMPILED MOTION EXAMPLE:

@D25000 ; Set distance parameter for all axes

DEL progl ; Delete progl

DEF progl ; Define progl

PLIN1000,1000 ; Line segment on axis 1 and 2

GOBUFxx11 ; Compiled motion on axis 3 and 4

END ; End definition of progl

PCOMP progl ; Compile progl

PRUN prog1l ; Execute progl

TPC ; Check commanded position. A sample response would be:

; "*TPM1000,1000,25000,25000"

208 6K Series Command Reference

PS Pause Program Execution

Type Program Flow Control Product Rev
Syntax <I>PS 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also C, COMEXR, COMEXS, K, S,[SS], TSS

The Pause Program Executid?8] command pauses execution of commands in the command buffess If a
command is executed, no commands aftePtheill be executed until & command is received. However,
additional commands may still be placed in the command buffer.

ThePS command does not pause motion. In order for motion to be pausedarideheCOMEX$ommands
should be used.

Example:

PS ; Stop execution of command buffer until IC command

MAOXXX : Incremental mode for axis 1

D10000 ; Set distance to 10000 units on axis 1

G0O1000 : Initiate motion on axis 1

D,20000 ; Set distance to 20000 units on axis 2

GO0100 : Initiate motion on axis 2

;* NOTE: *

: * No commands after the PS command will be executed untila!C *

; * command is received. *

PSET Establish Absolute Position

Type Motion Product Rev
Syntax <I><@>PSET<rI>,<r>,<r>,<r>,<r> <r> <r>,<r> 6K 5.0
Units r = units (absolute position)

Range +999,999,999.99999

Default n/a

Response n/a

See Also CMDDIR, D, ENCPOL, [FB], GO, HOM, INFNC, MA, MC, [PANI],
[PC],[PCC],[PCE], [PCMS] [PE], PESET, PMESET,
SCALE, SCLD, SFB, TFB, TPANI, TPC, TPCC, TPCE, TPCMS, TPE

Use thePSETcommand to offset the current absolute position to establishsaiute position referenc&o
remove the offset, issue tRSETCLRcommand. AlIPSETvalues entered are in steps, unless scaling is
enabled $CALEJ), in which caseRSET) is multiplied by the distance scale facteC(D.

Steppers — without scaling The PSETcommand will define the current commanded position to be the
absolute position entered. To set an absolute encoder position, B&ESgtrEommand.

Servos — without scaling ThePSET command defines a new absolute position reference. If the drive is
enabled DRIVE), the current commanded position is used as the reference point. If the drive is
disabled, the current feedback device position (selected wittFleommand) is used as the
reference point.

| SERVO AXES

The PSET offset value (per axis) is specific only to the feedback source (per axis) selected
with the last SFB command.

If your application requires switching between feedback sources for the same axis, then you
must select the feedback source with the appropriate SFBcommand and issue a PSETvalue
specific to that feedback source. (Each feedback source can have a separate offset.)

NOTE: If you issue ®@SETcommand, any previously captured positidN&KICi-H or LIMFNCi-H function)
will be offset by thePSETvalue.

Command Descriptions 209

If a software end-of-travel limit has been hit, #&ETcommand will not remove the error condition. The
error condition is removed by commanding motion in the opposite direction.

Example:
PSETO0,0,0,1000 ; Set absolute position on axes 1, 2, and 3 to zero,
; and axis 4 to 1000 units

[PSHF] Net Position Shift

Type Following; Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also FOLEN, FOLMAS, FSHFC, FSHFD, SCALE, SCLD, TPSHF

ThePSHFoperator is used to assign to a numeric variable the value of the net (absolute) follower axis position
shift that has occurred since that [BSLEN1command. The position value will be the sum of all shifts

performed on that axis, or axes, including decelerations due to limits, kill, or stop. The shift value is set to
zero each time a neROLEN1command or &OLMASTommand (with a value other than zero) is issued.

If scaling in enabledSCALEY), thePSHFvalue is scaled by the distance scaling facgaL(. If scaling is not
enabled, the value is in commanded counts.

Syntax: VARn=aPSHFwhere ‘h” is the variable number and “a” is the axis numbeR®iFcan be used in
an expression such B§2PSHF>2345@) . ThePSHFcommand must be used with an axis
specifier, or it will default to axis 1 (e.0/AR1=1PSHF, IF(2PSHF>5@@) , etc.).

Example:
IF(2PSHF>4.3) ; If axis 2 has shifted more than 4.3 user units in the
; positive direction, then do the IF statement

OUT.2=b1l ; Turn on onboard output #2

NIF ; End of IF statement

VAR14=3PSHF ; Set VAR14 to follower axis 3's position shift

[PSLV] Current Commanded Position of Follower Axis

Type Following; Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also FMCNEW, FMCP, SCLD, SCALE, TPSLV

Use thePSLV operator to assign the follower axis commanded position register value to a variable, or to make
a comparison against another value.

If scaling in enabledSCALEY), thePSLV value is scaled by the distance scaling facgaL(. If scaling is not
enabled, the value is in commanded counts.

Syntax: VARn=aPSLVvwhere ‘h” is the variable number and “a” is the axis numbeR%Irv can be used in
an expression such B§2PSLV>2345@) . ThePSLVcommand must be used with an axis
specifier, or it will default to axis 1 (e./AR1=1PSLV, IF(2PSLV>5@d) , etc.).

Example:
IF(2PSLV>4.3) ; If axis 2 has traveled more than 4.3 user units then do
: the IF statement

OUT.2=b1l ; Turn on onboard output #2
NIF ; End of IF statement
VAR14=3PSLV ; Set VAR14 to follower axis #3's position

210 6K Series Command Reference

PTAN Path Tangent Axis Resolution

Type Path Contouring Product Rev
Syntax <I>PTAN<i> 6K 5.0
Units i = counts (commanded counts for stepper axes,
encoder or analog input counts for servo axes)
Range +1- 999,999,999
Default 4000
Response No response - Must be defining a path (DEF)
See Also PAXES

The Path Tangent Axis ResolutidfiTAN command is used to specify the Tangent axis resolution. The
Tangent axis will keep an angular position which changes linearly with the direction of travel implied by X
and Y. This allows the Tangent axis to control an object which must stay tangent (or normal) to the direction
of travel.

The Tangent axis resolution is the number of counts (motor steps for steppers; encoder or analog input counts)
in 360 degrees of arc. The Tangent axis resolution does not necessarily equal axis resBiESfm (
steppersgRESor analog input counts/volt for servos), but if the motor directly drove the rotating piece, then
these numbers would be the same.

ThePTANcommand should be given prior to any contour segments during a path definition. A negative value
for the Tangent axis resolution causes rotation in the negative direction as the angle in the X-Y plane gets
larger.

Example:
PV5 ; Set path velocity to 5 units/sec
PA50 ; Set path acceleration to 50 units/sec/sec
PAD100 ; Set path deceleration to 100 units/sec/sec
DEF progl ; Begin definition of path named prog1l
PAXES1,2,3 ; Set axes 1 and 2 as the X and Y contouring axes,
; 3 as the tangent axis
PTAN25000 ; Specify Tangent axis resolution
PABO ; Set to incremental coordinates
POUT1001 ; Output pattern during first arc (onboard outputs)
PARCM5,5,5 ; Specify incremental X-Y endpoint position and radius
; arc <180 degree for quarter circle counter-clockwise arc
POUT1100 ; Output pattern during second arc (onboard outputs)
PARCP5,-5,-5 ; Specify incremental X-Y endpoint position and radius
; arc >180 degree for three quarter circle clockwise arc
END ; End definition of path progl
PCOMP progl ; Compile path progl
PRUN progl ; Execute path progl
OuUT0000 ; Turn off the first four onboard outputs

Command Descriptions

211

PUCOMP Un-Compile a Compiled Profile (includes Path Uncompile)

Type Compiled Motion; Path Contouring; PLC Program Product Rev
Syntax <I>PUCOMP<t> 6K 5.0
Units t =text (name of path)

Range Text nameof 6 characters or less

Default n/a

Response n/a

See Also DEF, END, GOBUF, MEMORY, PCOMP, PLCP, PRUN, SCANP, TDIR, TMEM,

TSEG, GOBUF, PLOOP, PLN

The Un-Compile FuCOMPcommand is used to delete a previously compie&bMpprogram from the
compiled memory. TheuCOMRommand does not delete the program from program memory.

Example:

PUCOMP progl ; Delete compiled motion segments for progl
DEL progl ; Delete progl

DEF progl ; Begin definition of path named progl
PAXES1,2,3,4 ; Set axes 1,2,3,4 as the X, Y, Tangent, and

; Proportional axes respectively
* Add multiple path segment *

;. * definitions in this *

; * portion of the *

; * program *

END ; End definition of path progl

PCOMP progl ; Compile path progl

PRUN progl ; Execute path progl

PULSE Pulse Width

Type Controller Configuration Product Rev
Syntax <I><@><a>PULSE<r>,<r> <r>,<r>,<r>,<r>,<r> <r> 6K 50
Units r = microseconds (Us)

Range 0.3,0.5, 1.0, 2.0, 4.0, 8.0, or 16.0 (applicable to stepper
Default 0.3 axes only)

Response PULSE: *PULSEO0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3
1PULSE: *1PULSEO0.3

See Also AXSDEF, DRES, V

The Pulse WidthRULSE command sets the step output pulse width. The pulse width is described as the time

the pulse is active, @n. The value for the pulse width command is specified in microseconds.

When the pulse width is changed from the default value gi€).the maximum velocity range is reduced. The

amount of reduction is directly proportional to the change in pulse width (see table below).

Pulse Width (PULSEH Setting Actual Pulse Width Maximum Velocity
DEFAULT - 0.3 ps 0.244 ps 2.048 MHz
0.5 ps 0.484 ps 1.024 MHz
10ps 0.976 ps 512 KHz
2.0 ps 1.953 ps 256 KHz
4.0 s 3.906 ps 128 KHz
8.0 us 7.812 ps 64 KHz
16.0 ps 15.624 ps 32 KHz

212 6K Series Command Reference

PV Path Velocity

Type Path Contouring or Motion (Linear Interpolated) Product Rev
Syntax <I>PV<r> 6K 5.0
Units r = units/sec (scalable with SCLD)
Range Stepper Axes: 0.00000-2,048,000 (max. depends on SCLD& PULSE)

Servo Axes: 0.00000-6,500,000 (max. depends on SCLD)
Default 1.0000

Response PV: *PV1.0000
See Also GOL, SCLD, SCALE

The Path VelocityRV) command specifies the path velocity to be used in linearly interpolated ne™#s (
and in all contouring moves. In linearly interpolated moves, a path may involve one to four axes, each with its
own distance of travel. In contouring paths, only the X and Y axis are included in the calculation of the path.

For both types of moves, the path velocity refers to the velocity of the load as motion proceeds along the path.
For linearly interpolated moves, the velocity of each individual axis is dependent on the distance it contributes
to the total path traveled by the load. In contouring paths, the velocity of each individual axis is dependent on
the direction of travel in the X- Y planBOTE: The Pvvalue can be altered between path segments, but not
within a path segment.

UNITS OF MEASURE andSCALING : refer to page 16.

Example: Refer to Define Path Local Mode (PL) command example.

PWC Path Work Coordinates
Type Path Contouring Product Rev
Syntax <I>SPWC<r>,<r> 6K 5.0
Units 1% r = X coordinate units (scalable by the SCLD value)
2" r = Y coordinate units (scalable by the SCLD value)
Range +999,999,999.99999
Default 0,0
Response No response - Must be defining a path (DEF)
See Also PAB, PL, PLC, SCLD, SCALE

The Path Work CoordinateBW® command is used to specify the Work X -Y coordinate data required for
subsequent segment definition in the Work coordinate system. This command places the X -Y coordinate
value of the Work coordinate system at the beginning of the next segment. (The-fiisthe X coordinate,

the secondr> is the Y coordinate.)

This command may be used before Ba@command is given for the purpose of shifting the Work coordinate
system. If theewacommand is not given beforePa@command, but was previously set, the original work
coordinate system is used for the subsequent segments.

UNITS OF MEASURE andSCALING: refer to page 16 or to tt&CLDdescription.

Example: Refer to Define Path Local Mode (PL) command example.

Command Descriptions 213

RADIAN Radian Enable

Type Operators (Trigonometric) Product Rev
Syntax <I>RADIAN 6K 5.0
Units n/a

Range b = 0 (Disable),1 (Enable) or X(don't care)

Default 0

Response RADIAN: *RADIANO

See Also [ATAN], [COS], [PI'], [SIN], [TAN], VAR

This operator is used to switch between radians and degrees. The coRAxD#IN1 specifies units in
radians forSIN, COS TAN andATAN The comman®ADIANGspecifies units in degrees f8IN, COS TAN
andATAN

If a value is given in radians and a conversion is needed to degrees, use the formulaT@é@fiang.

Example:
RADIAN1 ; Set trigonometric functions to radian mode
RE Registration Enable
Type Registration Product Rev
Syntax <I><@><a>RE 6K 5.0
Units b = 0 (disable), 1 (enable), or X (don't care)
Range n/a
Default 0
Response RE: *REO0000_0000
1RE: *1REO
See Also [AS], COMEXC, ENCCNT, [ER], INFNC, [PCC], [PCE],

[PCMS], REG, REGLOD, REGSS, TAS, TER, TPCC, TPCE, TPCMS,
TRGLOT, [TRIG], TTRIG

The Registration Enabl®E) command enables the registration function for the specified axes.

When a registration input (a trigger input assigned the “Trigger Interrupt” function) is activated, the motion
profile currently being executed is replaced bggistration profilewith its own distanceREQ, acceleration

(A & AA), decelerationAD & ADA), and velocity ¥) values. The registration move may interrupt any preset,
continuous, or registration move in progress.

The registration move does not alter the rest of the program being executed when registration occurs, nor does
it affect commands being executed in the background if the controller is operating in the continuous command
execution modeGOMEXCH

Registration moves will not be executed while the motor is not performing a move, while in the joystick mode
(JOY1), or while decelerating due to a stop, kill, soft limit, or hard limit.

How to Set up a Registration Move

1. Configure one of the trigger inputeRG-nA or TRG-nB per axis, olTRG-M) to function as a trigger
interrupt input; this is done with thRFNCi-H command, wherg is the input bit number
representing the targeted trigger input.

2. Specify the distance of the registration move witrRlE&command. For servo axes, the distance
refers to the encoder position (not functional with ANI feedback). For stepper axes, the distance
refers to commanded position.

3. Enable the registration function with tREcommand. Registration is performed only on the axis or
axes with the registration function enabled, and with a non-zero distance specified in the respective
axis-designation field of theEGcommand; the other axes will not be affected. Each trigger has a
distinct move defined for its dedicated axis.

NOTE: The registration move is executed usingah®a, AD, ADA andV values that were in effect
when theREGcommand was entered.

214 6K Series Command Reference

Registration Move Accuracy(see also Registration Move Status below)

The accuracy of the registration move distance specified witREBeommand i1 count (servo axes:
encoder count; stepper axes: commanded coO@MGICNTOr encoder count ENCCNTL

RULE OF THUMB: To prevent position overshoot, make surertb@distance is greater than 4 ms
multiplied by the incoming velocity.

The lapse between activating the registration input and commencing the registration move (this does not
affect the move accuracy) is less than one position sample period (2 ms).

TheREGdistance will be scaled by the distance scale fagtorpvalue) if scaling is enable$CALEJ).
See page 16 for details on scaling.

Preventing Unwanted Registration Moves (methods)

» Reqgistration Input Debounce: Registration Input Debounce: By default, the registration inputs are
debounced for 24 ms before another input on the same trigger is recognized. (The debounce time is
the time required between a trigger's initial active transition and its secondary active transition.)
Therefore, the maximum rate that a registration input can initiate registration moves is 500 times per
second. If your application requires a shorter debounce time, you can change it RIS Lo
command.

» Registration Single-Shot: TRREGSSommand allows you to program the 6K controller to ignore
any registration commands after the first registration move has been initiated. RefREG 8%
command description for further details and an application example.

» Reugistration Lockout Distance: TREGLODommand specifies what distance an axis must travel
before any trigger assigned as a registration input will be recognized. Refere@hexommand
description for further details and an application example.

Registration Move Status & Error Handling

Axis Status — Bit #28: This status bit is set when a registration move has been initiated by any
registration input (trigger). This status bit is cleared with the @&ommand.

AS.28 Assignment & comparison operator — use in a conditional expression.
TASF......... Full text description of each status bit. (Seg“Move Commanded ” line item)
TAS........... Binary report of each status bit (bits 1-32 from left to right). See bit #28.

Axis Status — Bit #30: If, when the registration input is activated, the registration move profile cannot
be performed with the specified motion parameters, the 6K controller will kill the move in progress and
set axis status bit #30. This status bit is cleared with theG@ammand.

AS.30 Assignment & comparison operator — use in a conditional expression.
TASF......... Full text description of each status bit. (Fe@set Move Overshot " line item)
TAS....ooeeee. Binary report of each status bit (bits 1-32 from left to right). See bit #30.

Error Status — Bit #10: This status bit may be set if axis status bit #30 is set. The error status is
monitored and reported only if you enable error-checking bit #10 witBRROR-ommand (e.qg.,
ERROR.10-1). NOTE: When the error occurs, the controller will branch to the error program (assigned
with theERRORRommand). This status bit is cleared with the @xtommand.

ER.10 Assignment & comparison operator — use in a conditional expression.
TERF......... Full text description of each status bit. (Sa@set Move Overshot " line item)
TER........... Binary report of each status bit (bits 1-32 from left to right). See bit #10.

Trigger Status — Bits #1-17: Trigger status bits are set when a registration move has been initiated by
trigger inputs A or B for each axis, or with the TRIG-M (master trigger) input. This also indicates that
the positions of all axes has been captured. As soon as the captured information is transferred or
assigned/compared, the respective trigger status bit is cleareddset to

TRIG......... Assignment & comparison operator — use in a conditional expression.

TTRIG....... Binary report of each status bit (bits 1-17 from left to right). From left to right the bits
represent trigger A and B for axes 1-8, th¥ if is master trigger M (theMasTER
TRIG” input terminal) — see page 7.

Command Descriptions 215

Example:

In this example (using axis 1), two-tiered registration is achieved. While axis 1 is executing it's 50,000-unit move, trigger
input 1A is activated and executes registration move A to slow the load's movement. An open container of volatile liquid is
then placed on the conveyor belt. After picking up the liquid and while registration move A is still in progress, trigger input
1B is activated and executes registration move B to slow the load to gentle stop.

DEL REGI1 ; Delete program (assume program already resides in memory)

DEF REGI1 ; Begin program definition

INFNC1-H ; Define trigger input 1A (axis 1) as a trigger interrupt input

INFNC2-H ; Define trigger input 1B (axis 1) as a trigger interrupt input

A20 : Set acceleration on axis 1 to 20 units/sec/sec

AD40 : Set deceleration on axis 1 to 40 units/sec/sec

V1 ; Set velocity on axis 1 to 1 unit/sec

1REGA4000 ; Set trigger 1A's registration distance on axis 1 to 4000 units
; (registration A move will use the A, AD, & V values above)

A5 : Set acceleration on axis 1 to 5 units/sec/sec

AD2 ; Set deceleration on axis 1 to 2 units/sec/sec

V.5 ; Set velocity on axis 1 to 0.5 units/sec

1REGB13000 ; Set trigger 1B's registration distance on axis 1 to 13,000 units
; (registration B move will use the A, AD, & V values above)

RE1 ; Enable registration on axis 1 only

A50 : Set acceleration to 50 units/sec/sec on axis 1
AD50 : Set deceleration to 50 units/sec/sec on axis 1
V10 ; Set velocity to 10 unit/sec on axis 1

D50000 ; Set distance to 50000 units on axis 1

GO1 : Initiate motion on axis 1

END ; End program definition

Registration Profile:
1st Registration mark
r (TRG-1A) occurs

2nd Registration mark
r (TRG-1B) occurs

Pick up
container
here

l

\

I N S ——

10,000 20,000 D

216 6K Series Command Reference

[READ] Read a Value

Type Communication Interface or Assignment Product Rev
Syntax ... READi ... (See below) 6K 5.0
Units i = string variable number

Range 1-50

Default n/a

Response n/a

See Also ', PORT, [SS], TSS, VAR, VARS, WRITE

The Read a ValueR€AD command provides the user with an efficient way of storing numeric data read from
the input buffer into a variable. TIREADcommand can be used as part of a numeric variable assignment
statement (e.gAR1=READ} or in another command{d,(READ1),12,1). However, th(READcommand
cannot be used in an expression suchiARS=1+READIOr IF(READ1=1) .

Syntax: VARx=READi wherex is the variable number amds the string variable to be sent out to prompt the
user for the numeric information.

Syntax: Command(READi) whereCommandis any command that has a separate field &.4D, V, D, etc.),
andi is the string variable number.

The number attached to the end of READcommand corresponds to the string variable to be sent out the
Ethernet port or the RS-232 or RS-485port, at the time this command is executed. The 6K Series controller
will then wait for numeric data to be sent to its input buffére numeric data must be preceded with an
immediate command identifier and a single quote!'(). The information read in can be either integer, or

real, and must be terminated by a command delimiterct> , <If>).

Rule of Thumb for command value substitutions: If the command syntax shows that the command field
requires a real number (denoteddoy) or and integer value (denoted 4y), you can use thREAD
substitution (e.gy2,(READ)).

Example:
VARS1="Enter the count >" ; Place message in string variable #1
VAR2=READ1 ; Prompt with string variable #1, and read data

; into variable #2

; The controller will send this message (string variable #1) to the screen:
; "Enter the count >"

; The user must enter the numeric data preceded by the characters !'.

; For example, 1'82.5 assigns the value 82.5 to numeric variable 2

Command Descriptions 217

REG Registration Distance

Type Registration Product Rev
Syntax <I><@>aREGc<r> 6K 5.0
Units a=axis #

¢ = letter of trigger input

r = distance units (scalable by the SCLD value)
servo axes: always encoder counts (ANI input not allowed)
stepper axes: commanded counts

Range a = 1-8 (depending on product)

c=AorB

r = 0.00000 to 419,430,000.00000 (positive direction only)
Default 0 (do not make a registration move)

Response 1REGA: *1REGAO

See Also [AS], ENCCNT, [ER], [PCC], [PCE], [PCMS], RE,
REGLOD, REGSS, SCALE, SCLD, [SS], TAS, TER, TPCE, TRGLOT,
[TRIG], TTRIG

The Registration Distanc®EQ command specifies the distance the corresponding axis will travel after
receiving a registration input (trigger A or B). ExamplREGA4000sets up a 4000-count registration move
on axis 1 to be initiated when trigger input 1A is activated.

Servo Axes: REGvalue always represents encoder counts (registration cannot be used with analog input
feedback).

Stepper Axes:REGvalue represents commanded counts.

Trigger Input (Axis 1-4 Dedicated REG Trigger Input (Axis 5-8 Dedicated REG

“ TRIGGERS/OUTPUTS” connector) * Axis Syntax “ TRIGGERS/OUTPUTS” connector) * Axis Syntax
Pin 23, Trigger 1A 1 1REGA Pin23, Trigger 5A 5 5REGA
Pin 21, Trigger 1B 1 1REGB Pin21, Trigger 5B 5 5REGB
Pin 19, Trigger 2A 2 2REGA Pin19, Trigger 6A 6 6REGA
Pin 17, Trigger 2B 2 2REGB Pin17, Trigger 6B 6 6REGB
Pin 15, Trigger 3A 3 3REGA Pin15, Trigger 7A 7 7TREGA
Pin 13, Trigger 3B 3 3REGB Pin 13, Trigger 7B 7 7REGB
Pin 11, Trigger 4A 4 4REGA Pin11, Trigger 8A 8 8REGA
Pin9, Trigger 4B 4 4REGB Pin9, Trigger 8B 8 8REGB

* The number of trigger inputs available varies by product (refer to your product’s Installation Guide).

The registration move is executed usingAhaA, AD, ADA andV values that were in effect when tREG
command was entered.

RULE OF THUMB: To prevent position overshoot, make surertb@distance is greater than 4 ms
multiplied by the incoming velocity.

The registration distance remains set until you change it with a subse@@m@mmand. Registration
distances outside the valid range are flagged as an error, returning the messsge DATA-FIELD x,
wherex is the field number.

UNITS OF MEASURE andSCALING: refer to page 16.

For additional details on Registration (including programming examples), refer tRéhgommand
description and to the Registration section inRhegrammer's Guide

218 6K Series Command Reference

REGLOD Registration Lock-Out Distance

Type Registration Product Rev
Syntax <I><@>REGLOD<r>,<r>,<r>,<r>,<r>,<r> <r> <r> 6K 50
Units r = distance units (scalable by SCLD)
Range 0.00000 to +999,999,999.99999
Default 0
Response REGLOD: *REGLODO0,0,0,0,0,0,0,0
1REGLOD: *1REGLODO
See Also INFNC, RE, REG, REGSS, SCLD, TRGLOT

TheREGLOXommand specifies the distance an axis must travel before its registration input will be
recognized. If scaling is enable®JALEY), the lock-out distance is scaled by 8@ Dvalue.

Stepper axes The lock-out distances are measured incrementally from the start of motion to the commanded
position.

Servo axesThe lock-out distances are measured incrementally from the start of motion to the actual position
(as measured by the position feedback device), not the commanded position.

Example (single axis, stepper):

A print wheel uses registration to initiate each print cycle. From the beginning of motion, the controller should ignore all
registration marks before traveling 2000 steps. This is to ensure that the unit is up to speed and that the registration mark
is a valid one.

DEL REGI3 ; Delete program (in case program already resides in memory)
DEF REGI3 ; Begin program definition

INFNC1-H ; Trigger capture mode for trigger 1A on axis 1
RE1 ; Enable registration

V2 ; Set registration move to a velocity of 2 revs/sec
1REGA2500 ; and a distance of 2500 steps

REGLOD2000 ; Set registration lockout distance to 2000 steps
MC1 ; Start a mode continuous move

Vi ; move at a velocity of 1 rps

GO1 ; Initiate motion

END ; End program definition

Registration Profile:

1st Registration mark occurs
after 1500 steps, but the

A registration 2nd Registration
vV move does not l f mark occurs after
3000 steps.

occurbecause
2—| thelockout

distance is set
to 2000 steps.

\ 4

H
|

° t

To check the status of the registration input:

> ITTRIG.1 Check to see of trigger interrupt input 1A has been activated
*0 Indicates registration move has not happened on any axis

Command Descriptions 219

REGSS Registration Single-Shot

Type Registration Product Rev
Syntax <I><@>REGSS 6K 5.0
Units n/a
Range b=0 (Disable), 1 (Enable), or x (don't care)
Default 0
Response REGSS: *REGSS0000_0000

1REGSS: *1REGSS0

See Also RE, REG, REGLOD

The Registration Single ShaREGS$ command sets the registration such that only one registration move will
take place for the specified axis. This allows the user to prevent any other trigger from interrupting the
registration move in progress.@ocommand will reset the “one shot” condition.

Example — Option A :

A user has a line of material with randomly spaced registration marks. It is known that the first mark must initiate a
registration move, and that each registration move cannot be interrupted or the end product will be destroyed. Since the
distance between marks is random, it is impossible to predict if a second registration mark will occur before the first
registration move has finished.

DEL REGI2 ; Delete program (in case program already resides in memory)
DEF REGI2 ; Begin program definition
INFNC1-H ; Trigger capture mode for trigger 1A on axis 1
RE1 ; Enable registration
V2 ; Set registration move to a velocity of 2 rps
AD.5 ; a deceleration of 0.5 rev/sec/sec
1REGA20000 ; and a distance of 20000 steps
MC1 ; Start a mode continuous
V1 ; move at a velocity of 1 rps
GO1 ; Initiate motion
END ; End program definition
Registration Profile:
v i 1st Registration 2nd Registration
mark acours 1 v mark occurs The first registration move

\

H is pre-empted by a second
registration input.

Example — Option B (introducing “single-shot” registration):
In order to stop the second registration from occurring, REGSSan be used:

DEL REGI2b ; Delete program (in case program already resides in memory)
DEF REGI2b ; Begin program definition
INFNC1-H ; Trigger capture mode for trigger 1A on axis 1
RE1 ; Enable registration
V2 ; Set registration move to a velocity of 2 rps
1REGA20000 ; and a distance of 20000 steps
REGSS1 ; Enable registration single shot mode
MC1 ; Start a mode continuous
V1 ; move at a velocity of 1 rps
GO1 ; Initiate motion
END ; End program definition
Registration Profile:
v 4 1st Registration 2nd Registration
mark occurs 1

v mark occurs Because of REGSSthe

first registration move is
NOT pre-empted by the
second registration input.
The registration “single
shot” willbe resetwhen
you issue a new motion
command (GQ PRUNetc.).

5 —

t

220 6K Series Command Reference

REPEAT Repeat Statement

Type Program Flow Control or Conditional Branching Product Rev
Syntax <I>SREPEAT 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also JUMP, UNTIL

The Repeat StatememEPEATY command, in conjunction with théNTIL command, provide a means of
conditional program flow. ThREPEATcommand marks the beginning of the conditional statement. The
commands between tlREPEATand theUNTIL command are executed at least once. Upon reaching the
UNTIL command, the expression contained withinUN&IL command is evaluated. If the expression is false,
the program flow is redirected to the first command afteRe#ErREATcommand. If the expression is true, the
first command after theNTIL command is executed.

Up to 16 levels oREPEAT... UNTIL() commands may be nested.

NOTE: Be careful about performing@OThetweerREPEATandUNTIL. Branching to a different location
within the same program will cause the nREPEATstatement encountered to be nested within the
previousREPEATstatement, unless &mMNTIL command has already been encountered JUN®
command should be used in this case.

All logical operatorsAND OR NOT), and all relational operators, >, >=, <, <=, <>) can be used within the
UNTIL expression. There is no limit on the number of logical operators, or on the number of relational
operators allowed within a singNTIL expression.

The limiting factor for theJNTIL expression is the command length. The total character count foNthe
command and expression cannot exceed 80 characters. For example, if you add all the lettexsin the
command and the letters within t)e expression, including the parentheses and excluding the spaces, this
count must be less than or equal to 80.

All assignment operatorg(AD, AS, D, ER IN, INO, LIM, MOYOUT, PC, PCE PCMEPCMSPE, PER SS, TIM,
US V, VEL, etc.) can be used within tiNTIL() expression.

Example:

REPEAT ; Beginning of REPEAT ... UNTIL() loop
GO1110 ; Initiate motion on axes 1, 2, and 3
VAR1=VAR1+1 ; Increment variable 1 by 1

UNTIL(VAR1=12) ; Repeat loop until variable 1 = 12

Command Descriptions 221

RESET Reset

Type Communication Interface Product Rev
Units n/a

Range n/a

Default n/a

Response RESET: ((power-up message is displayed))

See Also STARTP, TSTAT

The ResetRESET command affects the 6K controller the same as cycling power. The controller's programs
and variables are retained in non-volatile memory; however, all previously entered command values (not
saved in programs or variables) will be reset to factory default values.

NOTE: After sending th&®@ESETor !RESET command to the 6K product, you must wait until you see the
power-up message (actual time varies by product) before communicating with the product.

CAUTION : TheRESETcommand will disconnect an Ethernet connection.

RUN Begin Executing a Program

Type Program or Subroutine Definition Product Rev
Syntax <I>RUN<t> 6K 5.0
Units t = text (hame of program)

Range Text name of 6 characters or less

Default n/a

Response n/a

See Also $, DEF, DEL, END, GOSUB, GOTO

The Begin Executing a ProgramRUN command executes a program defined withtBEcommand. A
program name consists of 6 or fewer alpha-numeric charactereUN@mmmand can be used inside a
program or subroutine. The program can also be run by specifying the name of the program witklont the
command. Th&UNcommand functions similar toGOSUB-ommand in that control returns to the original
program when the called program finishes.

Example:

DEF pick ; Begin definition of program named pick
GO01100 ; Initiate motion on axes 1 and 2

END ; End program definition

RUN pick ; Executes program named pick

pick ; Executes program named pick

222 6K Series Command Reference

S Stop Motion

Type Motion Product Rev
Syntax <I>S 6K 50
Units n/a

Range b =0 (do not stop) or 1 (stop)

Default 1

Response >IS: No response, instead motion is stopped on all axes.

See Also C, COMEXCCOMEXSGO, K

The Stop Motion$) command instructs the motor to stop motion on the specified axes. If thesptop (
command is used without any arguments, motion will be stopped on all axes. The Stop command will bring
the specified axes to rest using the last deceleration vsl)ieitered.

| NOTE |

Since all commands are buffered, the next command does not begin until the previous
command has finished. This is important because if you place a Stop (S) command after
a Go (GQ command in a program, the Stop command will have no effect. For the Stop
command to have an effect within a program, continuous command processing mode
(COMEXmust be enabled. If the Stop (S) command is to be used external to the
program, the immediate command identifier (!) must be used.

If COMEXS$s set to zero, command processing will be terminated when any stop command is issued, or a
stop input is activated. EOMEX$s set to 1 or 2, a stop command issued for a specific axis will only stop
motion on that axis and will not clear the command buffeeQMEX$s set to 2, a stop command or input

will stop motion and clear the command buffer.

If motion is to be paused and later resumed, the stop command must be used without any aigoments (
IS), and the continue execution on stg@®MEXBcommand must be enabled. The contindg ¢command
can then be used to resume motion.

Example:

GO1111 ; Initiate motion on all axes

1S1100 ; Stop motion on axes 1 and 2 (must use "!IS" to stop motion in progress)

SCALE Enable/Disable Scale Factors

Type Scaling Product Rev
Syntax <I>SCALE 6K 5.0
Units n/a

Range b = 0 (disable) or 1 (enable)

Default 0

Response SCALE: *SCALEO
See Also DRES, ERES, SCLA, SCLD, SCLMAS, SCLV, SFB, TSTAT

Scaling allows you to program acceleration, deceleration, velocity, and position values in units of measure
that are appropriate for your application. B®@ALEcommand is used to enable or disable scalb@p(EL

to enableSCALE@to disable). When scaling is enabl&tALED), all entered data is multiplied by the
appropriate scale factor:

Type of Motion Accel/Decel Scaling Velocity Scaling Distance Scaling

Standard Point-to-Point Motion SCLA SCLV SCLD

Contouring, Linear Interpolation ~ SCLD SCLD SCLD

Following SCLA SCLV SCLD for follower distances

SCLMASfor master distances

NOTE: Contouring uses only the SCLDvalue to scale all motion parameters; SCLA& SCLVare not applicable.

Command Descriptions 223

When Should | Define Scaling Factors?

Scaling calculations are performed when a program is defined or downloaded. Consequently, you must
enable scalingJCALEY) and define the scaling factoisqLD SCLA SCLV, SCLMA$ prior to defining
(DER), uploading TPROG, or running RUNor PRUN the program.

RECOMMENDATION: Place the scaling commands at the beginning of your prograefiteethe

location of any defined programs. This ensures that the motion parameters in subsequent programs in
your program file are scaled correctly. When you use Motion Planner’'s Setup Generator wizard, the
scaling commands are automatically placed in the appropriate location in your program file.

ALTERNATIVE: Scaling factors could be defined via a terminal emulaisirbeforedefining or
downloading a program. Because scaling command values are saved in battery-backed RAM
(remembered until you issueRESETcommand), all subsequent program definitions and downloads
will be scaled correctly.

RESTRICTIONS : Scaling commands are not allowed in a progdéthere are scaling commands in

a program, the controller will report an error messagG®@MAND NOT ALLOWED IN PROGRAM

when the program is downloaded. If you intend to upload a program with scaled motion parameters, be
sure to use Motion Planner. Motion Planner automatically uploads the scaling parameters and places
them at the beginning of the program file containing the uploaded program from the controller. This
assures correct scaling when the program file is later downloaded.

Servo Products

Scaling can be used with encoder or analog input feedback sources. When the scaling
commands (SCLA SCLD etc.) are executed, they are specific only to the current feedback
source selected with the last SFBcommand.

If your application requires switching between feedback sources for the same axis, then for each
feedback source, you must select the feedback source with the appropriate SFBcommand and
issue the scaling factors specific to operating with that feedback source.

For example, if you have two axes and will be switching between encoder and ANI feedback,
you should include code similar to the following in your setup program:

SFB1,1 ; Select encoder feedback (subsequent scaling
; parameters are specific to encoder feedback)

SCLA4000,4000 ; Program accel/decel in revs/sec/sec

SCLV4000,4000 ; Program velocity in revs/sec

SCLD4000,4000 ; Program distances in revs

SFB2,2 ; Select ANI feedback (subsequent scaling

; parameters are specific to ANI feedback)
SCLA205,205 ; Program accel/decel in volts/sec/sec
SCLV205,205 ; Program velocity in volts/sec
SCLD205,205 ; Program distances in volts

Units of Measure without Scaling(Scaling is disabledSCALE® as the factory default condition):

« Stepper axes: All distance values entered are in commanded counts (sometimes refemedoto as
step3, and all acceleration, deceleration and velocity values entered are internally multiplied by the
DREScommand value.

e Servo axes: Units of Measure (per feedback source)
Motion Attribute Encoder Analog Input
Accel/Decel Revs/sec/sec * volts/sec/sec
Velocity Revs/sec * volts/sec
Distance Counts ** Counts **

* All accel/decel & velocity values are internally multiplied by the EREScommand value.
** Distance is measured in the counts received from the feedback device.

Contouring & Linear Interpolated Motion: Path acceleration, velocity, and distance are based on the
resolution PRESfor steppersERESfor servos) of axis 1. If multi-tasking is used, path motion units are
based on the resolution of the first (lowest number) axis associated with tHESKZKX.

| SCALING EXAMPLES: Refer to page 16. |

224 6K Series Command Reference

SCANP Scan Compiled PLCP Program

Type PLC Scan Program Product Rev
Syntax <I>SCANP<t> 6K 5.0
Units t = text (name of the PLCP program, or CLR)
Range t = PLCPI, where i is the number of the desired PLCP program,

or t = CLR (to clear or stop the scan function)
Default n/a
Response n/a

See Also PLCP, PCOMP, PRUN, PUCOMP, TSCAN

Use theSCANFcommand to initiate scanning a specific compiled PLCP progPa®f|). For example,
SCANP PLCP3initiates scanning the program defined”a€P3 (defined withDEF PLCP3) and compiled
(PCOMP PLCP3.

The PLCP program is scanned once per Time (msec)
2 ms system update period. Each scanaiowed scan time per—| Begin Scan Window —»= .
pass is allotted a 0.5 ms window in the Jgter tpdate s J Scanning
2 ms system update period in which to End Scan Window —3»
complete the scan (refer to the diagram - ilisecond
. millisecon
on the right). If the scan takes more than System Update Period
. . + 1/0 Updated by System

0.5 ms, the scan will pause and continue « Trajectories calculated
where it stopped during the next 2-ms - rograms/Tasks run
system update period. Conversely, if the
scan takes less than 0.5 ms, the e New S > msec

P . . . egin New Scan 4»
remaining processing time is used for (or resume scan) Scanning
normal processing.

End Scan Window —>»
To check how much time (in 2 ms
increments_) the last scan took to Note: In Scan mode, when a
complete, issue tHESCANcommand. scanis complete, the next scan v
A will begin at the start of the

For example, if the last PLCP program next2ms System Update Period.

took 3 system updates (2 ms each) to scan,tReANwould reportTSCANS, indicating that it took 6 ms
to complete the scan.

Launching programs external to the scanUsing theEXEcommand or theEXEcommand, a scan
program can launch another program in a specified Ea¢klaunches a standard, non-compiled program;
PEXElaunches a compiled program.

Stopping the scan The scan program can be stopped in either of two ways: usitg tenmand, or
clearing the scan program by issuin§@NP CLRcommand.

Timing the PLCP program outputs: It is not possible to control where the PLCP program will pause if

the scan takes more than the allowed time. This means that there can be a time lag of several update periods
before the outputs, analog outputs, and/or variables affected by the PLCP program are updated. The order

in which the scan takes place should be considered when creating PLCP programs to minimize the effects of
such a lag. One way to avoid the lag is to create a binary variable as a temporary holding place for the
desired output states. The last commands beforeNbstatement of the PLCP program can set the

outputs according to the final status of the variable, such that all output states are written at the same time,
just as the scan completes. This method is demonstrated in the example program below.

For more information on defining a PLC program, refer to Bo€P command description.

Command Descriptions 225

Example:

DEF PLCP3

; Binary states of outputs 1-6 are represented by VARBL1 bit 1-6.
; Outputs 1-6 are set at the end of the program.

VARB1=b000000 ; Initialize binary variable 1
IF(IN.1=b1) ; If Input 1 is ON, turn Output 1 ON
VARB1=VARBL1 | b100000 ; Set binary bit for output 1 only to ON
NIF

IF(IN.2=b1) ; If Input 2 is ON, turn Output 2 ON
VARB1=VARBL1 | b010000 ; Set binary bit for output 2 only to ON
NIF

IF(IN.3=b1) ; If Input 3 is ON, turn Output 3 ON
VARB1=VARBL1 | b001000 ; Set binary bit for output 3 only to ON
NIF

IF(IN.4=b1) ; If Input 4 is ON, turn Output 4 ON
VARB1=VARB1 | b000100 ; Set binary bit for output 4 only to ON
NIF

IF(IN.5=b1) ; If Input 5 is ON, turn Output 5 ON
VARB1=VARBL1 | bO00010 ; Set binary bit for output 5 only to ON
NIF

IF(IN.6=b1) ; If Input 6 is ON, turn Output 6 ON
VARB1=VARBL1 | bO00001 ; Set binary bit for output 6 only to ON
NIF

OUT(VARB1) ; Turn on appropriate outputs

END

PCOMP PLCP3 ; Compile program PLCP3

SCANP PLCP3 ; Run compiled program PLCP3 in Scan mode

; The diagram below illustrates the scan.

Time (msec)

DEF PLCP3 .
VARB1=b000000 Scanning
IF(IN.1=b1) rP=——— >
VARB1=VARB1 | b100000 Pause Scan

NIF

IF(IN.2=b1)
VARB1=VARBL1 | b010000
NIF

IF(IN.3=b1)
VARB1=VARB1 | b001000 Scanning

1

1

1

1

1

: 2 msec

NIF | o m - -y oSCanning,

1

1

1

1

1

1

IF(IN.4=b1)
VARB1=VARBL | b000100 I Complete
IF(IN.5=b1)
VARB1=VARBL | b000010
NIF

1
1
1
1
IF(IN.6=b1) 1 4 msec
VARB1=VARB1 | b000001 1
ELSE 1 Scanning
1
1
1
1

VARB1=VARB1 | b000000
NIF .
OUT(VARB1) Begin New
END

Scan

6 msec

Scanning

for compiled program PLCP3, for a total of 4 msec.

2 System Update Periods are needed to complete the scan v
The response to a TSCANcommand would be: *TSCANA4.

226 6K Series Command Reference

SCLA Acceleration Scale Factor

Type Scaling Product Rev
Syntax <I><@><a>SCLA<I> <i> <i> <i> <i> <i> <i>,<i> 6K 5.0
Units i = counts/unit

Range 1-999,999

Default 4000

(Servos auto-detect based on SFB: 4000 if encoder, 205 if ANI)
Response SCLA: *SCLA4000,4000,4000,4000,4000,4000,4000,4000
1SCLA: *1SCLA4000

See Also ANIRNG, FMAXA, SCALE, SCLD, SCLMAS, SCLV, SFB, TSTAT

When scaling is enable8CALEJ), all point-to-point acceleration valuels AA HOMAHOMAAJOGA

JOGAA JOYA JOYAA and deceleration valuesl§ ADA LHAD LHADA LSAD, LSADA HOMAPHOMADA

JOGAD JOGADAJOYAD JOYADA are multiplied by the Acceleration Scale Fac&CI(A command. Since

the units are counts/unit, and all the acceleration values are in units/sec/sec, all accelerations will thus be
internally represented as counts/sec/sec.

Stepper axeslf scaling is enabledSCALEY), the entered accel and decel values are internally multiplied
by the acceleration scaling fact@QLA to convert user units/sec/sec to commanded counts/sec/sec
(sometimes referred to as “motor steps”/sec/sec). The entered values are always in reference to
commanded counts, regardless of the existence of an encoder.

If scaling is disabledSCALE®, all accel and decel values are entered in commanded revs/sec/sec;
these values are internally multiplied by the drive resolutb®Eg§ value to obtain accel and decel
values in commanded counts/sec/sec for the motion trajectory calculations.

Servo axeslf scaling is enabledSCALEJ), the entered accel and decel values are internally multiplied by
the acceleration scaling fact@LA) to convert user units/sec/sec to encoder or ANI counts/sec/sec.

If scaling is disabledSCALE®, all accel and decel values are entered in encoder revs/sec/sec or ANI
volts/sec/sec; encoder values are internally multiplied by the encoder resdtiRiesh alue to
obtain accel and decel values in counts/sec/sec for the motion trajectory calculations.

As the acceleration scaling fact@qLA changes, the SCLA(counts/unit) Decimal Places
resolution of the acceleration and deceleration values and——3

the number of positions to the right of the decimal point ;49 2
also change (see table at right). An acceleration value with, g _ 999 5
greater resolution than allowed will be truncated. For 1000 - 9999 3
example, if scaling is set RCLA1g theA9.9999 10000 - 99999 4
command would be truncatedA40.9 . 100000 - 999999 5

The following equations can help you determine the range of acceleration and deceleration values.

Axis Type Min. Accel or Decel (resolution) Max. Accel or Decel
Stepper 0.001 ODRES 999.9999 [0 DRES
SCLA SCLA
servo Encoder Feedback: %ERES Encoder Feedback: %DERES
SCLA SCLA
ANI Feedback: * 0.8205 ANI Feedback: * 20479.9795
SCLA SCLA

* This calculation assumes the analog input range (ANIRNGvalue) is left in its default setting (range is -10V to +10V).

MORE ABOUT SCALING

For additional details on scaling, including scaling examples, refer to page 16.

Command Descriptions 227

SCLD Distance Scale Factor

Type Scaling Product Rev
Syntax <I><@><a>SCLD<i> <i>,<i>,<i>,<i> <i>,<i>,<i> 6K 5.0
Units i = counts/unit

Range 1-999,999

Default 1

(Servos auto-detect based on SFB: 1 if encoder, 205 if ANI)
Response SCLD: *SCLD1,1,1,1,1,111
1SCLD: *1SCLD1

See Also [ANI], D, [FB], FOLRN, FSHFD, [PANI], [PC], [PCC],
[PCE],[PCMS], [PE],[PER], PSET, [PSHF], [PSLV],
REG, REGLOD, SCALE, SCLA, SCLV, SCLMAS, SFB, SMPER, TANI, TFB,
TPANI, TPC, TPCC, TPCE, TPCMS, TPE, TPER, TPSHF, TPSLV, TSTAT

If scaling is enabledSCALEY), all D, PSET, SMPERandREGcommand values are internally multiplied by
the Distance Scale Fact@®@GLD value. Since th&8CLDunits are in terms of counts/unit, all distances will
thus be internally represented in counts. For instance, if your distance scaling factor isSC0IO@E)
and you enter a distance of T&§), the actual distance moved will be 750,000 (10000 x 75) counts.

This command is useful for allowing the user to specify distances in any unit. For example, if the user had a
25000 step/revolution drive and wanted distance units in terms of revolutionsab@should be set to
25000, and scaling should be enableGALED).

As the distance scaling fact@QLD changes, the resolution of all distance commands and the number of
positions to the right of the decimal point also change (see table below). A distance value with greater
resolution than allowed will be truncated (e.qg., if scaling is sSeCt®25@@ZtheD1.99999 command

would be truncated tD1.9999).

SCLD(counts/unit) Distance Resolution (units) Distance Range (units) Decimal Places

1-9 1 0 - £999,999,999 0
10-99 0.1 0.0 - £99,999,999.9 1
100 - 999 0.01 0.00 - +9,999,999.99 2
1000 - 9999 0.001 0.000 - +999,999.999 3
10000 - 99999 0.0001 0.0000 - +99,999.9999 4
100000 - 999999 0.00001 0.00000 - £9999.99999 5

| FRACTIONAL STEP TRUNCATION

If you are operating in the preset positioning mode (MC@ when the distance scaling
factor (SCLD and the distance value are multiplied, a fraction of one step may possibly
be left over. This fraction is truncated when the distance value is used in the move
algorithm. This truncation error can accumulate over a period of time, when performing
incremental moves continuously in the same direction. To eliminate this truncation
problem, set the distance scale factor (SCLD to 1, or a multiple of 10.

MORE ABOUT SCALING
For additional details on scaling, including scaling examples, refer to page 16.

228 6K Series Command Reference

SCLMAS Master Scale Factor

Type Following; Scaling Product Rev
Syntax <I><@><a>SCLMAS<i> <i>,<i> <i>,<i>,<i>,<i> <i> 6K 5.0
Units i =scaling factor

Range i =1- 999999

Default 1

Response SCLMAS *SCLMAS1,1,1,1,1,1,1,1
1SCLMAS *1SCLMAS1

See Also FMCLEN, FMCP, FOLEN, FOLMD, FOLRD, FOLRN, GOWHEN, [PCMS],
[PMAS], SCALE, SCLD, TPMAS, TPCMS

The Master Scale Fact@@LMA$ command internally multiplies all Following master values by the
specified scale factor value. Since 8@ MA3units are in terms of counts/unit, all distances will thus be
internally represented in counts. For instance, if your master scaling factor is $G0807&10000 and you
enter a master parameter of 75 (e£@L.MD75, the internal value will be 750,000 (10000 x 75) counts.

NOTE: The SCLMAScommand will not take effect unless scaling is enal$ed\(E1).

This command allows you to specify distances in any unit. For example, if you had a 4000 step/revolution
encoder as the master and wanted master units in terms of revolutior&C théxsshould be set to 4000.

As the master scaling fact@®@LMA$ changes, the resolution of all master parameter values and the
number of positions to the right of the decimal point also change (see table below). A master parameter
value with greater resolution than allowed will be truncated (e.g., if scaling is%eitDba000, the
FOLMD1.9999 command would be truncatedROLMD1.999).

SCLMAScounts/unit) Master Resolution (units) Master Range (units) Decimal Places
1-9 1 0 - £999,999,999 0
10-99 0.1 0.0 - £99,999,999.9 1
100 - 999 0.01 0.00 - £9,999,999.99 2
1000 - 9999 0.001 0.000 - £999,999.999 3
10000 - 99999 0.0001 0.0000 - +99,999.9999 4
100000 - 999999 0.00001 0.00000 - £9999.99999 5

| FRACTIONAL STEP TRUNCATION

If you are specifying master distance values (FOLMD, when the master scaling factor
(SCLMA$ and the distance value are multiplied, a fraction of one count may possibly be
left over. This fraction is truncated when the distance value is used in the move
algorithm. This truncation error can accumulate when performing several moves over
the specified master distance. To eliminate this truncation problem, set the master scale
factor (SCLMAS%to 1, or a multiple of 10.

Example: (refer also to the FOLENexamples, and page 16)

The commands below are a subset of the set-up parameters for an application in which axis 1 is following
the encoder input on axis #3 at a 1-to-1 ratio.

SCALE1 ; Enable parameter scaling
SCLA25000 ; Set follower acceleration scale factor to 25000 for axis 1
SCLV25000 ; Set follower velocity scale factor to 25000 for axis 1
SCLD25000 ; Set follower distance scale factor to 25000 for axis 1
SCLMAS4000 ; Set master scale factor to 4000 for axis 1
FOLMAS31 ; Axis 1 using encoder input #3 as master
FOLRN1 ; Set follower-to-master Following ratio numerator to 1

; (scaled by SCLD)
FOLRD1 ; Set follower-to-master Following ratio denominator to 1.

; This sets the ratio to 1:1 (scaled the SCLMAS).
; The actual ratio in counts = 25000 to 4000 = 6.25 follower
; axis counts per master count.

Command Descriptions 229

SCLV Velocity Scale Factor

Type Scaling Product Rev
Syntax <I><@><a>SCLV<i> <i> <i> <i> <i> <i> <i>,<i> 6K 5.0
Units i = counts/unit

Range 1- 999,999

Default 4000

(Servos auto-detect based on SFB: 4000 if encoder, 205 if ANI)
Response SCLV: *SCLV4000,4000,4000,4000 ...
1SCLV: *1SCLV4000

See Also ANIRNG, FMAXV, HOMV, HOMVF, JOGVH, JOGVL, JOYVH, JOYVL, SCALE,
SCLA, SCLD, SFB, TSTAT, V

When scaling is enable8CALEJ), all velocity valuesHOMYHOMVFJOGVH JOGVL JOYVH JOYVL, V)
are multiplied by the Velocity Scale Fact®CLV) command. Since the units are counts/unit, all velocities
will thus be internally represented in counts/sec.

Steppers: If scaling is enabledSCALEY), the entered velocity values are internally multipliedslay. vVto
convert user units/sec to commanded counts/sec.

If scaling is disabledSCALE®, all velocity values are entered in commanded revs/sec; these
values are internally multiplied by the drive resolutiDRES value to obtain velocity values in
commanded counts/sec for the motion trajectory calculations.

Servos: If scaling is enabledSCALEY), the entered velocity values are internally multipliedskay Vto
convert user units/sec to encoder or ANI counts/sec.

If scaling is disabledSCALE®, all velocity values are entered in encoder revs/sec or ANI
volts/sec; encoder values are internally multiplied by the encoder resolfias) (/alue to
obtain velocity values in counts/sec for the motion trajectory calculations.

As the velocity scaling factoSCLV) changes, the resolution of the velocity commands and the number of
positions to the right of the decimal point also change (see table below). A velocity value with greater
resolution than allowed will be truncated. For example, if scaling is s&tltg1g thev1.9999 command
would be truncated t@1.9 .

SCLV(steps/unit) Velocity Resolution (units/sec) Decimal Places
1-9 1 0
10-99 0.1 1
100 - 999 0.01 2
1000 - 9999 0.001 3
10000 - 99999 0.0001 4
100000 - 999999 0.00001 5

Use the following equations to determine the maximum velocity range for your product type.

Max. Velocity for Servo Axes

Max. Velocity for Stepper Axes (Servos: determined by feedback source selected for axis #1)
n n = maximum velocity is determined by . 6,500,000
scLy the PULSEcommand setting. Encoder Feedback: SCLV
1000 O 205

ANI Feedback: *
SCLV

* This calculation assumes the analog input range (ANIRNGvalue) is left in its default setting (range is -10V to +10V).

MORE ABOUT SCALING

For additional details on scaling, including scaling examples, refer to page 16.

230 6K Series Command Reference

[SEG] Number of Free Segment Buffers

Type Compiled Motion; Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also MEMORY, [SS], TDIR, TMEM, TSEG, TSS

Use theSEGoperator to assign the number of free memory segment bufiessipiled memorjo a

variable ¥AR), or to make a comparison against another value. “Compiled memory” is the partition of the
6K controller’s non-volatile memory that stores compiled profiles & PLC programs. Compiled
profiles/programs could be a multi-axisntour(a series of arcs and lines),iadividual axis profile(a

series 0ilGOBURommands), aompound profilécombination of multi-axis contours and individual axis
profiles), or @PLC program(for PLC Scan Mode).

System status bit (s@&SF, TSS, andsSS) 29 to set when the compiled memory is 75% full, and bit 30 is set
if the compiled memory is 100% full.

Syntax: VARn=SEGwhere ‘h” is the variable number,
or SEGcan be used in an expression suchFregEG=1)

SFB Select Servo Feedback Source

Type Controller Configuration or Servo Product Rev
Syntax <@><a>SFB<i><i><i><i> <i><i><i><i> 6K 5.0
Units i = feedback source identifier

Range i =0 (open loop, disable gains), 1 (encoder), or 2 (ANIinput) (applicable to servo
Default 1 axes on|y)

Response SFB *SFB1,1,1,1,1,1,1,1
1SFB *1SFB1

See Also [ANI], ANIFB, ANIRNG, AXSDEF, ERES, [FB], OUTPn, [PANI],
[PCE], [PE], PSET, SCALE, SCLD, SGAF, SGI, SGILIM, SGP,
SGV, SGVF, SMPER, SOFFS, TANI, TFB, TPANI, TPE

Use theSFB command to select the servo feedback source to be used by each axis. The options are:

Options Physical Location Measurement* Resolution Command
1—Encoder ENCODER connector only Encoder counts ERES
(default is 4000 counts/rev)
2—Analog (“ANI") input ** Analog input SIM on external ADC counts ANIRNG
I/0 brick (default is 205 counts/volt)

* With scaling enabled (SCALEY), encoder and ANI feedback is scaled by the SCLDvalue.
** Before an analog input can be selected for feedback, it must be configured with the ANIFB command.

| NOTE

Parameters for scaling (SCLA SCLD etc.) , tuning gains (SGI, SGR etc.), position offset
(PSET) and maximum position error (SMPERare specific to the feedback source
currently selected with the last SFB command.

If your application requires switching between feedback sources for the same axis, then
for each feedback source, you must issue the SFBcommand and then enter the scaling,
gains, PSETand SMPERcommands specific to that feedback source.

The feedback source can be changed only if motion is not in progre¥ghen the feedback source is
changed, the new setpoint will be determined by taking the new feedback source's value and adding any
existing position error. Changing the source will disable the Output On Position com@anés) (

Command Descriptions 231

USING SFB@

Setting the SFB command value to zero has these effects:

« WARNING: The end-of-travel limits are disabled. Make sure that it is safe to operate
without end-of-travel limits before using SFBJ

e Gain values (SGILIM, SGAF SGI, SGP etc.) set to zero (open-loop operation).
* SMPER/alue set to zero (position error is allowed to increase without causing a fault.

« Subsequent attempts to change gain values or SMPERwill cause an error message
("NOT ALLOWEDF SFB@")

* SOFFSset to zero, but allows subsequent servo offset changes to affect motion.

« Disables output-on-position (OUTPA- OUTPHIfunctions.

» Any subsequent changes to PSET, PSETCLR SCLDQ SCLA SCLV, and SOFFSare lost
when another feedback source is selected.

Recommendation: Use the Disable Drive On Kill more, enabled with the KDRIVE
command, so that the controller will shut down the drive if a kill command (e.g., !K) is
executed or if a kill input is activated. Keep in mind that shutting down the drive allows the
load to freewheel if there is not brake installed.

Example (to be placed outside of a program, because of the scaling parameters):

DRIVEO ; Disable (shutdown) axis #1

SFB1 ; Select encoder feedback for axis #1 (subsequent scaling,
; gains, and PSET are specific to encoder feedback operation)

ERES4000 : Set encoder resolution

SCLA4000 ; Set scaling for programming acceleration in revs/sec/sec

SCLV4000 ; Set scaling for programming velocity in revs/sec

SCLD4000 ; Set scaling for programming distance in revs

SGP5 ; Set proportional feedback gain to 5

SGl1 ; Set integral feedback gain to 1

SGV1 ; Set velocity feedback gain to 1

PSETO ; Set current position as absolute position zero

1ANIRNG.17=4 ; Select a voltage range of -10V to +10V for the 1st analog

; input channel in SIM slot 3 (I/0 location 17) of I/O brick 1.

; This means the counting resolution will be 205 counts/volt.
ANIFB1-17 ; Select the 1st analog input channel in SIM slot 3

; (/O location 17) of 1/0O brick 1 to be used as

; feedback for axis 1. ((required before the SFB command))

SFB2 ; Select ANI feedback for axis #1 (subsequent scaling, gains,
; and PSET are specific to ANI feedback operation)

SCLA205 ; Set scaling for programming acceleration in volts/sec/sec

SCLV205 ; Set scaling for programming velocity in volts/sec

SCLD205 ; Set scaling for programming distance in volts

SGP1 ; Set proportional feedback gain to 1

SGIO ; Set integral feedback gain to zero

SGV.5 ; Set velocity feedback gain to 0.5

PSETO ; Set current position as absolute position zero

SFB1 : Select encoder feedback for axis #1

232 6K Series Command Reference

SGAF Acceleration Feedforward Gain

Type Servo Product Rev
Syntax <I><@><a>SGAF<r>,<r>,<r> <r>,<r>,<r> <r> <r> 6K 50
Units r = microvolts/step/sec/sec

Range 0.00000000 - 2800000.00000000 (applicable to servo
Default 0 axes on|y)

Response SGAF: *SGAF0,0,0,0,0,0,0,0
1SGAF: *1SGAFO

See Also SFB, SGENB, SGI, SGP, SGSET, SGV, SGVF, TGAIN, TSGSET

Use the Acceleration Feedforward Ga8G@AH command to set the gain for the acceleration feedforward
term in the servo control algorithm. Introducing acceleration feedforward control impgrasidsn
tracking performancevhen the system is commanded to accelerate or decelerate.

The SGAFvalue is multiplied by theommanded acceleratiqealculated by the 6K controller's DSP move
profile routine) to produce the control signal.

Acceleration feedforward control can improve the performance of contouring and linear interpolation
applications, as well as reduce the time required to reach the commanded vdtedyer, if your

application only requires point-to-point moves, acceleration feedforward control is not necessary (leave
the SGAFcommand setting at zero—default).

Acceleration feedforward control does not affect the servo system's stability, nor does it have any effect at
constant velocity or at steady state.

NOTE

The SGAFcommand is specific to the current feedback source (selected with the last
SFB command). Therefore, if your application requires switching between feedback
sources for the same axis, then for each feedback source, you must select the feedback
source with the appropriate SFBcommand and then issue the SGAFcommand with the
gain values specific to the selected feedback source.

For more information on servo tuning and how the acceleration feedforward gain affects performance, refer
to your product'$nstallation Guideor to theServo Tuner User Guide

Example:

SGAF0.5555,43.554,0,0 ; Set the acceleration feedforward for axes 1 and 2

SGENB Enable a Servo Gain Set

Type Servo Product Rev
Syntax <I><@><a>SGENB<i><i><i>,<i> <> <i> <i> <i> 6K 5.0
Units i =gain set identification number (see SGSETcommand)

Range 1-5 (applicable to servo
Default n/a axes on|y)
Response n/a

See Also SFB, SGAF, SGAFN, SGI, SGILIM, SGP, SGSET, SGV, SGVF, SOFFS,
TGAIN, TSGSET

This command allows you to enable any combination of the five gain sets to any combination of axes. The
gain sets are set with t&SETcommand. A gain set can be enabled during motion at any specified point

in the profile, or when not in motion. For example, you could use one set of gain parameters for the constant
velocity portion of the profile, and when you approach the target position a different set of gains can be
enabled.

| NOTE

The tuning gains in a given gain set are specific to the feedback source that was in use
(selected with the last SFB command) at the time the gains were established with the
respective gain commands (SGI, SGR etc.). Make sure that the gain set you enable is
appropriate to the feedback source you are using at the time.

Command Descriptions 233

For more information on servo tuning, refer to your prodliestllation Guideor to the Motion Planner
help system.

Example:

SGP5,5,10,10 ; Sets the gains for the proportional gain
SGI.1,.1,0,0 ; Sets the gains for the integral gain
SGV50,60,0,0 ; Sets the gains for the velocity gain
SGVF5,6,10,11 ; Sets the gains for the velocity feedforward gain
SGAF0,0,0,0 ; Sets the gains for the acceleration feedforward gain
SGSET3 ; Assign SGP, SGI, SGV, SGVF, & SGAF gains to servo gain set 3
SGP75,75,40,40 ; Sets the gains for the proportional gain
SGI5,5,5,7 ; Sets the gains for the integral gain
SGV1,.45,2,2 ; Sets the gains for the velocity gain
SGVF0,8,0,9 ; Sets the gains for the velocity feedforward gain
SGAF18,20,22,24 ; Sets the gains for the acceleration feedforward gain
SGSET1 ; Assign SGP, SGI, SGV, SGAF, & SGVF gains to servo gain set 1
SGENB1,3,3,1 ; Enables gain set 1 gains on axis 1 &4; enables gain set 3 on

;axis2& 3
TGAIN ; Displays the current value for all gains. Example response:

; *SGP75,5,10,40

; *SGI5,.1,0,7

; *SGV1,60,0,2

; *SGVF0,6,10,9

; *SGAF18,0,0,24
SGl Integral Feedback Gain
Type Servo Product Rev
Syntax <I><@><a>SGI<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r> 6K 5.0
Units r = millivolts/step * sec
Range 0.00000000-2,800,000.00000000 (applicable to servo
Default 0.0 axes on|y)
Response SGl: *$GI0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0

1SGl: *1SGI0.0

See Also SFB, SGAF, SGENB, SGILIM, SGP, SGSET, SGV, SGVF, TGAIN, TSGSET

Use the Integral GairsGl) command to set the gain of the integral term in the control algorithm. The
primary function of the integral gain is to reduce or eliminate final position error (e.g., due to friction,
gravity, etc.) and improve system accuracy during motion. If a position error exists (commanded position
not equal to actual position—s&BERcommand), this control signal will ramp up until it is high enough to
overcome the friction and drive the motor toward its commanded positamteptable position accuracy

is achieved with proportional gairsGA, then the integral gaingG/) need not be used.

If the integral gain is set too high relative to the other gains, the system may become oscillatory or unstable.
The integral gain can also cause excessive position overshoot and oscillation if an appreciable position error
has persisted long enough during the transient period (time taken to reach the position setpoint); this effect
can be reduced by using theILIM command to limit the integral term windup.

NOTE |

The SGI command is specific to the current feedback source (selected with the last SFB
command). Therefore, if your application requires switching between feedback sources
for the same axis, then for each feedback source, you must select the feedback source
with the appropriate SFBcommand and then issue the SGI command with the gain

values specific to the selected feedback source.

For more information on servo tuning, refer to your prodliestllation Guideor to the Motion Planner
help system.

Example:
SGI15,14.5 ; Set the integral gain for axes 1 and 2

234 6K Series Command Reference

SGILIM Integral Windup Limit

Type Servo Product Rev
Syntax <I><@><a>SGILIM<r>,<r>,<r> <r> <r>,<r>,<r>,<r> 6K 5.0
Units r = volts

Range 0-65,535 (applicable to servo
Default 200 axes only)

Response SGILIM: *SGILIM200,200,200,200,200,200,200,200
1SGILIM: *1SGILIM200

See Also SFB, SGENB, SGlI, TGAIN, TSGSET

If integral control §GI) is used and an appreciable position error has persisted long enough during the
transient period (time taken to reach the setpoint), the control signal generated by the integral action can end
up too high and saturate to the maximum level of the controller's analog control signal output. This
phenomenon is callégdtegrator windup

After windup occurs, it will take a while before the integrator output returns to a level within the limit of the
controller's output. Such a delay causes excessive position overshoot and oscillation. Therefore, the integral
windup limit (SGILIM) command is provided for you to set the absolute limit of the integral and, in essence,
turn off the integral action as soon as it reaches the limit; thus, position overshoot and oscillation can be
reduced.

| NOTE

The SGILIM command is specific to the current feedback source (selected with the last
SFB command). Therefore, if your application requires switching between feedback
sources for the same axis, then for each feedback source, you must select the feedback
source with the appropriate SFBcommand and then issue the SGILIM command with
the gain values specific to the selected feedback source.

For more information on servo tuning, refer to your prodlies&llation Guideor to the Motion Planner
help system.

Example:
SGl144,43,55,0 ; Sets the integral gain term
SGILIM15,15,15,15 ; Sets the integral windup limit on the integral gain term

SGP Proportional Feedback Gain

Type Servo Product Rev
Syntax <I><@><a>SGP<r>,<r>,<r>,<r>,<r>,<r> <r> <r> 6K 5.0
Units r = millivolts/step

Range 0.00000000-2,800,000.00000000 (applicable to servo
Default 0.5 axes on|y)

Response SGP: *SGP0.5,0.5,0.5,0.5 ...
1SGP: *1SGPO0.5

See Also SFB, SGAF, SGENB, SGI, SGSET, SGV, SGVF, TGAIN, TSGSET

This command allows you to set the gain of the proportional term in the servo control algorithm. The output
of the proportional term is proportional to the difference between the commanded position and the actual
position read from the feedback device. The primary function of the proportional term is to stabilize the
system and speed up the response. It can also be used to reduce the steady state position error.

When the proportional gairsGP is used alone (i.e., the other gain terms are set to zero), setting this gain
too high can cause the system to become oscillatory, underdamped, or even unstable.

NOTE |

The SGPcommand is specific to the current feedback source (selected with the last SFB
command). Therefore, if your application requires switching between feedback sources
for the same axis, then for each feedback source, you must select the feedback source
with the appropriate SFBcommand and then issue the SGPcommand with the gain
values specific to the selected feedback source.

Command Descriptions 235

For more information on servo tuning, refer to your prodliestllation Guideor to the Motion Planner
help system.

Example:

SGP10,4.22233,2.22,.0445245 ; Sets the proportional gain of all axes

SGSET Save a Servo Gain Set

Type Servo Product Rev
Syntax <I>SGSET<i> 6K 5.0
Units i = gain set identification number

Range 1-5 (applicable to servo
Default n/a axes on|y)
Response n/a

See Also SFB, SGAF, SGENB,SGI, SGILIM, SGP, SGV, SGVF, SOFFS, TGAIN, TSGSET

This command allows you to save the presently assigned gain vekRsSGl, SGV SGAF andSGVH as a

set of gains. Stand-alone servo controllers save (into battery-backed RAM) the gains and the axes and
feedback sources to which they are assigned. Up to 5 sets of gains can be saved. Any gain set can be
displayed using thESGSETcommand.

Any gain set can be enabled with 8@ENBcommand during motion at any specified point in the profile, or
when not in motion. For example, you could use one set of gain parameters for the constant velocity portion
of the profile, and when you approach the target position a different set of gains can be enabled.

| NOTE

The tuning gains in a given gain set are specific to the feedback source that was in use
(selected with the last SFB command) at the time the gains were established with the
respective gain commands (SGI, SGR etc.). If your application requires you to switch
between feedback sources for the same axis, make sure that the gain set you enable is
appropriate to the feedback source you are using at the time.

For more information on servo tuning, refer to your prodlies&llation Guideor to the Motion Planner
help system.

Example:
SGP5,5,10,10 ; Sets the gains for the proportional gain
SGI.1,.1,0,0 ; Sets the gains for the integral gain
SGV50,60,0,0 ; Sets the gains for the velocity gain
SGVF5,6,10,11 ; Sets the gains for the velocity feedforward gain
SGAF0,0,0,0 ; Sets the gains for the acceleration feedforward gain
SGSET3 ; Assign SGP, SGI, SGV, SGVF, & SGAF gains to servo gain set 3
SGP75,75,40,40 ; Sets the gains for the proportional gain
SGI5,5,5,7 ; Sets the gains for the integral gain
SGV1,.45,2,2 ; Sets the gains for the velocity gain
SGVF0,8,0,9 ; Sets the gains for the velocity feedforward gain
SGAF18,20,22,24 ; Sets the gains for the acceleration feedforward gain
SGSET1 ; Assign SGP, SGI, SGV, SGAF, & SGVF gains to servo gain set 1
SGENB1,3,3,1 ; Enables gain set 1 gains on axis 1 &4; enables gain set 3 on
;axis2& 3
TGAIN ; Displays the current value for all gains. Example response:
; *SGP75,5,10,40
; *SGI5,.1,0,7
*SGV1,60,0,2

. *SGVF0,6,10,9
| *SGAF18,0,0.24

236 6K Series Command Reference

SGV Velocity Feedback Gain

Type Servo Product Rev
Syntax <I><@><a>SGV<r>,<r>,<r>,<r>,<r>,<r> <r> <r> 6K 50
Units r = microvolts/step/sec

Range 0.00000000-2,800,000.00000000 (applicable to servo
Default 0.0 axes only)

Response SGV: *S$GVv0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
1SGV: *1SGVO0.0

See Also ERES, SFB, SGAF, SGI, SGP, SGVF, TGAIN, TSGSET

This command allows you to control the velocity feedback gain in the servo algorithm. Using velocity
feedback, the controller's output signal is made proportional to the velocity, or rate of change, of the
feedback device position. Since it acts on the rate of change of the position, the action of this term is to
anticipate position error and correct it before it becomes too large. This increases damping and tends to
make the system more stable.

If this term is too large, the response will be slowed to the point that the system is over-damped. This gain
can increase position tracking error, which can be countered by the velocity feedforwastaesn (

Since the feedback device signal has finite resolution, the velocity accuracy has a limit. Therefore, if the
velocity feedback gairs@GV) is too high, the errors due to the finite resolution are magnified and a noisy, or
chattering response may be observed.

NOTE

The SGVcommand is specific to the current feedback source (selected with the last SFB
command). Therefore, if your application requires switching between feedback sources
for the same axis, then for each feedback source, you must select the feedback source
with the appropriate SFBcommand and then issue the SGVcommand with the gain
values specific to the selected feedback source.

For more information on servo tuning, refer to your prodliestllation Guideor to the Motion Planner
help system.

Example:
SGV100,97,43.334,0 ; Sets the velocity gain term for all the axes

SGVF Velocity Feedforward Gain

Type Servo Product Rev
Syntax <I><@><a>SGVF<r>,<r>,<r>,<r> <r>,<r><r>,<r> 6K 5.0
Units r = microvolts/step/sec

Range 0.00000000-2,800,000.00000000 (applicable to servo
Default 0.0 axes on|y)

Response SGVF: *SGVF0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
1SGVF: *1SGVFO0.0

See Also SFB, SGAF, SGENB, SGI, SGP, SGSET, SGV, TGAIN, TSGSET

Use the Velocity Feedforward Gai@GVvH command to set the velocity feedforward gain. Introducing
velocity feedforward control improvemsition tracking performancehen the system is commanded to
move at constant velocity. The tracking error is mainly attributed to friction, torque load, and velocity
feedback controlSGV).

The SGVFvalue is multiplied by theommanded velociticalculated by the 6K controller's DSP move
profile routine) to produce the control signal.

Velocity feedforward control can improve the performance of interpolation (linear and circular) application.
However, if your application only requires short, point-to-point moves, velocity feedforward control is not
necessary (leave th&GVFcommand setting at zero—default).

Because velocity feedforward control is not in the servo feedback loop, it does not affect the servo system's
stability, nor does it have any effect at steady state. Therefore, the only limits on how high you can set the
velocity feedforward gainGVH are: when isaturates the control outpyiries to exceed the servo

Command Descriptions 237

controller'st10V analog control signal range); or when it causes the actual posipoecedethe
commanded position.

NOTE |

The SGVFcommand is specific to the current feedback source (selected with the last
SFB command). Therefore, if your application requires switching between feedback
sources on the same axis, then for each feedback source, you must select the feedback
source with the appropriate SFBcommand and then issue the SGVFcommand with the
gain values specific to the selected feedback source.

For more information on servo tuning, refer to your produicstallation Guideor to the Motion Planner
help system.

Example:
SGVF3555,3555,4000,4000 ; Sets the velocity feedforward for all axes

[S|N()] Sine

Type Operator (Trigonometric) Product Rev
Syntax ... SIN(r) (See below) 6K 5.0
Units r = value in radian or degrees based on RADIAN command

Range +17500.0000000 radians

Default n/a

Response n/a
See Also [ATAN], [COS, [PI'], RADIAN, [TAN], VAR

This operator is used to calculate the sine of a number
given in radians or degrees (see RAOIAN

command). If &" and 'b" are coordinates of a point o,
on a circle of radiusr”, then the angle of measur@"" sine=+

<

. . _a r

can be defined by the equaticsme 6 = - o |a c0s 9:%
b >

If a value is given in radians and a conversion is tano=2

(=3

needed to degrees, use the formula: 360ft radians.

The graph on the right S
shows the amplitude of !
on the unit circle for 0707 - — —

different values ok.

s = ——

S

N
=]

NP

SRR

sz
5

Radians
(x axis)

-0.707

. 2TlRadians = 360 Degrees

Syntax: VARx=SIN(r) where %" is the numeric variable number and’‘is a value provided in either
degrees or radians based onR#®IAN command. Parentheseg () must be placed around the
SIN operand. The result will be specified to 5 decimal places.

Example:
RADIAN1
VAR1=5 * SIN(PI/4) ; Set variable 1 equal to 5 times the sine of Pi divided by 4

238 6K Series Command Reference

SINAMP Virtual Master Sine Wave Amplitude

Type Following Product Rev
Syntax <I><@><a>SINAMP<i> <i> <i> <i> <i>,<i> <i>,<i> 6K 5.0
Units i = amplitude

Range 0-8192 (max. peak to peak is 16384)

Default 0

Response SINAMP *SINAMPO,0,0,0,0,0,0,0
1SINAMP *1SINAMPO

See Also FOLMAS, FVMACC, FVMFRQ, SINANG, SINGO

Use theSINAMPcommand to define the amplitude of the internal sine wave when it has been designated as
the virtual master. By designating the internal sine wave as a master, the user may produce a sinusoidally
oscillating motion, with control of the phase, amplitude, and center of oscillation.

The SINAMPcommand allows a change in follower amplitude without changing the center of oscillation. It
affects the sine wave immediately, without any built in ramp in amplitude. If a gentle change in amplitude

is desired, write a user program which repeatedly issues the command with small changes in value until the
desired value is reached.

The peak-to-peak amplitude of a virtual master sine wave is twice the value specified @ithAtke
command.

SINANG Virtual Master Sine Wave Angle

Type Following Product Rev
Syntax <I><@><a>SINANG<r>,<r>,<r>,<r> <r> <r><r><r> 6K 5.0
Units degrees

Range 0.0-360.0

Default 0

Response SINAMP *SINAMPO,0,0,0,0,0,0,0
1SINAMP *1SINAMPO

See Also FOLMAS, FVYMACC, FVYMFRQ, SINAMP, SINGO

The SINANGcommand is used to define the phase angle when the internal sine wave is designated as the
virtual master. By designating the internal sine wave as a master, the user may produce a sinusoidally
oscillating motion, with control of the phase, amplitude, and center of oscillation.

There is one sine wave per axis, each using the variable count freqeeMBRQof that axis to increase

or decrease the angle from which the sine is calculated. Each count of the count frequency changes the
angle by one-tenth (0.1) of a degree. For exampemarqralue of 3600 would create an angular

frequency of 3600 tenths of degrees per second, or 1 cycle per second. When used as a source for the sine
wave, the maximum value f6VMFRQs 144000. This results in a maximum of 40 Hz angular frequency.
Frequencies higher than this are not allowed because they may be subject to aliasing.

SINGO Virtual Master - Initiate Internal Sine Wave
Type Following Product Rev
Syntax <I><@><a>SINGO 6K 5.0
Units n/a
Range b =1 (restart sine wave from previous angle & amplitude) or

0 (stop sine wave)
Default 0

Response SINGO *SINGO0000_0000
1SINGO *1SINGOO

See Also FOLMAS, FVMACC, FVYMFRQ, SINAMP, SINANG

TheSINGOcommand is used to restart the internal sine wave from zero degrees. By designating the
internal sine wave as a master, the user may produce a sinusoidally oscillating motion, with control of the
phase, amplitude, and center of oscillation.

Command Descriptions 239

The SINGOcommand with ad” parameter abruptly stops the sine wave, without changing its current
magnitude. Using theINGOcommand with a1” parameter abruptly starts the sine wave, also without
changing its current magnitude. To gently pause the follower output, chargeMhrQvalue to zero with
a moderat&VMACG/alue; to resume the follower output, restore the origin&FRQralue.

The SINGOcommand with a1” parameter always starts at the previous angle, which may not be the
desired start of oscillation. TINANGcommand will instantly change the angle and corresponding sine
of the angle. This represents an abrupt change in master position. If the follower axis is still following
when this occurs, there will be an abrupt change in commanded follower position. To start the follower
properly, move the follower to the desired start position first (Ugidg D, GQ, then iSSUSINANG then

MC1 GO1 and finallySINGQ

SMPER Maximum Allowable Position Error

Type Servo Product Rev
Syntax <I><@><a>SMPER<r>,<r>,<r>,<r> <r>,<r>,<r>,<r> 6K 5.0
Units r = feedback device steps (scalable with SCLD)

Range 0-200,000,000 (0 = do not monitor position error condition) (applicable to
Default 4000 servo axes only)

Response SMPER: *SMPER4000,4000,4000,4000 ...
1SMPER: *1SMPER4000

See Also [AS], CMDDIR, ENCPOL, [ER], ERES, ERROR, ERRORP, SCALE,
SCLD, SFB, SGILIM, TANI, TAS, TER, TFB, TPC, TPE, TPER

This command allows you to set the maximum position error allowed before an error condition occurs. The
position error, monitored once per system update period, is the difference between the commanded position
and the actual position as read by the feedback device selected with 8#Blegsinmand. When the

position error exceeds the value entered bystMeERcommand, an error condition is latched (5a8 or AS

bit #23) and the 6K controller issues a shutdown to the faulted axis and sets its analog output command to
zero volts. To enable the system again,0dR&/E1 command must be issued to the affected axis, which also
sets the commanded position equal to the actual feedback device position (incremental devices will be
zeroed).

If the SMPERvalue is set to zersMPERY the position error condition is not monitored, allowing the
position error to accumulate without causing a fault.

WhenSMPERS set to a non-zero value, the maximum position error acts as the servo system fault monitor;

if the system becomes unstable or loses position feedback, the controller detects the resulting position error,
shuts down the drive, and sets an error status bit. You can &rgbiEcommand bit #12 to continually

check for the position error condition, and when it occurs to branch to a programmed response defined in
theERRORMrogram. You can check the status of this error condition withiABeAS, TER andER

commands. You can check the actual position error withRERandPERcommands.

If scaling is enabledSCALEY), theSMPERvalue is multiplied by théCLDvalue.

NOTE

The SMPER-ommand is specific to the current feedback source (selected with the last
SFBcommand). Therefore, if your application requires switching between feedback
sources on the same axis, then for each feedback source, you must select the feedback
source with the appropriate SFB command and then issue the SMPERcommand with the
gain values specific to the selected feedback source.

Example:
ERES4000,4000,4000,4000 : Set encoder resolution for all axes to 4000 counts/rev
SMPER4000,4000,4000,4000 ; Set maximum allowable position error to 1 rev for
; all 4 axes. If the position error exceeds 4000 counts
; (1 rev) a fault condition will occur.

240 6K Series Command Reference

SOFFS Servo Control Signal Offset

Type Servo Product Rev
Syntax <I><@><a>SOFFS<r>,<r>,<r>,<r>,<r> <r>,<r>,<r> 6K 50
Units r = volts

Range -10.000 to 10.000 (resolution is 0.001 volts)

Default 0

Response SOFFS: *SOFFS0,0,0,0,0,0,0,0
1SOFFS: *1SOFFS0

See Also [DAC], DACLIM, SGENB, SGSET, TDAC, TGAIN, TSGSET

This command allows you to set an offset voltage to the commanded analog control signal output
(commanded analog outputSOFFSvalue = offset analog output). With this command, you can set an
offset voltage to the drive system so that the motor will be stationary in an open-loop configlitatios.
the same effect as the balance input on most analog servo drives.

| CAUTION

If there is little or no load attached, the SOFFSoffset may cause an acceleration to a high speed.

Typically, this offset will be set to zero. This offers a method for setting the analog output command to a
known voltage. By setting th&GP SGI, SGV, SGAF, & SGVFgains to zero, the analog output will reflect
this offset value and the system becomes an open-loop configuration.

Use theTDACcommand to check the voltage being commanded at the 6K controller's analog output (voltage
displayed includes any offset in effect). An axis configured as a stepper can 88&H8eommand to set
the DAC output voltage.

Example:
SOFFS0,0,1,2 ; Sets the offset voltage on all axes

[SQRT()] square Root

Type Operator (Mathematical) Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also [=L [+) [-) [*1l /1 VAR

This operator takes the square root of a value. The result, if multiplied by itseppitbximatelyequal
the original value (the difference is attributed to round-off error). The resulting value has 3 decimal places.

Syntax: VARn=SQRT(expression) where ‘h” is the variable number, and the expression can be a number
or a mathematical expression. T$@RTof a negative number is not allowed. Parentheges) (must be
placed around theQRToperand.

Example:
VAR1=SQRT(25) ; Setvariable 1 equal to the square root of 25 (result = 5)

[SS] System Status

Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also IF, TCMDER, TRGFN, [TRIG], TTRIG, TSS, TSSF, TSTAT, VARB

Use theSS operator to assign the system status bits to a binary vanedm®e)(or to make a comparison
against a binary or hexadecimal value. To make a comparison against a binary value, the letter b (b or B)

Command Descriptions 241

must be placed in front of the value. The binary value itself must only contain ones, zeros, or Xs (1, &, X,
x). To make a comparison against a hexadecimal value, the letter h (h or H) must be placed in front of the
value. The hexadecimal value itself must only contain the letters A through F, or the numbers @ through 9.

Syntax: VARBn=<i%>SSwhere ‘h” is the binary variable number, 86 can be used in an expression
such asF(SS=b11@1) , orIF(SS=h7F) .NOTE: If you are using multi-tasking, be aware that
each task has its own system status register. If you wish to check the system status of a external
task (a task other than the task that is executing$raperator), then you must prefix tB&
operator to address the targeted task (2265Sfor the system status of Task 2).

The function of each system status bit is shown below.

BIT (Left to Right) Function (1 =yes, &= no) BIT (Left to Right) Function (1 =yes, @=no)
1 System Ready 17 Loading Thumbwheel Data (TW
2 Reserved 18 External Program Select Mode (INSELP)
3 Executing a Program 19 Dwell in Progress (T command)
4 Immediate Command (set if last 20 Waiting for RP240 Data—DREADor
command was immediate) DREADF
5 In ASCII Mode 21 RP240 Connected — current PORT
setting only
6 In Echo Mode — current PORT 22 Non-volatile Memory Error
setting only
7 Defining a Program 23 Servo data gathering transmission in
progress (servo axes only)
In Trace Mode 24 Reserved
In Step Mode 25 RESERVED
10 In Translation Mode 26 RESERVED
11 Command Error Occurred (bit is 26 RESERVED
cleared when TCMDERs issued)
12 Break Point Active (BP) 28 RESERVED
13 Pause Active 29 Compiled memory is 75% full
14 Wait Active (WAIT) 30 Compiled memory is 100% full
15 Monitoring On Condition (ONCOND 31* Compile operation failed (PCOMP **
16 Waiting for Data (READ 32 Reserved

* Bit #31: failed PCOMRompile is cleared on power up, RESET or after successful compile. Possible causes include:
« Errors in profile design (e.g., change direction while at non-zero velocity; distance & velocity equate to < 1 count
per system update; preset move profile ends in non-zero velocity)
« Profile will cause a Following error (see TFSF, TFS, or FS command descriptions)
* Out of memory (see SShit #30)
¢ Axis already in motion at the time of the PCOMRommand
* Loop programming errors (e.g., no matching PLOOPor PLN, more than 4 embedded PLOOPENDIoops)
« PLCPprogram contains invalid commands.

If it is desired to assign only one bit of the system status value to a binary variable, instead of all 32, the bit
select () operator can be used. For exampleRB1=SS.12 assigns system status bit 12 to binary variable
11 *WARBI=XXXX_XXXX_ XXX XXXX_XXXX_XXXX_XXXX_XXXX

Example:

VARB1=SS ; System status assigned to binary variable 1

IF(SS=b111011X11) ; If the system status contains 1s in bit locations 1, 2, 3,
15,6, 8,&9, and a 0 in bit location 4, do the IF

; statement

IF(SS=h7F00) ; If the system status contains 1s in bit locations 1, 2, 3,
; 5,6, 7, &8, and Os in every other bit location, do the IF
; statement

NIF : End of second IF statement

NIF : End of first IF statement

242 6K Series Command Reference

STARTP Start-Up Program

Type Subroutines Product Rev
Syntax <I>STARTP<t> 6K 5.0
Units t = text (name of program)

Range Text name of 6 characters or less

Default n/a

Response STARTP: *STARTP MAIN

See Also DEF, RESET, SCALE

The Start-Up Progran8TARTH command specifies the name of the program that will automatically when
the 6K product is powered up or reset with RESETcommand. If the program that is identified as the
STARTPprogram is deleted with tigEL command, th&TARTPis automatically cleared. If you wish to

prevent theSTARTPprogram from being executed, without having to delete the assigned program, issue the
STARTPCLR command.

Example:

STARTP WakeUp ; Set program WakeUp as the program that will start to run
; after power is cycled or the 6K product is reset

STARTP CLR ; Clears the program WakeUp from its assignment as the
; start-up program
DEL WakeUp ; Deletes the program WakeUp and clears the STARTP command

; (no power-up program will be executed)

STEP Single Step Mode Enable

Type Program Debug Tool Product Rev
Syntax <I>STEP 6K 5.0
Units n/a

Range b = 0 (disable), 1 (enable) or X(don't care)

Default 0

Response STEP: *STEPO

See Also [#], BP,[SS], TRACE, TRACEP, TRANS, TSS

The Single Step Mode EnableTEP) command enables single command step mode. Single step mode is
used for stepping through a defin@Ef program. To execute single step mode:

1. Define a programDER)

2. Enable single step mod&TEP1)

3. Run the progranRUN

4. Use the immediate pouni () to step through the program

Each step!f) command will initiate the next command to be processed.

Example:
DEF tester ; Begin definition of program named tester
V1,111 ; Set velocity to 1 unit/sec on all axes
A10,10,10,10 : Set acceleration to 10 units/sec/sec on all axes
; (Note: This command will not be executed until a '# sign
; is received.)
D1,2,3,4 : Set distance to 1 unit on axis 1, 2 units on axis 2,
: 3 units on axis 3, and 4 units on axis 4
GO1101 : Initiate motion on axes 1, 2, and 4
OUT11X1 ; Turn on onboard outputs 1, 2, and 4, leave 3 unchanged
END ; End program definition
STEP1 ; Enable single step mode
RUN tester Execute program named tester
; * At this point no action will occur because single step mode *
; * has been enabled. Here's how to execute commands: *

;* 1#2 (Execute 1st 2 commands in the program: V1,1,1,1 & A10,10,10, 10) *

;* % (Execute 1 command: command to be executed is D1,2,3,4)

;* #1 (Execute 1 command: command to be executed is GOllO) *

;* 1#2 (Execute 2 commands: commands to be executed are OUT11X1 & END) *

* *kkk * * * *kkk

Command Descriptions 243

STRGTD Target Distance Zone

Type Servo Product Rev
Syntax <I><@><a>STRGTD<r>,<r>,<r>,<r><r>,<r> <r> <r> 6K 50
Units r = distance units (scalable with SCLD)

Range 0-999,999,999.99999 (applicable only to
Default 50 Servo axes)

Response STRGTD: *STRGTD50,50,50,50 ...
1STRGTD: *1STRGTD50

See Also [AS], SCLD, STRGTE, STRGTT, STRGTV, TAS, TSTLT

This command sets the target distance zone used in the Target Zone Settling Mode. The target distance zone
is a range of positions around the desired endpoint that the load must be within before motion is considered
complete. If scaling is enable8ALE]), theSTRGTDvalue is multiplied by the distance scale factor

(ScLD.

When using the Target Zone Mode, the load’s actual position and actual velocity must be witrigethe
zone(that is, within the distance zone defineddfRGTDand within the velocity zone defined BYRGTY
before motion can be determined complete. Axis status bit #2ZASFeTAS, or AS) indicates when the
axis is within the zone specified wiSTRGTDandSTRGTY this bit is usable even if the Target Zone Mode
is not enabledSTRGTEY.

If the load does not settle into the target zone before the timeout periodsS&®®&YT the controller

detects an error (SEASF, TAS, or AS bit #25). If this error occurs, you can prevent subsequent command
and/or move execution by enabling #RRORcommand to continually check for this error condition, and
when it occurs to branch to a programmed response definedeRE@RPprogram. (Refer to thERRORP
command description for an example of using an error program.)

*** Eor a more information on target zone operation, refer to the Programmer's Guide.

Example:

STRGTD5,5,5,5 ; Sets the distance target zone to +/-5 units
STRGTV.01,.01,.01,.01 ; Sets the velocity target zone to <= 0.01 units/sec
STRGTT10,10,10,10 ; Sets the timeout period to 10 milliseconds on all axes
STRGTE1111 ; Enables the target zone criterion for all axes

Given these target zone commands, a move with a distance of 8,000 units
; (@D8000) must end up between position 7,995 and 8,005 and settle down
; to <=0.01 units/sec within 10 ms after the commanded profile is complete.

STRGTE Enable Target Zone Settling Mode

Type Servo Product Rev
Syntax <I><@><a>STRGTE 6K 50
Units n/a

Range b =0 (disable), 1 (enable), or X (don't care) (applicable only to
Default 0 Servo axes)

Response STRGTE: *STRGTE0000_0000
1STRGTE: *1STRGTEO

See Also COMEXC, STRGTD, STRGTT, STRGTV, TSTLT

This command enables or disables the Target Zone Settling Mode. When using the target zone settling
criterion, the load's actual position and actual velocity must be withiatget zongthat is, within the
position band defined lTRGTDand within the velocity band defined BYRGTY before motion can be
determined complete.

If the load does not settle into the target zone before the timeout periodS®R®YT the controller

detects an error (S@AS or AS bit #25). If this error occurs, you can prevent subsequent command and/or
move execution by enabling tBERRORcommand to continually check for this error condition, and when it
occurs to branch to a programmed response defined BERIRGRMProgram.

*** For a more information on target zone operation, refer to the Programmer's Guide.

244 6K Series Command Reference

Example:

STRGTD5,5,5,5 ; Sets the distance target zone to +/-5 units
STRGTV.01,.01,.01,.01 ; Sets the velocity target zone to <= 0.01 units/sec
STRGTT10,10,10,10 ; Sets the timeout period to 10 milliseconds on all axes
STRGTE1111 ; Enables the target zone criterion for all axes

Given these target zone commands, a move with a distance of 8,000 units
; (@D8000) must end up between position 7,995 and 8,005 and settle down
; to <=0.01 units/sec within 10 ms after the commanded profile is complete.

STRGTT Target Settling Timeout Period

Type Servo Product Rev
Syntax <I><@><a>STRGTT<i>, <> <i><i> <i><i>,<i> <i> 6K 5.0
Units r = milliseconds

Range 0-5000 (applicable only to
Default 1000 Servo axes)

Response STRGTT. *STRGTT1000,1000,1000,1000 ...
ISTRGTT: *1STRGTT1000

See Also [AS],[ER], ERROR, ERRORP, STRGTD, STRGTE, STRGTV, TAS,
TER, TSTLT

This command sets the maximum time allowed for the load to settle within the defined target zone before an
error occurs.

This command is useful only if the Target Zone Settling Mode is enabled wiiTRGTEcommandWhen

using the Target Zone Settling Mode, the load's actual position and actual velocity must be wigngethe
zone(that is, within the position band defined ®yRGTDand within the velocity zone defined BYRGTY

before motion can be determined complete. If the load does not settle into the target zone before the timeout
period set bYSTRGTT the servo controller detects an error (5R8 or AS bit #25).

If this error occurs, you can prevent subsequent command and/or move execution by engtR@the
command to continually check for this error condition, and when it occurs to branch to a programmed
response defined in tlERRORMProgram. (Refer to theERRORRommand description for an example of
using an error program.) You can check the status of the error condition withRla@dER commands.

*** For a more information on target zone operation, refer to the Programmer's Guide.

Example (see STRGTE:

STRGTV Target Velocity Zone

Type Servo Product Rev
Syntax <I><@><a>STRGTV<r>,<r>,<r>,<r>,<r>,<r> <r> <r> 6K 5.0
Units r = units/sec (scalable by SCLV)

Range 0.00000-1,600,000.00000 (applicable only to
Default 1.00000 servo axes)

Response STRGTV: *STRGTV1.0000,1.0000,1.0000,1.0000 ...
1STRGTV: *1STRGTV1.0000

See Also [AS], SCLV, STRGTD, STRGTE, STRGTT, TAS, TSTLT

This command sets the target velocity zone for use in the Target Zone Settling Mode. The target velocity
zone is a velocity range that the load must be within before motion is considered complete. If scaling
(SCALB is enabled, the TRGTWalue is multiplied by the velocity scale factec{\).

When using the Target Zone Mode, the load's actual position and actual velocity must be witingethe
zone(that is, within the distance zone defined3RGTDand less than or equal to the velocity defined by
STRGTY before motion can be determined complete. Axis status bit #2ZASEeTAS, or AS) indicates
when the axis is within the zone specified WBIFrRGTDandSTRGTY this bit is usable even if the Target
Zone Mode is not enable§TRGTE).

Command Descriptions 245

If the load does not settle into the target zone before the timeout periodSSR®&YT the servo controller
detects an error (S@AS or AS bit #25). If this error occurs, you can prevent subsequent command and/or
move execution by enabling tBERRORcommand to continually check for this error condition, and when it
occurs to branch to a programmed response defined ERRO@RMrogram. (Refer to thERRORP

command description for an example of using an error program.)

*** For a more information on target zone operation, refer to the Programmer's Guide.

Example:

STRGTD5,5,5,5 ; Sets the distance target zone to +/-5 units
STRGTV.01,.01,.01,.01 ; Sets the velocity target zone to <= 0.01 units/sec
STRGTT10,10,10,10 ; Sets the timeout period to 10 milliseconds on all axes
STRGTE1111 ; Enables the target zone criterion for all axes

Given these target zone commands, a move with a distance of 8,000 units
; (@D8000) must end up between position 7,995 and 8,005 and settle down
; to <=0.01 units/sec within 10 ms after the commanded profile is complete.

[SWAP] Task Swap Assignment

Type Assignment or Comparison Product Rev
Syntax See Below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also %, [SS], TTASK, TSWAP, TSKTRN, TSKAX, TSS

The Task Swap Assignment commastVAl allows a binary bit pattern indicating the tasks that are
currently active to be assigned to a binary variable, or evaluated in a conditional statemeniFswarh as
WAIT. This is useful for ascertaining which tasks have any activity. To ascertain exactly what activity a
specific task has at a given time, use the system s&8us S9).

SWAPs binary 10-bit pattern represents tasks 1-10, from left to righL”Antlicates that the task is active,
and a 0" indicates that the task is inactive. The “Task Supervisor”, represented by task &, is always active
and is therefore not included in tBe&/APANdTSWARStatus.

Syntax VARBn=SWARvhere ‘h” is the binary variable number, 8iWWARcan be used in an expression such
asIF(SWAP=b1001000000) or IF(SWAP.3=b1) or IF(SWAP=h7F0) .

To check the status of only one task, you may use the bit seleqdrator. For example,
VARB1=SWAP.2assigns the binary state of Task2 to binary variable WA0T (SWAP.2=b1)
establishes a wait condition that evaluates true when Task2 becomes active.

246 6K Series Command Reference

T Time Delay

Type Program Flow Control Product Rev
Syntax <I>T<r> 6K 5.0
Units r = seconds

Range 0.001-999.999

Default n/a

Response n/a

See Also GOWHEN, PS,[SS],[TIM], TTIM, TSS, WAIT

The Time DelayT) command pauses command processing f@conds before continuing command
execution. Once the elapsed time has expired, the command aftexdimnand will be executed.

The minimum resolution of the command is 2 ms. Although you can enter time delays that are not
multiples of 2 ms, the time delay will be rounded up to the next multiple of 2 ms. For exarogge,
produces a 6 ms time delay.

Example:
T5 ; Wait 5 seconds before executing TPE command
TPE ; Transfer position of all encoders to the terminal

[TAN()] Tangent

Type Operator (Trigonometric) Product Rev
Syntax ... TAN(r) (See below) 6K 5.0
Units r = radians or degrees depending on RADIAN command

Range +17500.0000000 radians

Default n/a

Response n/a

See Also [ATAN], [COS], [PI], RADIAN, [SIN], VAR

~<

The TangentTAN) operator is used to calculate the
tangent of a number given in radians or degrees (see A
theRADIAN command). If 8" and 'b" are

coordinates of a point on a circle of radids then sine=2
the angle of measur@®™ can be defined by the r
equation: tan 8 = 2 r 8 |a cos o=2
b r

b > x
If a value is given in radians and a conversion is tane=2
needed to degrees, use the following formula: b

360° = Ztradians.

Syntax:VARx=TAN(r) , wherex is the numeric
variable number and is a value in either radians or
degrees depending on tRADIAN command.
Parentheses({) must be placed around thaN
operand. The result will be specified to 5 decimal
places.

Example:
VAR1=5 * TAN(PI/4) ; Setvariable 1 =5 times the tangent of Pi divided by 4

Command Descriptions 247

TANI Transfer Analog Input Voltage

Type Transfer Product Rev
Syntax <I>TANI<.i> 6K 5.0
Units B = 1/0O brick

i = location on I/O brick
Range i=1-32
Default n/a

Response 1TANI *LTANIX, X, X,X,X,X,X,X
+5.802,-4.663,-4.972, +6.023,+2.126,+2.223, ...
X, X, X, X, X, X, X, X
X, X, X, X, X, X, X, X
1TANL10 *-4.663

See Also ANIRNG, [ANI], [FB], [PANI], TFB, TPANI

The Transfer Analog Input Voltage for analog inpataNI) command returns the voltage level present at
the ANI analog inputs located on external 1/O bricks. The value reported wittAthlecommand is
measured in volts and does not reflect the effects of distance s&ainD,(position offset BSET), or
commanded direction polarit MDDIR. To ascertain the offset ANI input value, as affecteé®yn

PSET, or CMDDIR use therlPANI command or th&FB command.

To determine the analog value from a specific input, use the bit select operator (.). For example, to check
the voltage of the™ analog input on the™3SIM (1/O location 18) of I/O brick 2, use tR&@ANI.18
command. To understand more about the location of 1/O points on external I/O bricks, see page 6.

TheTANI value is derived from the voltage applied to the corresponding analog input and ground. The
analog value is determined from a 12-bit analog-to-digital converter (ADC). Under the default ANI voltage
range, set witlANIRNG the range of thaNI operator is -10.000VDC to +10.000VDC (Se¢RNG

command for optional voltage ranges).

TAS Transfer Axis Status
Type Transfer Product Rev
Syntax <I><a>TAS<.i> 6K 5.0
Units i = bit location on the specified axis (See below)
Range 1-32
Default n/a
Response TAS: *TAS 0000_0000_0000_0000_0000_0000_0000_0000

* 0000_1000_0000_0000_0000_0000_0000_0000

* (repeated for each axis)

1TAS: *1TAS0000_0000_0000_0000_0000_0000_0000_0000
bit 1—* it 32

TAS.5: *00110000 (bit 5 of all eight axes status registers)
1TAS.5: *0O (bit 5 of status register for axis 1)

See Also [AS], [ASX], DRFLVL, ESTALL, GOWHEN, HOM, JOG, JOY, MA,
MC, SMPER, STRGTD, STRGTE, STRGTT, STRGTV, TASF, TASX, TSTAT

The Transfer Axis StatugAS) command returns the current status of all axes.

FULL-TEXT STATUS REPORT AVAILABLE

The TAS status command reports a binary bit report. If you would like to see a more
descriptive text-based report, use the TASFcommand description.

248 6K Series Command Reference

Bit #
(left to right)

Function (1/9)

1 Moving/Not Moving. This bit is set only when motion is commanded on the axis. The motor may still be
“moving” (e.g., due to end-of-move settling).
Negative/positive-direction
Accelerating/Not Accelerating. This bit does not indicate deceleration (bit is set to 0 during decel); to
check if the axis is decelerating, the state of TASbits 1, 3 and 4 should be: TAS1x00.

4 At Velocity/Not at Velocity

5 Home Successful (HONI(YES/NO)

6 Absolute/Incremental (MA

7 Continuous/Preset (MG

8 Jog Mode/Not Jog Mode (JOG

9 Joystick Mode/Not Joystick Mode (JOY)

10 RESERVED

11 RESERVED

12 Stall Detected (YES/NO). This bit is not usable until Stall Detect is enabled with ESTALL1 command.

13 Drive Shut Down (YES/NO)

14 Drive Fault occurred (YES/NO). A drive fault cannot be detected (this bit is always 0) until the drive fault
input check is enabled with DRFEN1 Note: TASXbit 4 reports the hardware state of the drive fault input,
regardless of DRFENor DRIVE.

15 Positive-direction Hardware Limit Hit (YES/NO)

16 Negative-direction Hardware Limit Hit (YES/NO)

17 Positive-direction Software Limit Hit (YES/NO)

18 Negative-direction Software Limit Hit (YES/NO)

19 RESERVED

20 RESERVED

21 RESERVED

22 RESERVED

23 Position Error Exceeded (SMPER(YES/NO). Servo axes only.

24 In Target Zone (defined with STRGTD& STRGTY (YES/NO). Servo axes only. This bit is set only after
the successful completion of a move (if STRGTDand STRGT \kriteria have been satisfied). This bit is
usable even if the Target Zone mode is not enabled (STRGTEQ.

25 Target Zone Timeout occurred (STRGTT (YES/NO). Servo axes only.

26 Change in motion is suspended pending GOWHEXNES/NO). This bit is cleared if the GOWHEBbndition
is true, or if STOP(IS) or KILL ('K or ~K) is executed.

27 RESERVED

28 Registration move initiated by trigger since last GOcommand. This bit is cleared with the next GO
command.

29 RESERVED

30 Pre-emptive (OTF) GOor Registration profile not possible

31 RESERVED

32 RESERVED

Command Descriptions 249

TASF Transfer Axis Status (full-text report)

Type Transfer Product Rev
Syntax <I><a>TASF 6K 5.0
Units n/a

Range n/a

Default n/a

Response TASF: (see example below)

See Also [AS], [ASX], DRFLVL, ESTALL, GOWHEN, HOM, JOG, JOY, MA,

MC, SMPER, STRGTD, STRGTE, STRGTT, STRGTV, TAS, TASX, TSTAT

The TASFcommand returns a text-based status report of all axes. This is an alternative to the binary report

(TAS). ExampleTASFresponse:

*TASF AXIS #
* 1234561738
*Moving NO NO NO NO NO NO NO NO

*Direction NEG NO NO NO NO NO NO NO NO
*Accelerating NO NO NO NO NO NO NO NO
*At Velocity NO NO NO NO NO NO NO NO

*

*Home successful NO NO NO NO NO NO NO NO
*Mode Absolute NO NO NO NO NO NO NO NO
*Mode Continuous NO NO NO NO NO NO NO NO

*Jog Mode NO NO NO NO NO NO NO NO

*Joystick Mode NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO

*Stall Detected NO NO NO NO NO NO NO NO
*

*Drive Shutdown ~ NO NO NO NO NO NO NO NO
*Drive Faulted NO NO NO NO NO NO NO NO

*POS Hard Limit Hit NO NO NO NO NO NO NO NO
*NEG Hard Limit Hit NO NO NO NO NO NO NO NO

*POS Sftwr Limit Hit NO NO NO NO NO NO NO NO
*NEG Sftwr Limit Hit NO NO NO NO NO NO NO NO

*RESERVED NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO
*

*RESERVED NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO

*Pos Error Exceeded NO NO NO NO NO NO NO NO
*In Target Zone YES YES YES YES YES YES YES YES

*Target Zone Timeout NO NO NO NO NO NO NO NO
*Gowhen is Pending NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO
*Reg Move Commanded NO NO NO NO NO NO NO NO
*

*RESERVED NO NO NO NO NO NO NO NO
*Preset Move OvershotNO NO NO NO NO NO NO NO

[TASK] Task Number Assignment

Type Assignment or Comparison Product Rev
Syntax See below 6K 50
Units The TASK value is the number of the controlling task.

Range 0-10

Default n/a

Response n/a

See Also %, TTASK, VAR, VARI

The Task Number Assignment operafba$K) allows the program itself to determine which task is

executing it. The current task numb@SKmay be assigned to a numeric or integer variable or evaluated

in a conditional statement, suchlasor WAIT.

250 6K Series Command Reference

Syntax: VARn=TASKor VARIN=TASK where ‘h” is the variable number; atASKcan be used in an
expression, such &5(TASK=3) .

TheTASKoperator allows a single program to be used as a subroutine called from programs running in all
tasks, yet this routine could contain sections of statements which are executed by some tasks and not others.
The example below demonstrates statements used to execute diffargfior-input conditions, depending

on the task that is executing the program.

Example:
IF (TASK=1) ; Check if this program is operating in task 1
WAIT(1IN.3=B1) ; Ifintask 1, wait for input at location 3 on I/O brick 1
NIF
IF(TASK=2) ; Check if this program is operating in task 2
WAIT(2IN.11=B1) ; If in task 2, wait for input at location 11 on I/O brick 2
NIF
TASX Transfer Extended Axis Status
Type Transfer Product Rev
Syntax <I><a>TASX<.i> 6K 5.0
Units i = bit location on the specified axis (See below)
Range 1-32
Default n/a
Response TASX: *TASX 0000_0000_0000_0000_0000_0000_0000_0000
* 0000_1000_0000_0000_0000_0000_0000_0000
* (repeated for each axis)
1TASX: *1TASX0000_0000_0000_0000_0000_0000_0000_0000
bit 11— it 32

TASX.5: *00110000 (bit 5 of all eight axes status registers)

1TASX.5: *0 (bit 5 of status register for axis 1)
See Also [AS], [ASX], [ER], EFAIL, TAS, TASXF, TER

The Transfer Extended Axis Statd®EX command returns the current status for each axis.

FULL-TEXT STATUS REPORT AVAILABLE

The TASXstatus command reports a binary bit report. If you would like to see a more
descriptive text-based report, use the TASXFcommand description.

Bit Assignment
(leftto right) Function (1 =yes, @ = no)

1-3 RESERVED
4 Drive Fault Input Active (indicates the current hardware state of the drive
fault input, even if the drive and the drive fault input are disabled)
5 Encoder failure (requires EFAIL1 enabled for the axis).
This bit is cleared with the EFAILZ command
6 Encoder Z-Channel state (1 = active, @= inactive)
7-32 RESERVED

Bit #4 indicates the current hardware state of the drive fault input, even in the factory default power-up state —the drive is
disabled (see DRIVE command) and the drive fault input is disabled (see DRFENcommand).

Command Descriptions 251

TASXF Transfer Extended Axis Status, (full-text report)

Type Transfer

Syntax <I><a>TASXF

Units n/a

Range n/a

Default n/a

Response TASXF: (see example below)
See Also [AS], [ASX], [ER], TAS, TASX, TER

Product Rev
6K 5.0

TheTASXFcommand returns a text-based status report of all axes. This is an alternative to the binary

report {ASX. ExampleTASXFresponse:

*TASX AXIS #

* 1234561738

*RESERVED NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO

*Drive Fault Active NO NO NO NO NO NO NO NO

*Encoder Failure NO NO NO NO NO NO NO NO
*Z-Channel Active NO NO NO NO NO NO NO NO

TCMDER Transfer Command Error

Type Transfer or Program Debug Tool
Syntax <I>TCMDER

Units n/a

Range n/a

Default n/a

Response TCMDER: *(incorrect command)

See Also ERRBAD,[SS], TSS

Product Rev

6K 5.0

To facilitate program debugging, the Transfer Command Ef@MDERcommand allows you to transfer the

command that the controller detects as an error. This is especially useful if you receive an error message when
running or downloading a program, because it catches and rememtéest themmand that caused the error.

When the bad command is detected, the controller sends an error message to the screen, followed by the

ERRBADerror prompt ?). To determine which command is in error, entermiRIDERRommand and the

controller will display the command, including all its command fields, if any.

Once a command error has occurred, the command and its fields are stored and system status bit #11
(reported in th&SSF, TSS, andSS commands) is set tb The status bit remains set until t@MDER

command is issued.

Example:

DEF badprg ; Begin definition of program called badprg

MA11 ; Select the absolute preset positioning mode

A25,40 ; Set acceleration

AD11,26 ; Set deceleration

V5,8 ; Set velocity

VAR1=0 ; Set variable #1 equal to zero

GO11 ; Initiate move on both axes

IF(VAR1<)16 ; Mistyped IF statement—should be typed as: IF(VAR1<16)
VAR1=VAR1+1 ; If variable #1 is less than16, increment the counter by 1
NIF ; End IF statement

END ; End programming of program called badprg

RUN badprg ; Run the program called badprg

; (this will cause an error --see comment box below)

; * 1. When you run the badprg program, you should see this error ~ *

;* message on your screen: "*INCORRECT DATA" (this error message *
;* indicates incorrect command syntax). *

;* 2. Type "TCMDER" and press enter. This queries the controller to *

;* display the command that caused the error. In this case, the *

i * response will be "*IF(VAR1<)16". *

252 6K Series Command Reference

TDAC Transfer Digital-to-Analog Converter (DAC) Voltage

Type Transfer Product Rev
Syntax <I><@><a>TDAC 6K 5.0
Units Reported value represents volts

Range Range of reported value is -10 to +10

Default n/a

Response TDAC: *TDAC10.000,10.000,10.000,10.000 ...
1TDAC: *1TDAC10.000

See Also [DAC], DACLIM, SFB, SGAF, SGI, SGP, SGV, SGVF, SOFFS

This command allows you to display the voltage being commanded at the digital-to-analog converter
(DAC). This is theanalog command signgblus any voltage offset set with tB®@FFScommand) output by
the servo controller. The DAC output is a 12-bif,0V analog signal. At any point, the voltage that is
currently being commanded can be displayed usingi#é&command. If direct control over the analog
voltage is required, it can be accomplished by setting the servo algorithm3@ams&!, SGV, SGVFE &
SGABR to zero and using th@OFFScommand.

Example:
TDAC ; Display the actual output voltage for each axis.
; Example response is: *TDAC4.552,5.552,5.552,5.552
TDIR Transfer Program Directory
Type Transfer Product Rev
Syntax <I>TDIR 6K 5.0
Units n/a
Range n/a
Default n/a

Response TDIR: *NO PROGRAMBEFINED
*33000 OF33000 BYTES(100%) PROGRAMEMORREMAINING
*500 of 500 SEGMENT&L00%) COMPILEDMEMORREMAINING

See Also DEF, INFNC, LIMFNC, MEMORY, PLCP, [SEG] TMEM, TSEG

The Transfer Program Directory@IR) command returns the names of all the programs and subroutines
defined with theDEF command, and the amount of memory each consumes. The format of the response is as
follows:

*1 - PROGIUSES345 BYTES

*2 - PROGAJSES333 BYTES

*32322 OF3300@BYTES(98%) PROGRAMEMORREMAINING
*5@@ of SGISEGMENTELPD%) COMPILEDMEMORREMAINING

(In the above exampl®ROGIandPROG2are names of programs.)
NOTE: The amount of memory available is product-dependent.

The number in front of the program name is the number to use when defining specificlNfNG (o
correspond to a specific program (functof INFNC or LIMFNC), or when programs are selected via BCD
(functionB of INFNC or LIMFNC).

If the program is intended to be a compiled profile and has been successfully corpiagp(then the
line item for a compiled contouring GOBURprogram is amended witlCOMPILED AS A PATH”, and the
line item for a compiled PLCP program S@OMPILED AS A PLC PROGRAM’

Command Descriptions 253

TDPTR Transfer Data Pointer Status

Type Data Storage Product Rev
Syntax <I>TDPTR 6K 5.0
Units n/a

Range n/a

Default n/a

Response TDPTR *TDPTR1,1,1

See Also DATPTR, DATSIZ, [DPTR]

The TDPTRcommand responds with a 3-integer status repigrt (). The first integer is the number of the
current active data program (the program number specified with th@AaStz or DATPTRcommand).

The second integer is the location number of the data element to which the data pointer is currently
pointing. The third integer is the increment set with thedagtPrTRcommand.

TheDPTRcommand can be used to compare the current pointer location against another value or variable,
or to assign the pointer location number to a variable.

Example
DATSpIZ4,200 ; Create data program called DATP4 with 200 data elements
DATPTRA4,20,2 ; Set the data pointer to data element #20 in DATP4 and set the

; increment to 2 (DATP4 becomes the current active data program)
TDPTR ; Response is *TDPTR4,20,2. Indicates that the data pointer is

; pointing to data element #20 in data program #4 (DATP4),

; and the increment setting is 2.
TER Transfer Error Status
Type Transfer Product Rev
Syntax <I><%>TER<.i> 6K 50
Units i = specific error status bit (specific to the task)
Range 1-32
Default n/a
Response TER: *TER0000_0000_0000_0000_0000_0000_0000_0000

bit 1—4 L it 32

TER.4: *0 (bit 4 of error status register for Task 0)

See Also [ASX], DRFLVL, EFAIL, [ER], ERROR, ESTALL, GOWHEN, INFNC,
LH, LIMFNC, LS, SMPER, STRGTT, TASX, TCMDER, TERF

The Transfer Error Statu$ER) command returns the status of the 32 error bits. There is one error status
for all axes (per Task). TheER status command reports a binary bit report. If you would like to see a more
descriptive text-based report, use TiERFcommand description.

| NOTES

¢ The specific error bits must be enabled by the Error Enable (ERRORcommand before the TER
command will provide the correct status of the error conditions.

« Multi-tasking: If you are using multi-tasking, be aware that each task has its own error status
register. Therefore, to check a specific task’s error status, you must prefix the TERcommand with
the task identifier (e.g., 2%TER0 check error status for Task 2). If no task identifier is given, the
TERresponse is for the task supervisor (Task 0). Regarding axis-related error conditions (e.qg.,
drive fault, end-of-travel limit, etc.), only errors on the task’s associated (TSKAX axes are
detected in its error status register.

The function of error status bit is shown below.

Bit # Function (1 = Yes; @=No)

1* Stall Detected: Functions when stall detection has been enabled (ESTALL).

2 Hard Limit Hit; Functions when hard limits are enabled (LH).

3 Soft Limit Hit: Functions when soft limits are enabled (LS).

4 Drive Fault: Detected only if the drive is enabled (DRIVE), the drive fault input is enabled (DRFEN, and the drive

fault level is set correctly (DRFLVL).

254 6K Series Command Reference

5 RESERVED (refer to the ERROR.ommand)

6 Kill Input: When an input is defined as a Kill input INFNCi-C or LIMFNCI-C), and that input becomes active.

7 User Fault Input: When an input is defined as a User Fault input (INFNCi-F or LIMFNCI-F), and that input
becomes active.

8 Stop Input: When an input is defined as a Stop input (INFNCi-D or LIMFNCI-D), and that input becomes active.

9 Enable input is activated (not grounded).

10 Pre-emptive (on-the-fly) GOor registration move profile not possible.

11 ** Target Zone Settling Timeout Period (set with the STRGTTcommand) is exceeded.

12 ** Maximum Position Error (set with the SMPER-ommand) is exceeded.

13 RESERVED

14 Position relationship in GOWHEAIready true when GQ GOL FSHFC or FSHFDwas executed.

15 RESERVED

16 Bad command detected (bit is cleared with TCMDERommand).

17 Encoder failure (EFAIL1 must be enabled before error can be detected; error is cleared by sending EFAILG to
the affected axis).

18 Cable to an expansion I/O brick is disconnected, or power to the I/O brick is lost; to clear the error, reconnect the
1/O brick (or restore power to the I/O brick) and issue the ERROR.18-0 command and then the ERROR.18-1
command.

19-32 RESERVED

* Stepper axes only; ** Servo axes only

When error bit 5 (Commanded Kill or Stop) of ttRRORcommand is enable&RROR.5-1), a Stop IS)

or a Kill (K or<ctrl>K) command will cause the controller to GOSUB or GOTO to the error program
(ERRORP Within the error program the cause of the error will need to be determined. The transfer error
status TER) command can be used to determine the cause of the error. If none of the error status bits are set,
the cause of the error is a commanded kill or a commanded stop. The reason for not setting a bit on this
error condition is that there is no way to clear the error condition upon leaving the error program.

TERF Transfer Error Status (full-text report)

Type Transfer Product Rev
Syntax <I><%>TERF 6K 5.0
Units n/a

Range n/a

Default n/a

Response TERF: (see example below)

See Also [ASX], DRFLVL, EFAIL, [ER], ERROR, ESTALL, GOWHEN, INFNC,

LH, LIMENC, LS, SMPER, STRGTT, TASX, TCMDER, TER

The TERFcommand returns a text-based status report of all axes. This is an alternative to the binameRport (
ExampleTERFresponse:

*TERF AXIS #

* 123456738

*Stall Detected NO NO NO NO NO NO NO NO
*Hard Limit Hit NO NO NO NO NO NO NO NO
*Soft Limit Ht NO NO NO NO NO NO NO NO
*Drive Fault Active NO NO NO NO NO NO NO NO
*

*RESERVED NO NO NO NO NO NO NO NO
*Kill Input Active NO NO NO NO NO NO NO NO

*User Fault Inputt NO NO NO NO NO NO NO NO
*Stop Input Active NO NO NO NO NO NO NO NO

*Enable Input OK NO NO NO NO NO NO NO NO
*Profile Impossible NO NO NO NO NO NO NO NO
*Target Zone Timeout NO NO NO NO NO NO NO NO
*Max Position Error NO NO NO NO NO NO NO NO
*

*RESERVED NO NO NO NO NO NO NO NO
*GOWHEN cond true NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO

*Bad command NO NO NO NO NO NO NO NO

*Encoder Failure NO NO NO NO NO NO NO NO
*1/0 Brick Faillure NO NO NO NO NO NO NO NO

Command Descriptions 255

TEX Transfer Program Execution Status

Type Transfer Product Rev
Syntax 1<KW%B>TEX 6K 5.0
Units n/a

Range n/a

Default n/a

Response ITEX: *PROGRAMNOTEXECUTING

See Also DEF

The Transfer Program Execution StattigX) command reports the status of any programs in progress (in the
specified task). If using multi-tasking, you must prefix X with the task you want to check (e 224 TEX.

If the programPAULwas in progress (in task 0), and within that program a loop was in progress, the
response torEX could look like the following*PROGRAM=PAUCOMMAND=LNDOPCOUNT=12

TFB Transfer Position of Selected Feedback Devices

Type Transfer Product Rev
Syntax <I><@><a>TFB 6K 5.0
Units Response is position of the selected feedback devices

Range n/a (applicable only to
Default n/a Servo axes)

Response TFB *TFB+0,+0,+0,+0,+0,+0,+0,+0
1TFB *1TFB+0

See Also [ANI], CMDDIR, ENCPOL, [FB], [PANI], [PE], PSET,
SCALE, SCLD, SFB, TANI, TPANI, TPCE, TPE

Use theTFB command to return the current values of the feedback sources selected &fth ¢benmand.
If you do not change the defasltB selection, the response will indicate the encoder position.

If scaling isnot enabled, the position values returned will be counts (encoder or analog input). If scaling is
enabled $CALEJ), the values will be scaled by tBE€LDvalue.

If you issue @SETcommand, the feedback device position value will be offset bp$EF command value.

Example:
SFB2,1 ; Select ANI feedback on axis 1 and encoder feedback on axis 2
TFB ; Report ANI input #1's voltage and encoder #2's position.
; Sample response is *TFB4.256,2.436
TFS Transfer Following Status
Type Following; Transfer Product Rev
Syntax <I><a>TFS 6K 5.0
Units n/a
Range n/a
Default n/a
Response TFS *TFS0000_0000_0000_0000_0000_0000

* 0000_0000_0000_0000_0000_0000
(repeated for each axis)
1TFS *1TFS0000_0000_0000_0000_0000_0000
bit 1—4 Lt 24

See Also FGADV, FMCLEN, FMCP, FOLEN, FOLMAS, FPPEN, [FS], FSHFC,
FSHFD, MC, [NMCY], [PMAS], TFSF

The Transfer Following Statu$KS) command returns the current Following status of all axes. The
response fofFS is as follows(Note: response is product dependent):

FULL-TEXT STATUS REPORT AVAILABLE

The TFS status command reports a binary bit report. If you would like to see a more
descriptive text-based report, use the TFSF command description.

256 6K Series Command Reference

Bit Assignment
(left to right) Function (YES=1;NO=0)

1 Follower in Ratio Move A Following move is in progress.

2 Ratio is Negative The current ratio is negative (i.e., the follower counts are counting in the
opposite direction from the master counts).

3 Follower Ratio Changing The follower is ramping from one ratio to another (including a ramp to or
from zero ratio).

4 Follower At Ratio The follower is at constant non-zero ratio.

Bits 1-4 indicate the status of Following motion. They mimic the meaning and
organization of Axis Status (TAS & AS) bits 1-4, except that each bit indicates the
current state of the ratio, rather than the current state of the velocity.

*5 FOLMAS Active A master is specified with the FOLMASommand.
*6 FOLEN Active Following has been enabled with the FOLENcommand.
*7 Master is Moving The specified master is currently in motion.
8 Master Dir Neg The current master direction is negative. (Bit must be cleared to allow

Following move in preset mode-MC@!

Bits 5-8 indicate the status required for Following motion (i.e., a master must be
assigned, Following must be enabled, the master must be moving, and for many
features, the master direction must be positive).

Unless the master is a commanded position of another axis, it is likely that minor
vibration of the master will cause bits 7-8 to toggle on and off, even if the master is
nominally “at rest”. These bits are meant primarily as a quick diagnosis for the absence
of master motion, or master motion in the wrong direction. Many features require
positive master counting to work properly.

9 OK to Shift Conditions are valid to issue shift commands (FSHFDor FSHFQ.
10 Shifting now A shift move is in progress.
11 Shift is Continuous An FSHFGbased shift move is in progress.
12 Shift Dir is Neg The direction of the shift move in progress is negative.

Bits 9-12 indicate the shift status of the follower. Shifting is super-imposed motion, but if
viewed alone, can have its own status. In other words, bits 10-12 describe only the
shifting portion of motion.

13 Master Cyc Trig Pend A master cycle restart is pending the occurrence of the specified trigger.

14 Mas Cyc Len Given A non-zero master cycle length has been specified with the FMCLEN
command.

15 Master Cyc Pos Neg The current master cycle position (PMAS is negative. This could be by

caused by a negative initial master cycle position (FMCH, or if the
master is moving in the negative direction.

16 Master Cyc Num >0 The master position (PMAS has exceeded the master cycle length

(FMCLEN at least once, causing the master cycle number (NMCYto
increment.

Bits 13-16 indicate the status of master cycle counting. If a Following application is
taking advantage of master cycle counting, these bits provide a quick summary of
some important master cycle information.

17 Mas Pos Prediction On Master position prediction has been enabled (FPPEN.
18 Mas Filtering On A non-zero value for master position filtering (FFILT) is in effect.

Bit 17-18 indicate the status of master position measurement features.

19 RESERVED

20 RESERVED

21 RESERVED

22 RESERVED

23 OK to do FGADVmove OK to do Geared Advance move (master assigned with FOLMAS
Following enabled with FOLEN and follower axis is either not moving, or
moving at constant ratio in continuous mode).

24 FGADVmove underway Geared Advance move profile is in progress.

* All these conditions must be true before Following motion will occur.

Command Descriptions 257

TFSF Transfer Following Status (full-text report)

Type Following; Transfer Product Rev
Syntax <I><a>TFSF 6K 5.0
Units n/a

Range n/a

Default n/a

Response TFSF: (see example below)

See Also FGADV, FMCLEN, FMCP, FOLEN, FOLMAS, FPPEN, [FS], FSHFC,

FSHFD, MC, [NMCY], [PMAS], TFS

TheTFSF command returns a text-based status report of all axes. This is an alternative to the binamF&port (

ExampleTFSF response:

*TFSF AXIS #

* 123456738

*Follower in Ratio Move NO NO NO NO NO NO NO NO
*Ratio is Negative = NO NO NO NO NO NO NO NO
*Followr Ratio Changing NO NO NO NO NO NO NO NO
*Follower At Ratio NO NO NO NO NO NO NO NO

*FOLMAS Active
*FOLEN Active
*Master is Moving

NO NO NO NO NO NO NO NO
NO NO NO NO NO NO NO NO
NO NO NO NO NO NO NO NO

*Master Dir Neg NO NO NO NO NO NO NO NO
*

*OK to Shift NO NO NO NO NO NO NO NO
*Shifting now NO NO NO NO NO NO NO NO
*Shift is Continuous NO NO NO NO NO NO NO NO
*Shift Dir is Neg NO NO NO NO NO NO NO NO

*Master Cyc Trig Arm NO NO NO NO NO NO NO NO
*Mas Cyc Len Given NO NO NO NO NO NO NO NO
*Master Cyc Pos Neg NO NO NO NO NO NO NO NO
*Master Cyc Num >0 NO NO NO NO NO NO NO NO
*

*Pos Prediction On YES YES YES YES YES YES YES YES
*Master Filtering On NO NO NO NO NO NO NO NO

*RESERVED NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO

*OK to do FGADV move NO NO NO NO NO NO NO NO
*FGADV move underway NO NO NO NO NO NO NO NO

TGAIN Transfer Servo Gains
Type Transfer Product Rev
Syntax <@><a>TGAIN 6K 5.0
Units n/a
Range n/a (applicable to servo
Default n/a axes only)
Response TGAIN: *SGP1,2,3,4 ...

*SGI.1,.1,0,0 ...

*SGV25,25,40,40 ...
*SGVF100,100,100,100 ...
*SGAF0,0,0,0 ...
1TGAIN: *1SGP1
*1SGI.1
*1SGV25
*1SGVF100
*1SGAFO0

See Also SFB, SGAF, SGENB,SGI, SGILIM, SGP, SGSET, SGV, SGVF, SOFFS, TSGSET

This command allows you to display the current value of each of the control algorithmSginsal,

SGV, SGAF, & SGVH. Each time an individual gain is entered, the current value is updated to be that value.
When a gain set is enabled with ®#@ENBcommand, the current value of each gain is set to the values
saved in that particular gain set.

258 6K Series Command Reference

| NOTE |

Tuning gains are specific to the feedback source that was in use (selected with the last SFB
command) at the time the gains were established with the respective gain commands (SGl,

SGR etc.).
Example:
SGP5,5,10,10 ; Set the gains for the proportional gain
SGI.1,.1,0,0 ; Set the gains for the integral gain
SGV50,60,0,0 ; Set the gains for the velocity gain
SGVF5,6,10,11 ; Set the gains for the velocity feedforward gain
SGAF0,0,0,0 ; Set the gains for the acceleration feedforward gain
TGAIN ; Display current values for all gains. Example response:
; *SGP5,5,10,10
; *SGI.1,.1,0,0
; *SGV50,60,0,0
; *SGVF5,6,10,11
; *SGAF0,0,0,0
[TIM] Current Timer Value
Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units Milliseconds
Range Maximum count is 999,999,999 (approx. 11 days, 13 hours)
Default n/a
Response n/a

See Also TIMINT, TIMST, TIMSTP, TTIM

The Current Timer ValueT(M) command is used to assign the timer value to a variable, or to make a
comparison against another value. The value returned is in milliseconds.

Syntax: VARx=<n%>TIMwherex is a numeric variable number, TiM can be used in an expression such as
IF(TIM<24@@) . Multi-tasking: If addressing the timer of a specific task, includetherefix.

Example:
VAR1=TIM ; Timer value is assigned to variable 1
IF(TIM<1000) ; If timer value is < 1000 milliseconds, do the IF statement
VAR1=TIM + 10 ; Timer value plus 10 assigned to variable 1
NIF : End IF statement
TIMINT Timer Value to Cause Alarm Event
Type Timer; Alarm Event Product Rev
Syntax <I>TIMINT<i> 6K 50
Units i = milliseconds
Range b =0 (reset and start) or 1 (stop)
i =0-999,999,999
Default 0,0
Response TIMINT: *TIMINTO,0
See Also INTHW, [TIM], TIMST, TIMSTP, TTIM

TheTIMINT command sets the timer value upon which the 6K controller will trigger an Alarm Event. The
time value at which the alarm event will occur is specified by the second field in the command.

NOTES

e To use TIMINT , you must first issue the INTHW.21-1 command to enable checking for
the alarm event.

« When using multi-tasking, this feature only works with the timer for Task zero.

TheTIMINT command also determines if the timer is to be stopped when the value is reached, or if the
timer is to be reset and started again. If the timer is to be stopped upon reaching the alarm value, a one
should be specified for the first field. If the timer is to be reset and restarted upon reaching the alarm value,

Command Descriptions 259

a zero should be specified for the first field. By specifying a zero in the first field, an alarm will occur
repeatedly.

Example:
INTHW.21-1 ; Enable checking for the timer-driven alarm event
TIMINT1,10000 ; Trigger alarm once after 10000 ms, do not restart the timer
TIMSTO : Reset and start timer
TIMST Start Timer
Type Timer Product Rev
Syntax <I>TIMST<r> 6K 5.0
Units b = Enable bit
r = time (milliseconds) if b =0, task #ifb=1
Range b = 0 (reset and start) or 1 (start from previous TIMSTP)
r = absolute time 0-999,999,999 if b = 0,
orr=task#0-10ifb=1
Default 0
Response TIMST: No response, acts as if TIMST1 commandwas issued

See Also SSFR, [TIM], TIMINT, TIMSTP, TTIM

The Start Timer{IMST) command is used to start the timer.

« If TIMSTO, you can start the timer at a specific time in milliseconds (B)gST0,500).

* If TIMSTL, you can resume the timer (after stopping it withTihvSTP command) with the value of
the time of the specified task (e.gMST1,3).

The timer resolution is 2 ms. The delay for execuliéngST andTIMSTP in combination is 4-6 ms.

If the timer is started and allowed to roll over the maximum timer count of 999,999,999 milliseconds (11
days, 13 hours, 46 minutes, 39.999 seconds), the timer will be stopped, and the value will be frozen at the
maximum value.

Multi-Tasking : Each task has its own timer.

Example:

TIMSTO : Reset and start timer

G0O1100 : Initiate motion on axes 1 and 2
TIMSTP ; Stop timer

TTIM ; Transfer time required for move

TIMSTP Stop Timer

Type Timer Product Rev
Syntax <I><%>TIMSTP 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also SSFR, [TIM], TIMINT, TIMST, TTIM

The Stop TimerTIMSTP) command stops the timer. This command in conjunction with the start timer
(TIMST) command, provides a timer that can be used to time internal or external events.

The timer resolution is 2 ms. The delay for execuliénST andTIMSTP in combination is 4-6 ms.

Multi-Tasking : Each task has its own timer.

Example:

TIMSTO ; Reset and start timer

G01100 ; Initiate motion on axes 1 and 2
TIMSTP ; Stop timer

TTIM ; Transfer time required for move

260 6K Series Command Reference

TIN Transfer Input Status

Type Transfer Product Rev
Syntax <I><@>TIN<.i> 6K 5.0
Units i = input number on the specified I/O brick (B) — see page 6
Range 1-32 (product dependent)
Default n/a
Response TIN: *0000_0000_0000_0000_0 (onboard trigger inputs)
1TIN *0000_0000_0000_0000_0000_0000_0000_0000
1TIN.4: *1 (status of I/O point 4 on /O brick 1)
See Also [IN], INENC, INLVL, TINO, TLIM

The Transfer Input Statu¥IN) command returns the current status (active or inactive) of the
programmable inputs. The inputastivewhen it is grounded. The active level (active high or active low)
for the inputs is established with tidLVL command. “High” means that current is flowing and no voltage
is present at the input terminal; conversely, “low” means that no current is flowing and a voltage may be
present at the input terminal. If the active level is set to activelMW(@ — default), thelIN response
indicates active with a on&)(and inactive with a zerd. If the active level is set to active highI(vL1),
theTIN response indicates active with a zeBpgnd inactive with a ond).

The inputs are numbered 1ndrom left to right @ is the maximum number of I/O points on the 1/O brick).
The amount of onboard and external inputs varies by product and number of external I/O bricks — refer to
page 6 for details.

If the status of a specific input is required, use the bit select operatéo(examplelTIN.9 reports the
status of the SL1/O point on the %' SIM of 1/O brick 1.

TINO Transfer Other Input Status

Type Transfer Product Rev
Syntax <I>TINO<.i> 6K 5.0
Units i = number of input (see below)

Range 6

Default n/a

Response TINO: *TINO0000_0100
TINO.6: *1 (status of input number 6 — ENABLE input)

See Also [INO], TINOF

The Transfer Other Input StatuRNO) command returns the status of all of the inputs not covered by the
TLIM or TIN commands. These 8 additional inputs may be used for status feedback.

TINO response:*TINObbbb_bbbb

Bit #1 Bit #12

FULL-TEXT STATUS REPORT AVAILABLE

The TINO status command reports a binary bit report. If you would like to see a more
descriptive text-based report, use the TINOF command description.

Bit Function Location
1-5 RESERVED
6 Enable input (1 = OK for motion) “ENABLE” terminal

7-8 RESERVED

Command Descriptions 261

TINOF Transfer Other Input Status (full-text report)

Type Transfer Product Rev
Syntax <I>TINOF 6K 5.0
Units n/a

Range n/a

Default n/a

Response TINOF: (see example below)

See Also [INO], TINO

TheTINOF command returns a text-based status report of all axes. This is an alternative to the binary
report [INO).

Example response:

*TINOF
*Enable input OK YES

TIO Transfer Current Expansion 1/O Status

Type Transfer Product Rev
Syntax <I>TIO 6K 5.0
Units B = 1/O brick number

Range 1-8

Default n/a

Response (see example below)

See Also TIN, TINO, TLIM, TOUT, TANI

TheTIO command displays the status of the current I/O configuration for the controller's expansion 1/0O
bricks. If an 1/O brick is not connected, it will not be included in the status report. Onboard 1/O is not
reported.

The I/O bricks are connected in a series to th@ANSION 1/0” connector (seénstallation Guidefor
instructions). The *L1/0 brick in the series (closest to the 6K producBR$CK 1 . The next iBRICK 2 ,
and so on.

Each 1/O brick has 4 SIM slots and can hold from 1 to 4 1/0O SIM modules. A SIM slot may hold a digital
input SIM, a digital output SIM, or an analog input SIM. Each SIM provides 8 inputs or outputs; therefore,
each /O brick has 32 I/O addresses, referenced as absolute 1/0O point locations:

¢ SIM slot 1 = 1/O points 1-8

¢ SIM slot 2 = 1/O points 9-16
¢ SIM slot 3 = 1/O points 17-24
¢ SIM slot 4 = 1/O points 25-32

TheTIO response for each 1/O brick is separated into four lines, one for each SIM. 1/O points 1-8 represent
SIM #1, 9-16 represents SIM #2, 17-24 represents SIM #3, and 25-32 represents SIM #4. When digital
outputs are detected, the report also indicates whether the jumper iSIsgtING or SOURCINGWhen

digital inputs and outputs are detected) displays the current hardware state and programmed function
(INFNC for inputs anddUTFNdfor outputs). When analog inputs are detectéd, reports the current

voltage present on each input.

262 6K Series Command Reference

Example TIO responses (in this example, 2 1/O bricks are connected to the controller):

>TIO
*BRICK 1: SIM Type Status Function
1-8: DIGITAL INPUTS 0000_0000 AAAA_AAAA
9-16: DIGITAL INPUTS 0000_0000 AAAA_AAAA
17-24: DIGITAL INPUTS 0000_0000 AAAA_AAAA
25-32: ANALOG INPUTS 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
*BRICK 2: SIM Type Status Function
1-8: DIGITAL OUTPUTS 0000_0000 AAAA_AAAA -- SINKING
9-16: DIGITAL INPUTS 0000_0000 AAAA_AAAA
17-24: NO SIM PRESENT
25-32: DIGITAL OUTPUTS 0000_0000 AAAA_AAAA -- SOURCING

>1TIO
*BRICK 1: SIM Type Status Function
1-8: DIGITAL INPUTS 0000_0000 AAAA_AAAA
9-16: DIGITAL INPUTS 0000_0000 AAAA_AAAA
17-24: DIGITAL INPUTS 0000_0000 AAAA_AAAA
25-32: ANALOG INPUTS 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000

>2TIO
*BRICK 2: SIM Type Status Function
1-8: DIGITAL OUTPUTS 0000_0000 AAAA_AAAA -- SINKING
9-16: DIGITAL INPUTS 0000_0000 AAAA_AAAA
17-24: NO SIM PRESENT
25-32: DIGITAL OUTPUTS 0000_0000 AAAA_AAAA -- SOURCING

TLABEL Transfer Labels

Type
Syntax
Units
Range
Default

Transfer
<I>TLABEL
n/a

n/a

n/a

Response TLABEL: *NO LABELS DEFINED
See Also $

Product
6K

Rev
5.0

The Transfer LabelsT(ABEL) command returns the names of all the labels defined with tbexmand.

The response toBLABEL command if the labelsall

as follows: *CALL DEFINEDIN PROGRAMROG1

*OPENDEFINEDIN PROGRAMROG1

Command Descriptions

andopen are defined in a program namadgl is

263

TLIM Transfer Limits

Type Transfer Product Rev
Syntax <I><a>TLIM<.i> 6K 5.0
Units i = limit input number
Range Product dependent
Default n/a
Response TLIM: *TLIM110_110_110_110_110_110_110_110

TLIM.4: *0 (status of positive-direction limit input on axis 2)

See Also HOM, INDEB, INFNC, [LIM], LIMENC, LIMLVL, TAS, TASF, TIN

The Transfer Limits{LIM) command returns the current hardware state of the dedicated limit inputs
located on theL'IMITS/HOME” connector(s). This command reports the state of the limit inputs, regardless
of their assigned function with th&VFNC command. There are 3 limit inputs per axis. To determine if an
end-of-travel limit has been hit, refer to th&S or TASF command response, bits 15 through 18.

This command does not report the status of triggers or external inputs configured as limit inputs with the
INFNC command. For status on such inputs, refer tathecommand.

TheTLIM value is the debounced version of the limits status (debounced wiiiNDEBVvalue). Axis
status TAS) bits 15 and 16 reports the non-debounced version of the end-of-travel limits.

TLIM response (bits are numbered 1-24 from left to right):

Axils 1 Axils 2 Axils 3 Axils 4
*TLIMéb>'__'<b'>_<'b3 _,_',

A
Positive direction end-of-travel limit, axis 1 Jb" 1
Negative direction end-of-travel limit, axis 1

Home limit, axis 1

Positive direction end-of-travel limit, axis 2

Negative direction end-of-travel limit, axis 2

Home limit, axis 2

TMEM Transfer Memory Usage

Type Transfer Product Rev
Syntax <I>STMEM 6K 5.0
Units n/a

Range n/a

Default n/a

Response TMEM: *33000 OF33000 BYTES(100%) PROGRAMEMORREMAINING
*500 OF500 SEGMENT$L00%) COMPILEDMEMORREMAINING

See Also DEF, MEMORY, PCOMP, [SEG], TDIR, TSEG

The Transfer Memory Usag@NMIENIcommand returns the amount of available memory for user program
storage and for storing contouring path segments. A path segment is one element of the path (e.g.,
PLIN3777,3777). The amount of memory available can be modified wittMB®IOREOommand. As
programs are definedER and paths are compileBCOMP, the amount of memory available decreases.

264 6K Series Command Reference

TNMCY Transfer Master Cycle Number

Type Following; Transfer Product Rev
Syntax <I><a>TNMCY 6K 5.0
Units n/a
Range n/a
Default n/a

Response TNMCY *TNMCY0,0,0,0,0,0,0,0
1ITNMCY *1TNMCYO

See Also FMCLEN, FMCNEW, [FS], TRGFN, TFS

The Transfer Master Cycle Numba&NMCY command displays the current master cycle number for all

axes, or the axis specified. The value represents the current cycle number, not the position of the master (or
the follower). The master cycle number is set to zero when master cycle counting is restarted, and is
incremented each time a master cycle finishes (i.e., rollover occurs). It will often correspond to the number
of complete parts in a production run. This value may be used for subsequent decision making, or simply
recording the cycle number corresponding to some other event.

The master must be assigned firsfOLMAScommand) before this command will be useful.

For a complete discussion of master cycles, please refer to the Following chapt&rogthenmer's
Guide.

TNTMAC Transfer Ethernet Address

Type Transfer; Communications Interface Product Rev
Syntax <I>STNTMAC 6K 5.0
Units n/a

Range n/a

Default n/a

Response TMAC: *0,144,85,0,0,1

See Also NTADDR, NTMASK

The TNTMAQGommand reports the 6K product’'s Ethernet address.

TOUT Transfer Output Status

Type Transfer Product Rev
Syntax <I><@>TOUT<.i> 6K 50
Units i = input number on the specified I/O brick (B) — see page 6

Range 1-32 (Product dependent)

Default n/a

Response TOUT: *0000_0000 (onboard outputs)

1TOUT *0000_0000_0000_0000_0000_0000_0000_0000
1TOUT.4: *1 (status of I/O point 4 on I/O brick 1)

See Also OUT, OUTFNC, OUTLVL, TIN, TINO

The Transfer Output Status@UT command returns the current status (active or inactive) of the
programmable outputs. The outputidivewhen it is grounded. The active level (active high or active low)
for the outputs is established with th&TLVLcommand. “High” means that current is flowing and no
voltage is present at the output terminal; conversely, “low” means that no current is flowing and a voltage
may be present at the output terminal. If the active level is set to activelom\{LZ- default), thaouT
response indicates active with a obgdnd inactive with a zerd. If the active level is set to active high
(OUTLVL]), theTOUTresponse indicates active with a zeBpdnd inactive with a ond).

The outputs are numbered 1rtérom left to right 6 is the maximum number of 1/O points on the I/O
brick). The amount of onboard and external outputs varies by product and number of external I/O bricks —
refer to page 6 for details.

If the status of a specific output is required, use the bit select operatbo(examplelTOUT.9 reports
the status of the*1l/O point on the Z' SIM of 1/O brick 1.

Command Descriptions 265

TPANI Transfer Position of ANI Inputs

Type Transfer Product Rev
Syntax <I>TPANI<.i> 6K 5.0
Units i = location of the analog input on the 1/O brick ()
Range 1-32 (depending on I/O brick configuration) (applicable only to
Default n/a servo axes)
Response ITPANI: *LTTPANIXXXX_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX

1TPANI.1 *108 (position of analog input at /O pin 1on /O brick 1)
See Also [ANI'], ANIRNG, CMDDIR, [FB], [PANI], PSET, SCALE, SCLD,

SFB, TANI, TFB

TheTPANI command returns the value of the ANI analog inputs as modified by scafing){ offset
(PSET), and commanded direction polarity\({DDIR.

The TPANI andPANI commands are designed for applications in which the ANI input is scaled and/or used
as position feedback. If you are using the ANI input to monitor an analog signe4Nh@ndANI

commands would be more appropriataNl andANI values are measured in volts and are unaffected by
scaling, polarity, or command direction).

TheTPANI value is represented in analog-to-digital converter (ADC) units if scaling is dissldadgg.
The ADC has a 12-hit resolution, giving a range of +2047 to -2048 counts when using tié¥uiange
of the analog input (205 counts/volt). If scaling is enab&wiA(E]), anSCLDscale factor of 205 (the
default value when analog input feedback is selected) allows units of volts to be used.

NOTE: If you change the voltage range of the analog input (witAthBNGcommand), the resolution of
the PANI response will change accordingly. The defaultlieVv.

TPC Transfer Position Commanded

Type Transfer Product Rev
Syntax <I><@><a>TPC 6K 5.0
Units Reported value represents distance units (scalable by SCLD)

Range Range of the reported value is +2,147,483,648

Default n/a

Response TPC: *TPC+0,+0,+0,+0,+0,+0,+0,+0
1TPC: *1TPC+0

See Also CMDDIR, ERES, [PC], [PCC], PSET, SCALE, SCLD, SMPER, TAS,
TFB, TPCC, TPER

This command allows you to display the curremihnmanded positioof each axis. Th&PCvalue is scaled
by the distance scaling fact@qLD if scaling is enabled with th@CALE1command.

Servo Axes The reported value is measured in encoder or analog input (ANI) counts.
Stepper Axes The reported value is measured in commanded counts (“motor counts”).

If you issue @SETcommand, the commanded position value will be offset bp & command value.

Servo Axes: The commanded positiaiP() and the actual positiomgB) are used in the control algorithm
to calculate the position errofRC- TFB = TPER) and thereby determine the corrective control signal.

Example:
TPC ; Display the current commanded position for each axis:

: *TPC4000,4000,4000,4000 (setpoints displayed in steps)
TFB ; Display the current actual position for each axis:

; *TFB4004,4005,4004,4003 (actual positions displayed in steps)
TPER ; Display current position error of each axis:

; *TPER-4,-5,-4,-3 (error displayed in steps)

266 6K Series Command Reference

TPCC Transfer Captured Commanded Position

Type Transfer Product Rev
Syntax <I>aTPCCc 6K 5.0
Units a=axis #

¢ = trigger input letter (A, B or M) for axis “a”
(Reported value is commanded counts, scalable by SCLD)

Range n/a

Default n/a

Response 1TPCCA: *1TPCCA+0

See Also CMDDIR, ENCCNT, INFNC, [PC], [PCC], [PCMS], PSET, SCALE,

SCLD, SFB, TFB, TPC [TRIG], TRGLOT, TTRIG

Use theTPCCcommand to display the current captured commanded position of a specific axis, captured
with the specific “trigger interrupt” input.

Trigger Input (Axis 1-4 Dedicated TPCC Trigger Input (Axis 5-8 Dedicated TPCC

“ TRIGGERS/OUTPUTS” connector) * Axis Syntax “ TRIGGERS/OUTPUTS” connector) * Axis Syntax

Pin23, Trigger 1A 1 1TPCCA Pin 23, Trigger 5A 5 5TPCCA
Pin21, Trigger 1B 1 iTpccB Pin21, Trigger 5B 5 5TPCCB
Pin19, Trigger 2A 2 2TPCCA Pin19, Trigger 6A 6 6TPCCA
Pin 17, Trigger 2B 2 2TPCCB Pin 17, Trigger 6B 6 6TPCCB
Pin 15, Trigger 3A 3 3TPCCA Pin 15, Trigger 7A 7 7TPCCA
Pin 13, Trigger 3B 3 3TPCCB Pin 13, Trigger 7B 7 7TPCCB
Pin 11, Trigger 4A 4 ATPCCA Pin 11, Trigger 8A 8 8TPCCA
Pin9, Trigger 4B 4 4TPCCB Pin9, Trigger 8B 8 8TPCCB

* The number of trigger inputs available varies by product (refer to your product’s Installation Guide).

To report an axis position captured with the MASTER TRIG input, use aPCCMwhere “a” can be any axis number.

About Position Capture: The commanded position can be captured only by a trigger input that is defined
as “trigger interrupt” input with theNFNCi-H command (seBNFNC for details). Each trigger input, when
configured as a “trigger interrupt” input, is dedicated to capture the position of a specific axis (see table
above). When a “trigger interrupt” input is activated, the commanded position of the dedicated axis is
captured and the position is available through the use efdfeperator and thePCCdisplay command.

Note for Stepper Axes By default, stepper axes capture only the commanded position. However, if the
axis has Encoder Capture Mode enabled wittEth€ CNTcommand, only the encoder position is captured.

Position Capture Status, Longevity of Captured PositionUse theTTRIG andTRIG commands to
ascertain if a trigger interrupt input has been activategIG displays the status as a binary report, and
TRIG is an assignment/comparison operator for using the status information in a conditional expression
(e.g., in anF statement). Once the captured commanded position value is displayed WieiCthe
command, th@ TRIG/TRIG status bit for that trigger input is cleared; but the position information remains
available until it is overwritten by a subsequent position capture from the same trigger input.

Position Capture Accuracy. The commanded position capture accuracy is £1 count.

Scaling and Position Offsetlf scaling is enabledSCALE1), the commanded position is scaled by the
distance scaling factosCLD. If scaling is not enable&CALE, the value reported will be actual
commanded counts. If you isSu@SET (establish absolute position reference) command, any previously
captured commanded positions will be offset byRBETcommand value.

Example:

1TPCCA ; Report axis 1's captured command position, which was captured
; when the dedicated trigger (TRG-1A) was activated

3TPCCB ; Report axis 3's captured command position, which was captured
; when the dedicated trigger (TRG-3B) was activated

2TPCCM ; Report axis 2's captured command position, which was captured

; when the master trigger (TRG-M) was activated

Command Descriptions 267

TPCE Transfer Position of Captured Encoder

Type Transfer Product Rev
Syntax <I>aTPCEc 6K 5.0
Units a=axis #

¢ = trigger input letter (A, B or M) for axis “a”
(Reported value represents encoder counts, scalable by SCLD)

Range n/a

Default n/a

Response 1TPCEA: *1TPCEA+0

See Also CMDDIR, ENCCNT, ENCPOL, INFNC, [PCE], PESET, PSET, SCALE,

SCLD, SFB, TPE

Use theTPCEcommand to display the current captured encoder position, from the time of the last trigger
interrupt.

Trigger Input (Axis 1-4 Dedicated TPCE Trigger Input (Axis 5-8 Dedicated TPCE

“ TRIGGERS/OUTPUTS” connector) * Axis Syntax “ TRIGGERS/OUTPUTS” connector) * Axis Syntax

Pin 23, Trigger 1A 1 1TPCEA Pin23, Trigger 5A 5 5TPCEA
Pin21, Trigger 1B 1 1TPCEB Pin21, Trigger 5B 5 5TPCEB
Pin 19, Trigger 2A 2 2TPCEA Pin19, Trigger 6A 6 6TPCEA
Pin 17, Trigger 2B 2 2TPCEB Pin17, Trigger 6B 6 6TPCEB
Pin 15, Trigger 3A 3 3TPCEA Pin15, Trigger 7A 7 7TPCEA
Pin 13, Trigger 3B 3 3TPCEB Pin13, Trigger 7B 7 7TPCEB
Pin 11, Trigger 4A 4 4ATPCEA Pin11, Trigger 8A 8 8TPCEA
Pin9, Trigger 4B 4 4TPCEB Pin9, Trigger 8B 8 8TPCEB

* The number of trigger inputs available varies by product (refer to your product’s Installation Guide).

To report an axis position captured with the MASTER TRIG input, use aPCEMwhere “a” can be any axis number.

About Position Capture: The encoder position can be captured only by a trigger input that is defined as
“trigger interrupt” input with theNFNCi-H command (se®NFNC command). Each trigger input, when
configured as a “trigger interrupt” input, is dedicated to capture the position of a specific axis (see table
above). When a “trigger interrupt” input is activated, the encoder position of the dedicated axis is captured
and the position is available through the use oPtbEoperator and thEPCEdisplay commandstepper

Axes By default, stepper axes capture only the commanded position. To capture the encoder position, the
axis must be in the Encoder Capture Mode BB¢@CNTcommand).

Position Capture Status, Longevity of Captured PositionUse theTTRIG andTRIG commands to
ascertain if a trigger interrupt input has been activatedIG displays the status as a binary report, and
TRIG is an assignment/comparison operator for using the status information in a conditional expression
(e.g., in arnlF statement). Once the captured encoder position value is reported withctieommand,

the TTRIG/TRIG status bit for that trigger input is cleared; but the position information remains available
until it is overwritten by a subsequent position capture from the same trigger input.

Position Capture Accuracy. The encoder position capture accuracy is +1 encoder count.

Scaling and Position Offsetlf scaling is enabledSCALE), the encoder position is scaled by the distance
scaling factor $CLD. If scaling is not enableCALE, the value reported will be actual encoder counts.

If you issue @SET (establish absolute position reference) command, any previously captured encoder

positions will be offset by theSETcommand value.

Example:

1TPCEA ; Report axis 1's captured encoder position, which was captured
; when the dedicated trigger (TRG-1A) was activated

3TPCEB ; Report axis 3's captured encoder position, which was captured
; when the dedicated trigger (TRG-3B) was activated

2TPCEM ; Report axis 2's captured encoder position, which was captured

; when the master trigger (TRG-M) was activated

268 6K Series Command Reference

TPCME Transfer Captured Master Encoder Position

Type Transfer Product Rev
Syntax <I>TPCME 6K 5.0
Units n/a

Range n/a

Default n/a

Response TPCME *TPCME+0

See Also INFNC, MEPOL, MESND, [PME], [PCME], [PCMS], PMECLR,

PMESET, TPME, TPCMS

Use theTPCMEcommand to display the current captured master encoder position. The master encoder is
connected to the connector labeled “Master Encoder.”

Syntax VARn=PCMBwvheren is the variable number; ®@CMEcan be used in an expression such as
IF(PCME>2345@) .

About Position Capture: The master encoder position can be captured only by the Master Trigger input
(labeled “MASTER TRIG"), and only when that input is defined as a “trigger interrupt” input with the
INFNC17-H command (se’NFNC command). When the “trigger interrupt” input is activated (active edge),
the master encoder position is captured and the position is available through the usebfab@erator

and theTPCMEdisplay command.

Position Capture Status, Longevity of Captured PositionUse theTTRIG andTRIG commands to
ascertain if a trigger interrupt input has been activatedIG displays the status as a binary report, and
TRIG is an assignment/comparison operator for using the status information in a conditional expression
(e.g., in arlF statement). Once the captured master encoder position value is displayed WiQNite
commandTTRIG/TRIG status bit #17 is cleared; but the position information remains available until it is
overwritten by a subsequent position capture from the master trigger input.

Position Capture Accuracy. The master encoder position capture accuracy is +1 encoder count.

Scaling and Position OffsetThe TPCMEvalue is always in master encoder counts; it is never scaled. If you
issue eMESET(establish absolute position reference) command, any previously captured master encoder
positions will be offset by theMESETcommand value.

Command Descriptions 269

TPCMS Transfer Captured Master Cycle Position

Type Transfer Product Rev
Syntax <I>aTPCMSc 6K 5.0
Units a=axis #

¢ = trigger input letter (A, B or M) for axis “a”
(Reported value represents master counts, scalable by SCLMAS)

Range n/a

Default n/a

Response 1TPCMSA *1TPCMSA+0

See Also CMDDIR, ENCCNT, ENCPOL, FOLMAS, INFNC, [PCMS], PSET, SCALE,

SCLMAS, SFB, TPCMS, [TRIG], TRGLOT, TTRIG

TheTPCMStommand transfers the captured position of the master within its current master cycle.

TPCMYandTPMAS is unigue among position transfers, because its value rolls over to zero each time the
entire master cycle lengtRNICLEN has been traveled. Thus, the capture@MSvalue is essentially a
shap-shot of the position relative to the master cycle at the time of the capture.

The master must be assigned firstHOLMAScommand) before this command will be useful.

For a complete discussion of master cycles, refer to the Following chaptebik 8exies Programmer’s
Guide

Trigger Input (Axis 1-4 Dedicated @ TPCMS Trigger Input (Axis 5-8 Dedicated TPCMS

“ TRIGGERS/OUTPUTS” connector) * Axis Syntax “ TRIGGERS/OUTPUTS” connector) * Axis Syntax
Pin23, Trigger 1A 1 ITPCMSA Pin23, Trigger 5A 5 5TPCMSA
Pin21, Trigger 1B 1 1TPCMSB Pin21, Trigger 5B 5 5TPCMSB
Pin19, Trigger 2A 2 2TPCMSA Pin 19, Trigger 6A 6 6TPCMSA
Pin17, Trigger 2B 2 2TPCMSB Pin 17, Trigger 6B 6 6TPCMSB
Pin 15, Trigger 3A 3 3TPCMSA Pin 15, Trigger 7A 7 7TPCMSA
Pin 13, Trigger 3B 3 3TPCMSB Pin 13, Trigger 7B 7 7TPCMSB
Pin11, Trigger 4A 4 4TPCMSA Pin11, Trigger 8A 8 8TPCMSA
Pin9, Trigger 4B 4 4TPCMSB Pin9, Trigger 8B 8 8TPCMSB

* The number of trigger inputs available varies by product (refer to your product's Installation Guide).

To report an axis position captured with the MASTER TRIG input, use aPCMSMwhere “a” can be any axis number.

About Position Capture: The master cycle position can be captured only by a trigger input that is defined as
“trigger interrupt” input with theNFNCi-H command (seeNFNC command). Each trigger input, when
configured as a “trigger interrupt” input, is dedicated to capture the position of a specific axis (see table
above). When a “trigger interrupt” input is activated, the master cycle position of the dedicated axis is
captured and the position is available through the use ¢fahsSoperator and thePCMdisplay command.

Position Capture Status, Longevity of Captured PositionUse theTTRIG andTRIG commands to
ascertain if a trigger interrupt input has been activatedIG displays the status as a binary report, and
TRIG is an assignment/comparison operator for using the status information in a conditional expression
(e.g., in arlF statement). Once the captured master cycle position value is reported WigtCig

command, th& TRIG/TRIG status bit for that trigger input is cleared; but the position information remains
available until it is overwritten by a subsequent position capture from the same trigger input.

Position Capture Accuracy. The master cycle position is interpolated; the capture accuracys 50
multiplied by the velocity of the axis at the time the trigger input was activated.

Scaling and Position Offsetlf scaling is enabledSCALE1), the master cycle position is scaled by the
distance scaling factoBCLMAS. If scaling is not enableCALE®, the value assigned will be actual

counts from the commanded or encoder master source as selected RithNtescommand. If you issue a

PSET (establish absolute position reference) command, any previously captured master cycle positions will
be offset by th@SETcommand value.

270 6K Series Command Reference

TPE Transfer Position of Encoder

Type Transfer Product Rev
Syntax <I><a>TPE 6K 5.0
Units (Reported value represents encoder counts, scalable by SCLD)

Range n/a

Default n/a

Response TPE: *TPE+0,+0,+0,+0,+0,+0,+0,+0

1TPE: *1TPE+O0

See Also CMDDIR, ENCCNT, ENCPOL, ENCSND, [FB], [PE], PESET, PSET,
SCALE, SCLD, SFB, TFB

The Transfer Position of EncoddmPE) command returns the current encoder position. If the encoder has
been configured to receive step and direction inpNCEND the TPE command will report the position as
counted from the step and direction signal.

Stepper axes: If thENCCNTImode is enable@PEreports the encoder position, buHNCCNTAMode (the
factory default setting) thePEreport represents the commanded position.

UNITS OF MEASURE andSCALING : refer to page 16 or to tt&cLDcommand. |

If you issue @SETcommand, the encoder position value will be offset byPBET command value. If you
are using a stepper axis in tAisCCNTImode, use theESETcommand instead.

TPER Transfer Position Error

Type Transfers Product Rev
Syntax <I><a>TPER 6K 5.0
Units Reported value represents distance units (scalable by SCLD)

Range Range of the reported value is +2,147,483,648 (applicable only to
Default n/a Servo axes)

Response TPER: *TPER+0,+0,+0,+0,+0,+0,+0,+0
1TPER: *1TPER+0

See Also CMDDIR, DRES, ENCPOL, ERES, [FB],[PC], [PE], [PER],
SFB, SMPER, TANI, TAS, TFB, TPE, TPC

The Transfer Position ErroTPER command allows you to display the current position error of each axis.
The error is displayed in feedback device counts and is scaled by the distance scalingdapoif
scaling is enabled with tHeCALE1command.

The position error is the difference between the commanded position and the actual position read by the
feedback deviceTPER= TPC- TFB). This error is calculated every sample period and can be displayed at
any time using this command.

Example:
TPC ; Display the current commanded position for each axis:

; *TPC4000,4000,4000,4000 (setpoints displayed in steps)
TFB ; Display the current actual position for each axis:

; *TFB4004,4005,4004,4003 (actual positions displayed in steps)
TPER ; Display current position error of each axis:

; *TPER-4,-5,-4,-3 (error displayed in steps)

Command Descriptions 271

TPMAS Transfer Current Master Cycle Position

Type Following; Transfer Product Rev
Syntax <I><a>TPMAS 6K 5.0
Units Reported value represents master counts, scalable by SCLMAS.

Range n/a

Default n/a

Response TPMAS *TPMASO0,0,0,0
1TPMAS *1TPMASO

See Also FMCLEN, FMCNEW, FMCP, FOLMAS, FOLMD, [FS], MEPOL, [NMCY],
[PMAS], SCALE, SCLMAS, TFS

The TPMAScommand transfers the current position of the master within its current mastei bgcle.
master must be assigned firstHOLMAScommand) before this command will be useful.

TPMASs unique among position transfers, because master cycle position rolls over to zero each time the
entire master cycle lengtRNICLENvalue) has been traveled.

If scaling is enabled3CALEJ), the value returned is scaled by the master scaling f&TaMA$. If scaling
is disabled $CALE®, the value returned is in master counts (encoder counts, commanded counts, or analog
input counts).

For a complete discussion of master cycles, please refer to the Following chapt&rogthenmer's
Guide.

TPME Transfer Position of Master Encoder

Type Transfer Product Rev
Syntax <I>TPME 6K 5.0
Units Reported value represents master encoder counts.

Range n/a

Default n/a

Response TPME *TPME+0

See Also MEPOL, MESND, [PCME], [PE], [PME], PMECLR, PMESET, TPCME

Use theTPMEcommand to display the current master encoder position. The master encoder is connected to
the connector labeled “Master Encoder”. If you iss@M&SETcommand, the master encoder position

value will be offset by theMESETcommand value. THEPMEvalue is always in encoder counts, it is never
scaled.

TPROG Transfer Program Contents

Type Transfer Product Rev
Syntax <I>TPROG<t> 6K 5.0
Units t = text (name of program)

Range Text name of 6 characters or less

Default n/a

Response n/a

See Also DEF, TDIR, TMEM

The Transfer ProgranTPROG command displays the contents of the program specified. If there is no such
program, then the error messat®/ALID DATAwill be generated. To see which programs have been
created, use thEDIR command.

272 6K Series Command Reference

TPSHF Transfer Net Position Shift

Type Following; Transfer Product Rev
Syntax <I><a>TPSHF 6K 5.0
Units (Reported value represents commanded counts, scalable by SCLD)

Range n/a

Default n/a

Response TPSHF *TPSHF+0,+0,+0,+0,+0,+0,+0,+0

See Also FMCNEW, FMCP, FOLEN, FSHFC, FSHFD, [PSHF], SCALE, SCLD

TheTPSHFcommand transfers the net (absolute) follower axis position shift that has occurred since that last
FOLEN1command. The position returned will be the sum of all shifts performed on that axis, or axes,
including decelerations due to limits, kill, or stop. The shift value is set to zero each timé&-aunt

command or &kOLMAScommand (with a value other than zero) is issued.

If scaling in enabledJCALEJ), thePSHFvalue is scaled by the distance scaling fadaLQ. If scaling is
not enabled, the value is in commanded counts.

TPSLV Transfer Current Commanded Position of Follower Axis

Type Following; Transfer Product Rev
Syntax <I><a>TPSLV 6K 5.0
Units (Reported value represents commanded counts, scalable by SCLD)

Range n/a

Default n/a

Response TPSLV *TPSLV+0,+0,+0,+0,+0,+0,+0,+0

See Also FMCNEWFMCP,[PSLV], SCALE, SCLD

TheTPSLV command transfers the current commanded position of the follower axis. The master must be
assigned firstfOLMASCommand) before this command will be useful.

If scaling in enabledJCALEJ), thePSLV value is scaled by the distance scaling fadaLQ. If scaling is
not enabled, the value is in commanded counts.

TRACE Program Trace Mode Enable

Type Program Debug Tool Product Rev
Syntax <I>TRACE 6K 5.0
Units n/a

Range b = 0 (disable), 1 (enable) or X (don't care)

Default 0

Response TRACE: *TRACEO

See Also [.1. [#], PORT,[SS], STEP, TRACEP, TRANS, TSS

The Program Trace Mode Enabl&RACH command enables program trace mode. When in program trace
mode, all commands executed are or transferred out the Ethernet, RS-232 or RS-485 port, along with the
program from which the command came.

Example:
DEFpick ; Begin definition of program named pick
G0O1100 : Initiate motion on axes 1 and 2
IF(VAR1=5) ; If variable 1 = 5 then do commands between IF and NIF
GOTOpickl ; Goto label pickl
ELSE ; Else part of IF command
GOTOpick2 ; Goto label pick2
NIF : End IF command
$pickl ; Label declaration for pickl
GO0011 : Initiate motion on axes 3 and 4
BREAK ; Break out of current subroutine or program
$pick2 ; Label declaration for pick2
G0O1001 : Initiate motion on axes 1 and 4
END ; End program definition
TRACE1 : Enable trace mode.
VAR1=5 : Set variable 1to 5

Command Descriptions 273

@LHO : Disable all limits

EOT13,10,0 ; Set End-of-Transmission characters to a carriage return
;and a line feed
RUNpick ; Initiate program pick

After executingRUNpick , the following information will be placed in the output buffer, due to the trace
mode being enabled. (Assume variable 1 = 5)

*PROGRAM=PICKCOMMAND=G01100
*PROGRAM=PICKCOMMAND=IF(VAR1=5.0)
*PROGRAM=PICKCOMMAND=GOPICK1
*PROGRAM=PICICOMMAND=$PICK1
*PROGRAM=PICKCOMMAND=GO0011
*PROGRAM=PICKCOMMAND=BREAK

TRACEP Program Flow Mode Enable

Type Program Debug Tool Product Rev
Syntax <I>STRACEP 6K 5.0
Units n/a

Range b = 0 (disable), 1 (enable) or X (don't care)

Default 0

Response TRACEP: *TRACEPO
See Also TRACE

The Program Flow Mode EnablerpcER command provides a debug tool to monitor the entry and exit of
programs and their associated nest-levels.

Example:

DEF PICK1
GOSUB PICK2
GOTO PICK3
END

DEF PICK2
GOSUB PICK4
END

DEF PICK3
END

DEF PICK 4
END

>TRACEP1

>PICK1

*INITIATE PROGRAM: PICK1 NEST=1
*INITIATE PROGRAM: PICK2 NEST=2
*INITIATE PROGRAM: PICK4 NEST=3

*END: PROGRAM NOW: PICK2 NEST=2
*END: PROGRAM NOW: PICK1 NEST=1
*INITIATE PROGRAM: PICK3 NEST=1

*END: PROGRAM EXECUTION TERMINATED

274 6K Series Command Reference

TRANS Translation Mode Enable

Type Program Debug Tool Product Rev
Syntax <I>TRANS 6K 5.0
Units n/a

Range b = 0 (disable), 1 (enable) or X(don't care)

Default 0

Response TRANS: *TRANSO

See Also [#], [SS], STEP, TSS

The Translation Mode Enabl@RANg command enables the program translation mode, in which all

commands processed by the 6K Series product are echoed back in their binary format (hex representation of
the binary equivalent), and are not executed. The first byte (first two characters) of the response represents
the command's memory requirement. The remaining bytes represent the actual command.

Example:

TRANS1 : Enable translation mode

A10,20,1,1 ; Translate acceleration command A10,20,1,1. Response displayed
;is: 1301 00 00 01 86 A0 00 03 OD 40 00 00 27 10 00 00 27 10.
; Note that 13 hex represents a command memory requirement of 19
; bytes.

G0O1100 ; Translate initiate motion command GO1100. Response displayed

;is: 07 07 03 01 01 00 00. Note that 07 hex represents a
; command memory requirement of 7 bytes.
GO0011 ; Translate initiate motion command GO0011. Response displayed
;is: 07 07 03 00 00 01 01. Note that 07 hex represents a
; command memory requirement of 7 bytes.

TREV Transfer Revision Level

Type Transfer Product Rev
Syntax <I>TREV 6K 5.0
Units n/a

Range n/a

Default n/a

Response TREV: *TREV92-016740-01-5.0 (response varies by product)

See Also RESET

The Transfer Revision LevelREV) command provides the current revision of the product’s firmware. It
also reports any options that have been installed. Options can be ordered through your local ATC or
distributor.

Command Descriptions 275

TRGFN Trigger Functions

Type Inputs; Following; Motion Product Rev
Syntax <I><@>aTRGFNcbb 6K 5.0
Units a=axis #

¢ = trigger input letter for axis “a”

1%t b = bit to select Conditional GO (GOWHEN) function

2" b = bit to select Start New Master Cycle (FMCNEW) function
Range a = 1-8 (product dependent)

c=A, B, or M (M is master trigger, “TRG-M")

b = 0 (disable function), 1 (enable function),

or X (leave unchanged)
Default a=1c=A;b=0
Response 1TRGFN *1TRGFNAOO

See Also [AS], ERROR, ERRORP, FMCNEW, GOWHEN, INFNC, [SS], TAS,
TRGLOT, TSS, [TRIG], TTRIG

Use theTRGFNcommand to assign certain command functions to the onboard trigger Nptgshat the
number of trigger inputs available varies by product — see page 6.

Trigger Input (Axis 1-4 Dedicated @ TRGFN Trigger Input (Axis 5-8 Dedicated TRGFN

“Triggers/Outputs ” connector) * Axis Syntax “Triggers/Outputs " connector) * Axis Syntax

Pin 23, Trigger 1A 1 1TRGFNA Pin 23, Trigger 5A 5 5TRGFNA
Pin 21, Trigger 1B 1 1TRGFNB Pin 21, Trigger 5B 5 5TRGFNB
Pin 19, Trigger 2A 2 2TRGFNA Pin 19, Trigger 6A 6 6TRGFNA
Pin 17, Trigger 2B 2 2TRGFNB Pin 17, Trigger 6B 6 6TRGFNB
Pin 15, Trigger 3A 3 3TRGFNA Pin 15, Trigger 7A 7 7TRGFNA
Pin 13, Trigger 3B 3 3TRGFNB Pin 13, Trigger 7B 7 7TRGFNB
Pin 11, Trigger 4A 4 4TRGFNA Pin 11, Trigger 8A 8 8TRGFNA
Pin9, Trigger 4B 4 4TRGFNB Pin9, Trigger 8B 8 8TRGFNB

“Master Trigger” (TRIG-M) trigger: syntax is TRGFNM |

* The number of trigger inputs available varies by product (refer to your product's Installation Guide).

NOTE

The trigger input used in this command must first be defined as a Trigger Interrupt input
with the INFNCi-H command.

» “Conditional GO” Function @TRGFNc1x): Suspend execution of the next start-motion command
until the specified trigger input goes active. Start-motion commands are:
- GO(standard command to begin motion)
GOL(begin linear interpolated motion)
FGADV(begin geared advance — for Following motion)
FSHFC(begin continuous shift — for Following motion)
FSHFD(begin preset shift — for Following motion)

Axis status bit #26 (reported wiltASF, TAS, or AS) is set to onel() when there is a pending
“Conditional GO” condition initiated by ARGFNcommand; this bit is cleared when the trigger is
activated or when a stop commamsii ¢r a kill commandK) is issued. If you need execution to be
triggered by other factors (e.g., input state, master position, encoder position, etc.) A/ HEN
command.

» “New Master Cycl€ Function @TRGFNcx1): This is equivalent to executing tABICNEWommand.
When the specified trigger input goes active, the controller begins a new Following master cycle. For
more information on master cycles, refer to the Following chapter iarttgrammer’s Guide

These trigger functions are cleared once the function is complete. To use the trigger to pedMHHEN
function again, th@RGFNcommand must be given again.

TRGFNn Compiled Motion: When used in a compiled prograngT®GFNc1xx (GOWHEfuNction)
command will pause the profile in progress (motion continues at constant velocity) until the trigger is

276 6K Series Command Reference

activated to execute the next move profile. When used in a compiled profil&g@ré\command
consumes one segment of compiled memory. When used in a compiled Following profiGEne
command is ignored on the reverse Following profile (i.e., when the master is moving in the opposite
direction of that specified in tHteOLMASCommand).

Trigger Interrupt Status : The status of a trigger interrupt event is reported witlTi/ReG andTRIG
commands

Example: (refer also to the FOLENexamples)

1TRGFNBx1 ; When trigger 1B goes active, axis 1 will begin a
; new master cycle
2TRGFNB1x ; When trigger 2B goes active, axis 2 will execute the move
; commanded with the GO command.
G001 : The move on axis 2 is commanded, but will not execute until

; trigger 2B goes active.

TRGLOT Trigger Interrupt Lockout Time

Type Input Product Rev
Syntax <I>STRGLOT<r> 6K 5.0
Units r = time in milliseconds

Range 0-250

Default 24

Response TRGLOT: *TRGLOT24

See Also INDEB, INFNC, RE, REG, TIN, TRGFN, [TRIG], TTRIG

TheTRGLOTcommand configures the amount of time in which all “trigger interrupt” inputs (all trigger

inputs configured with theNFNCi-H command) are disabled between its initial active transition and its
secondary active transition. This allows rapid recognition of a trigger, but prevents subsequent bouncing of
the input from causing a false position capture, registration moT&@FNevent. The lockout time affects

those triggers configured as H (trigger interrupt) withidlENC command during those interrupt actions
(registration, position capture, etc.).

The TRGLOTsetting overrides the existinigDEB setting for only the trigger inputs that are assigned the
“Trigger Interrupt” function.

Example:
INFNC1-H ; Assign trigger 1A as a "trigger interrupt” input
TRGLOT40 ; Set lockout time for all "trigger interrupt” inputs
: to be 40 milliseconds
[TRIG] Trigger Interrupt Status
Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a
Range n/a
Default n/a
Response n/a
See Also INFNC, [PCC], [PCE],[PCME], [PCMS], TAS, TPCC, TPCE,

TPCME, TPCMS, TRGFN, TTRIG

Use theTRIG operator to assign the Trigger Interrupt status bits to a binary vanatme(or to make a
comparison against a binary or hexadecimal value. To make a comparison against a binary value, the letter
b (b or B) must be placed in front of the value. The binary value itself must only contain ones, zeros, or Xs
(1, 9, X, x). To make a comparison against a hexadecimal value, the letter h (h or H) must be placed in
front of the value. The hexadecimal value itself must only contain the letters A through F, or the numbers @
through 9.

Syntax: VARBn=TRIGwhere ‘h” is the binary variable number, ©RIG can be used in an expression
such asF(TRIG=b11@1) , or IF(TRIG=h7F)

Command Descriptions 277

Each Trigger Interrupt status bit indicates whether a “trigger interrupt” input has been activated to capture a
position, initiate a registration move, or execu®R&FNfunction. “Trigger Interrupt” inputs are onboard
trigger inputs that have been assigned the trigger interrupt function withRKe€i-H command.

EachTTRIG bit is cleared when the captured position value is read withGePCE PCMEPCMS$TPCG
TPCE TPCME or TPCMScommands, but the position information is still available from the respective
register until it is overwritten by a subsequent position capture by the same trigger input.

The function of each status bit are shown in the table below (bits are numbered from left to right). A bit that
is set (L") indicated the trigger interrupt has occurredpaihdicates no trigger interrupt.

TTRIG Trigger Input (Axis 1-4 Dedicated TTRIG Trigger Input (Axis 5-8 Dedicated
bit # “Triggers/Outputs " connector) * Axis bit # “Triggers/Outputs " connector) * Axis

1 Pin 23, Trigger 1A 1 9 Pin 23, Trigger 5A 5

2 Pin 21, Trigger 1B 1 10 Pin21, Trigger 5B 5

3 Pin 19, Trigger 2A 2 11 Pin19, Trigger 6A 6

4 Pin 17, Trigger 2B 2 12 Pin17, Trigger 6B 6

5 Pin 15, Trigger 3A 3 13 Pin15, Trigger 7A 7

6 Pin 13, Trigger 3B 3 14 Pin13, Trigger 7B 7

7 Pin 11, Trigger 4A 4 16 Pin11, Trigger 8A 8

8 Pin 9, Trigger 4B 4 16 Pin9, Trigger 8B 8

17 Master Trigger (“TRG-M") Master Encoder
* The number of trigger inputs available varies by product (refer to your product’s Installation Guide).

TSCAN Transfer Scan Time of PLCP Program

Type Transfer; PLC Scan Program Product Rev
Syntax <I>TSCAN 6K 5.0
Units Response is in increments of 2 milliseconds

Range 2 ms - unlimited

Default n/a

Response TSCAN *TSCAN4 (4 ms corresponds to 2 system updates)
See Also SCANP, PLCP, EXE

The TSCANcommand reports the duration it takes the last PLCP program to be scanned completely. A
compiled PLCP program is launched into Scan mode usirgdhRPcommand. During each 2 ms system
update, the PLCP program is scanned an allotted 0.5 ms window. If the PLCP program requires more than
0.5 ms to be scanned, the program will be paused and then resumed at the next system update. The value
reported by th&dSCANcommand is in multiples of the 2 ms system update period.

Example:
SCANpP PLCP1 ; Start execution of compiled PLCP program PLCP1 in Scan mode
TSCAN ; Report the duration of the scan program in multiples of the
; 2 millisecond system update period. An example response might
; be *TSCAN4 (indicates that 2 system update periods, a total of
; 4 milliseconds was required to scan the last PLCP program).
TSEG Transfer Number of Free Segment Buffers
Type Compiled Motion; Transfer Product Rev
Syntax <I>TSEG 6K 5.0
Units n/a
Range n/a
Default n/a

Response TSEG: *TSEG258
See Also MEMORY, TDIR, TMEM, [SEG], [SS], TSS, TSSF

The Transfer Number of Free Segment Buffé&=@ command returns the number of free segment
buffers in compiled memory.

System status bit (s@SSF, TSS, andSS) 29 to set when the compiled memory is 75% full, and bit 30 is set
if the compiled memory is 100% full.

278 6K Series Command Reference

TSGSET Transfer Servo Gain Set

Type Transfer Product Rev
Syntax <I>TSGSETi 6K 5.0
Units i = gain set identification number (see SGSET command)

Range 1-5 (application to servo
Default n/a axes on|y)
Response (see examples below)

See Also SFB, SGAF, SGENB,SGI, SGILIM, SGP, SGSET,SGV, SGVF, SOFFS, TGAIN

This command allows you to display any of the 5 gain sets that you saved véitad&command. Up to
5 gain sets can be saved.

| NOTE

The tuning gains in a given gain set are specific to the feedback source that was in use
(selected with the last SFB command) at the time the gains were established with the
respective gain commands (SGI, SGP etc.).

Example:
SGP5,5,10,10 ; Set the gain for the proportional gain
SGI.1,.1,0,0 ; Set the gain for the integral gain
SGV50,60,0,0 ; Set the gain for the velocity gain
SGVF5,6,10,11 ; Set the gain for the velocity feedforward gain
SGAFO0,0,0,0 ; Set the gain for the acceleration feedforward gain
SGSET3 ; Assign the SGP, SGI, SGV, SGVF, & SGAF gains to servo gain set 3
SGP75,75,40,40 ; Set the gain for the proportional gain
SGI5,5,5,7 ; Set the gain for the integral gain
SGV1,.45,2,2 ; Set the gain for the velocity gain
SGVFO0,8,0,9 ; Set the gain for the velocity feedforward gain
SGAF18,20,22,24 ; Set the gain for the acceleration feedforward gain
SGSET1 ; Assign the SGP, SGI, SGV, SGVF, & SGAF gains to servo gain set 1
SGENB1,3,3,1 ; Enable gain set 1 on axis 1 & 4 and enables gain set 3 on
;axis2 &3
TSGSET1 ; Display gain set 1. Response should be:
; *SGP75,75,40,40
; *SGI5,5,5,7
; *SGV1,.45,2,2
; *SGVF0,8,0,9
; *SGAF18,20,22,24
TSGSET3 ; Display gain set 3. Response should be:
; *SGP5,5,10,10
; *SGI.1,.1,0,0
; *SGV50,60,0,0
; *SGVF5,6,10,11
; *SGAF0,0,0,0
TSKAX Task Axis
Type Multi-Tasking Product Rev
Syntax i%TASKAX<al><a2> 6K 5.0
Units i = task number
al = first axis associated with the task
a2 = last axis associated with the task
Range of axes from al - a2, where al <a2
Range Fori, 0-10
For al and a2, 0-n,
where n = number of axes on the product
Default al=1
az=n
Response n/a

See Also %, TTASK, [TASK], TSWAP, [SWAP], TSKTRN

The Task Axis command §KAX allows you to specify the axes associated with a task. The default
condition in multi-tasking is that each task is associated with all controller axes. This means, for example,
that when an axis being used in a task hits an end-of travel limit, program execution will be killed within
that task, and in all other tasks, because they all share that axiSSKAécommand is used to assign a

Command Descriptions 279

set of axes to a given task to allow a multi-axis controller to be used as more than one independent program
execution environment.

TheTSKAXcommand allows you to assign axes to specific tasks, thus constraining task response and
control to a smaller set of axes. A task is allowed to control only its associated axes. This axis association
covers all interaction between axes commands, conditions or inputs and task program flow. For example, if
a 6K controller is controlling two independent machines that do not share common axes, with control of
each machine as a separate task, a limit hit by an axis in one machine can Kkill the task running that machine,
but will not kill the task running the other machine.

TheTskAaXxcommand allows you to specify the first and last axis numbers associated with the task. Thus,

the axes associated with a task will always be consecutive. As a demonstrati@xAReommands in the

example below will associate axes 1, 2 and 3 with Task1, axes 4, 5 and 6 with Task2, and axes 7 and 8 with
Task3. If axis 3 in Task1l hits a limit, program execution in Taskl will be killed, but Task2 and Task3 can
continue to run because they are independent and do not share axis 3. Taskl may change motion parameters
and start motion on only axes 1, 2, and 3.

Example:

DEF main ; Begin definition of program called "main"
1%TSKAX1,3 ; Associate axes 1, 2 and 3 to Taskl
2%TSKAX4,6 : Associate axes 4, 5 and 6 to Task2
3%TSKAX7,8 : Associate axes 7 and 8 to Task3
1%movel ; Execute stored program "movel” in Taskl
2%inout ; Execute stored program "inout" in Task2
3%fill ; Execute stored program "fill" in Task3

END

It is also possible to eliminate axis association for a task altogether witBK#&0,0 command. This
would be appropriate for a task that is not involved in motion control, but may control 1/O or start other
tasks.

TSKTRN Task Turns Before Swapping

Type Multi-Tasking Product Rev
Units i 1 = task number
i 2 = number of turns before task swap
Range i1=0-10
i » =0-10,000
Default ip1=0
i 2= 1
Response n/a
See Also %, LOCK, TTASK, [TASK], TSWAP, [SWAP], TSKAX

Use theTSKTRNcommand to set the relative amount of processing time a task will get. Under default
multi-tasking operation, all active tasks have an equal share of processing time; that is, each task executes
one “turn” and then “swaps” control to the next active task. (A “turn” is the execution of a command, or a
portion of a complex command such as those for contouring and math and trig operators.)

For example, if Task2 issuedr@aKTRN6command, while the other tasks stayetdSKTRN1 Task2 would
execute 6 commands (or portions of long commands) before relinquishing control to another task.

TheTSKTRNvalue for a task may be changed at any time, allowing a task to increase its weight for an
isolated section of program commands.

280 6K Series Command Reference

TSS Transfer System Status

Type Transfer Product Rev
Syntax <I><%>TSS<.i> 6K 5.0
Units i = system status bit number

Range 1-32

Default n/a

Response TSS: *TSS1000_1000_0000_0000_0000_0000_0000_0000

TSS.1: *1 (status of Task O status bit #1—system is ready)
See Also PORT, TAS, TCMDER, TRGFN, TSTAT, [TRIG], TTRIG

The Transfer System StatugsE) command provides information on the 32 system status bitsSTIhe

status command reports a binary bit report. If you would like to see a more descriptive text-based report,
use therSSFcommand description.

Response forss (b can equal, 1, X, orx): *TSShbbb_bbbb_bbbb_bbbb_bbbb_bbbb_bbbb_bbbb

Bit #1 Bit #32

MULTI-TASKING

If you are using multi-tasking, be aware that each task has its own system status register.
Therefore, to check a specific task’s system status, you must prefix the TSS command
with the task identifier (e.g., 2%TSSto check system status for Task 2). If no task identifier
is given, the TSSresponse is for the task supervisor (Task 0).

BIT (Left to Right) Function (1 =yes, @= no) BIT (Left to Right) Function (1 =yes, @= no)
1 System Ready (fully powered up and 17 Loading Thumbwheel Data ([TW])
ready to receive commands)
Reserved 18 External Program Select Mode (INSELP)
Executing a Program 19 Dwell in Progress (T command)
4 Immediate Command (set if last 20 Waiting for RP240 Data—[DREAD] or
command was immediate) [DREADF]
5 In ASCII Mode 21 RP240 Connected— current PORTsetting
only
6 In Echo Mode — current PORT 22 Non-volatile Memory Error
setting only
7 Defining a Program 23 Servo data gathering transmission in
progress (servo axes only)
8 In Trace Mode 24 Reserved
9 In Step Mode 25 RESERVED
10 In Translation Mode (must use fast 26 RESERVED
status area to see)
11 Command Error Occurred (bit is 27 RESERVED
cleared when TCMDERS issued)
12 Break Point Active (BP) 28 RESERVED
13 Pause Active 29 Compiled memory is 75% full
14 Wait Active (WAIT) 30 Compiled memory is 100% full
15 Monitoring On Condition (ONCOND 31* Compile operation failed (PCOMP **
16 Waiting for Data (READ 32 RESERVED

* Bit #31: failed PCOMRompile is cleared on power up, RESET or after successful compile. Possible causes include:
» Errors in profile design (e.g., change direction while at non-zero velocity; distance & velocity equate to < 1 count
per system update; preset move profile ends in non-zero velocity)
* Profile will cause a Following error (see TFSF, TFS, or FS command descriptions)
e Out of memory (see TSSbit #30)
* Axis already in motion at the time of the PCOMRommand
* Loop programming errors (e.g., no matching PLOOPor PLN, more than 4 embedded PLOOPENDIoops)
e PLCPprogram contains invalid commands.

Command Descriptions 281

TSSF Transfer System Status (full-text report)

Type Transfer Product Rev
Syntax <I><%>TSSF 6K 5.0
Units n/a

Range n/a

Default n/a

Response TSSF: (see example below)

See Also PORT, [SS], TAS, TCMDER, TRGFN, TSS, TSTAT

TheTSSFcommand returns a text-based status report of all axes. This is an alternative to the binamagport (

MULTI-TASKING |

If you are using multi-tasking, be aware that each task has its own system status register.
Therefore, to check a specific task’s system status, you must prefix the TSSFcommand
with the task identifier (e.g., 2%TSSRo check system status for Task 2). If no task
identifier is given, the TSSFresponse is for the task supervisor (Task 0).

ExampleTSSFresponse:

*TSSF

*System Ready YES Thumbwhl Data Load NO
*RESERVED NO Ext Prog Sel Mode NO
*Program Executing NO Time Command NO

*Immediate Comm Last NO Waiting RP240 Data NO
*

*ASCIl Mode YES RP240 Connected NO

*Echo Mode YES Memory Error NO
*Defining a Program NO Servo Data Transfer NO
*Trace Mode NO RESERVED NO

*

*Step Mode NO RESERVED NO
*ES Translate Mode NO RESERVED NO
*Command Error NO RESERVED NO
*Break Point Active NO RESERVED NO

*

*Pause Active NO Comp Mem Near Full NO
*Wait Active NO Compiled Mem Full NO
*Checking On Conds NO Compile Failed NO
*Waiting for Data NO Reserved NO

282 6K Series Command Reference

TSTAT Transfer Statistics

Type
Syntax
Units
Range
Default
Response

See Also

Transfer

<I>TSTAT

n/a

n/a

n/a

TSTAT: (See below)

NTADDR, TAS, TDIR, TER, TFB, TIN, TIO, TLIM, TOUT, TPC, TPE,

TREV, TSKAX, TSWAP, TSS, TTIM, TUS, TVEL

Product
6K

Rev
5.0

The following is an exampleNOTE: The response for each 6K Series product will vary slightly.):

*6K8 (8-axis controller)

*6K revision: 92-XXXXXX-01-5.0 6K 92-XXXXXX-XX-NOP2.5 DSP
*Ethernet address: xxxxxxxxxx; IP address: 192.168.10.30

*Axis definition: Servo,Servo,Servo,Servo,Stepper,Stepper,Stepper,Stepper
*Power-up program assignment (STARTP): SETUP

*ENABLE input OK: Yes

*Drive status (DRIVE): 0000_0000

*Drive Fault input states (ASX.4 for each axis): 0000_0000

*Drive Fault input checking - enabled (DRFEN1): 0000_0000

*Drive resolution (DRES): -,-,-,-,25000,25000,25000,25000

*Encoder resolution (ERES): 4000,4000,4000,4000

*Encoder failure detection enabled (EFAIL1): 0000_0000

*Hard Limit enable: LH3,3,3,3,3,3,3,3

*Soft Limit enable: LS0,0,0,0,0,0,0,0

*Current Motion Attributes:

Scaling enabled (SCALEL): 0

Acceleration scaler (SCLA): 4000,4000,4000,4000,4000,4000,4000,4000
Distance scaler (SCLD): 1,1,1,1,1,1,1,1

Velocity scaler (SCLV): 4000,4000,4000,4000,4000,4000,4000,4000
Continuous/Preset (MC1/MCO) positioning mode: 0,0,0,0,0,0,0,0
Absolute/Incremental (MA1/MAOQ) positioning mode: 0,0,0,0,0,0,0,0
Feedback position (TFB or TPE): +0,+0,+0,+0,-,-,-,-

Commanded position (TPC): +0,+0,+0,+0,+0,+0,+0,+0
A10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000
AA10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000
AD10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000
ADA10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000
Vv1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000
D+4000,+4000,+4000,+4000,+4000,+4000,+4000,+4000

*|/O Status:

* Onboard limit inputs:

* Hardware state (TLIM): 000_000_000_000_000_000_000_000

* Prog. function (LIMFNC): RST_RST_RST_RST_RST_RST_RST_RST
* Onboard trigger inputs:

* Hardware state (TIN): 0000_0000_0000_0000_0

* Prog. function (INFNC): AAAA_AAAA_AAAA_AAAA_A

* Onboard digital outputs:

* Hardware state (TOUT): 000_000

* Prog. function (OUTFNC): AAA_AAA

* Expansion /O bricks: See TIO response

*Axis Status (see TASF for full text report of all axes):

* Axis 1 (1TAS): 0010_0000_0000_1000_0000_0001_0000_0000

* Axis 2 (2TAS): 0010_0000_0000_1000_0000_0001_0000_0000

* Axis 3 (3TAS): 0010_0000_0000_1000_0000_0001_0000_0000

* Axis 4 (4TAS): 0010_0000_0000_1000_0000_0001_0000_0000

* Axis 5 (5TAS): 0010_0000_0000_1000_0000_0001_0000_0000

* Axis 6 (6TAS): 0010_0000_0000_1000_0000_0001_0000_0000

* Axis 7 (7TAS): 0010_0000_0000_1000_0000_0001_0000_0000

* Axis 8 (8TAS): 0010_0000_0000_1000_0000_0001_0000_0000

*System Status (This is Task 0 status if using multi-tasking.):

* Assoc. axes (TSKAX): 1,2,3,45,6,7,8

* System status (TSSF): 1000_1100_0000_0000_0000_0100_0000_0000
* Error checking (ERROR): 1000_0100_1000_0001_0000_0000_0000_0000
* Error status (TERF): 0000_0000_0000_0000_0000_0000_0000_0000
*

B T

Error program (ERRORP): ERRPRG
On conditions (ONCOND): 0000

*Multi-Tasking Status:

* Currently active tasks (TSWAP): 1100_0000_00

* Task 1:

* Assoc. axes (1%TSKAX): 1,2,34
System status (1%TSSF): 1000_1100_0000_0000_0000_0100_0000_0000
Error checking (1%ERROR): 1000_0100_1000_0001_0000_0000_0000_0000
Error status (1%TERF): 0000_0000_0000_0000_0000_0000_0000_0000
Error program (1%ERRORP): ERRPRG
On conditions (1%ONCOND): 0000

Task 2:
Assoc. axes (2%TSKAX): 5,6,7,8
System status (2%TSSF): 1000_1100_0000_0000_0000_0100_0000_0000
Error checking (2%ERROR): 1000_0100_1000_0001_0000_0000_0000_0000
Error status (2%TERF): 0000_0000_0000_0000_0000_0000_0000_0000
Error program (2%ERRORP): ERRPRG
On conditions (2%ONCOND): 0000

*Following Conditions:

* Master-Follower assignment (FOLMAS): +0,+0,+0,+0,+0,+0,+0,+0

* Master scaling (SCLMAS): 4000,4000,4000,4000,4000,4000,4000,4000

* Following status (TFSF): 0000_0000_0000_0000_0000_0000_0000_0000

EE R B

Command Descriptions

283

TSTLT Transfer Settling Time

Type Transfer Product Rev
Syntax <I><a>TSTLT 6K 5.0
Units Reported value represents milliseconds

Range n/a (applicable only to
Default n/a Servo axes)

Response TSTLT. *TSTLT502,483,344,249,299,443,534,674
ITSTLT: *1TSTLT502

See Also STRGTD, STRGTE, STRGTT, STRGTV

TSTLT allows you to display the actual time it took the last move to settle into the target zone (that is, within
the distance zone defined BYRGTDand less than or equal to the velocity definedDRGTY. The

reported value represents millisecorifisis command is usable whether or not the Target Zone

Settling Mode is enabled with theSTRGTECOmmand.

*** For a more information on target zone operation, refer tdPtogrammer's Guide

TSWAP Transfer Current Active Tasks
Type Transfer Product Rev
Syntax <I>STSWAP 6K 5.0
Units n/a
Range Binary response status of tasks (0 = inactive, 1 = inactive).
10-bit pattern represents tasks 1-10 from left to right.
Default n/a
Response TSWAP: *TSWAP1001_0000_00 (tasks 1 and 4 are active)
TSWAP.3: *0 (task 3 is inactive)
See Also %, [SS], [TASK], TSKAX, TSS

The Transfer Task Swap comman&\WAIP reports a binary bit pattern indicating the tasks that are
currently active. Note thatSWAPRonly indicates of a task is active; to ascertain exactly what activity the
task has at a given time, use the system stagisr(TSS commands).

TSWAP binary 10-bit pattern represents tasks 1-10, from left to right”Antlicates that the task is active,
and a 0" indicates that the task is inactive. To check the status of only one task, you may use the bit select
(.) operator. For exampl&@SWAP.3checks the status of Task3 only.

The “Task Supervisor”, represented by task @, is always active and is therefore not includ&harhe
andTSWAPstatus.

TTASK Transfer Task Number

Type Transfer Product Rev
Syntax <I>TTASK 6K 5.0
Units Reported value is the number of the controlling task.

Range 0-10

Default n/a

Response TTASK: *TTASK2 (Task 2 executed the TTASK command)
See Also %, [TASK]

Use therTaskcommand to the display the task number of the task which executed the command. This
could be used for diagnostic purposes, as a way to indicate which task is executing a given section of
program.

284 6K Series Command Reference

TTIM Transfer Timer

Type Transfer Product Rev
Syntax <I><%>TTIM 6K 5.0
Units Reported value represents milliseconds

Range Maximum count is 999,999,999 (approx. 11 days, 13 hours)

Default n/a

Response TTIM: *TTIM64000

See Also T, [TIM], TIMINT, TIMST, TIMSTP

The Transfer TimerT(TIM) command returns the current value of the timer in milliseconds. The timer is
started with th@IMST command, and stopped with the1STP command.

Multi-Tasking : Each task has its own timer.

TTRIG Transfer Trigger Interrupt Status

Type Transfer, Inputs Product Rev
Syntax <I>TTRIG 6K 5.0
Units n/a

Range n/a

Default n/a

Response TTRIG *TTRIG0000_0000_0000_0000_0

See Also INFNC, [PCC], [PCE], [PCME], [PCMS], TAS, TPCC, TPCE,

TPCME, TPCMS, TRGFN, [TRIG]

Use theTTRIG command to check whether a “trigger interrupt” input has been activated to capture a
position, initiate a registration move, or execu®R&FNfunction. “Trigger Interrupt” inputs are onboard
trigger inputs that have been assigned the trigger interrupt function withRke€i-H command.

EachTTRIG bit is cleared when the captured position value is read withGePCE PCMEPCMS$TPCG
TPCE TPCME or TPCMScommands, but the position information is still available from the respective
register until it is overwritten by a subsequent position capture by the same trigger input.

The functions of each bit in the binary report are shown in the table below (bits are numbered from left to
right). A bit that is set (") indicated the trigger interrupt has occurredpaithdicates no trigger interrupt.

TTRIG Trigger Input (Axis 1-4 Dedicated TTRIG Trigger Input (Axis 5-8 Dedicated
bit # “Triggers/Outputs ” connector) * Axis bit # “Triggers/Outputs " connector) * Axis

1 Pin 23, Trigger 1A 1 9 Pin 23, Trigger 5A 5

2 Pin 21, Trigger 1B 1 10 Pin21, Trigger 5B 5

3 Pin 19, Trigger 2A 2 11 Pin19, Trigger 6A 6

4 Pin 17, Trigger 2B 2 12 Pin17, Trigger 6B 6

5 Pin 15, Trigger 3A 3 13 Pin15, Trigger 7A 7

6 Pin 13, Trigger 3B 3 14 Pin13, Trigger 7B 7

7 Pin 11, Trigger 4A 4 16 Pin11, Trigger 8A 8

8 Pin 9, Trigger 4B 4 16 Pin9, Trigger 8B 8

17 Master Trigger (“TRG-M") Master Encoder

* The number of trigger inputs available varies by product (refer to your product’s Installation Guide).

Example

COMEXC1 ; Continuous command execution

INFNC1-H ; Define trigger 1A is a trigger interrupt input
1REGA10000 ; Registration move on axis 1 on trigger 1A event
WAIT(TRIG.1=B1) ; Wait for trigger 1A event to occur
WRITE"TRIGGER 1A OCCURRED" ; Display message

TTRIG ; Get report back (display to monitor)

; response should be: *TTRIG1000_0000_0000_0000_0

Command Descriptions 285

TUS Transfer User Status

Type Transfer Product Rev
Syntax <I>TUS<.i> 6K 5.0
Units i = user status bit number
Range 1-16
Default n/a
Response TUS: *TUS1111_0000_1111 0000
TUS.4: *1 (user status bit 4 is reported)
See Also INDUSE, INDUST, [US]

The Transfer User StatusyS command returns the current bit pattern for the user status word. All 16 bits
of the user status word are defined with M@UST command. Each bit can correspond to an axis status bit,
a system status bit, or an input.

Example:

INDUSE1 ; Enable user status

INDUST1-5A ; User status bit 1 defined as axis 1 status bit 5

INDUST2-3F ; User status bit 2 defined as axis 6 status bit 3

3INDUST3-5J ; User status bit 3 defined as input 5 on I/O brick 3

INDUST4-1K ; User status bit 4 defined as interrupt status bit 1

2%INDUST16-2I ; User status bit 16 defined as system status bit 2 for task 2

TUS ; Return the state of the user status word

TVEL Transfer Current Commanded Velocity

Type Transfer Product Rev
Syntax <I><a>TVEL 6K 5.0
Units Reported value is in units/sec (scalable by SCLV)

Range n/a

Default n/a

Response TVEL: *TVEL23.3450,23.0000,45.7800,456.7800 ...
1TVEL: *1TVEL23.3450

See Also ERES, SCALE, SCLV, TVELA, V, [VEL]

TheTVEL value represents the current commanded velocity. It is not the programmed veoity (
scaling is enabledSCALEY), theTVEL value is scaled by the velocity scaling fac®ei(\).

Stepper Axes:If scaling is disabledSCALE®, the value is measured in revolutions/sec (actual velocity in
commanded counts/sec divided by the drive resol@mRBSvalue).

Servo Axes:If scaling is disabledSCALE®, the value is measured in encoder revs/sec or ANI volts/sec.

286 6K Series Command Reference

TVELA Transfer Current Actual Velocity

Type Transfer Product Rev
Syntax <I><a>TVELA 6K 5.0
Units Reported value is in units/sec

Range n/a

Default n/a

Response TVELA: *TVELA+1.55,-3.25,-5.55,+2.30
1TVELA: *TVELA+1.55

See Also ENCCNT, SCALE, SCLV, SFB, TVEL, V, [VEL], [VELA]

The Transfer Current Actual VelocitfYELA) command reports the current velocity as derived from the
feedback device. The sign determines the direction of motion. You can us¢éEthiecommand at all
times; therefore, even if no motion is being commandedLA will still report a non-zero value as it
detects the servoing action.

Units of Measure:

Steppers: The velocity is always revs/sec (actual velocity in counts/sec multipliedBRESealue
if in ENCCNTImode, or multiplied bypRESIf in ENCCNTOnode).

Servos: If scaling is enable8GALE), the velocity value will be scaled by the velocity scaling factor
(SCLV). If scaling is not enableCALEQ, the value returned will be in encoder revs/sec or ANI

volts/sec.
Example:
TVELA ; Reports the current actual velocity; since no motion is
; commanded, the servoing velocities are reported.
; Example response is: *TVELA+0.0097,-0.0027,+0.0103,-0.0044
TVMAS Transfer Current Master Velocity
Type Following and Transfer Product Rev
Syntax <I><a>TVMAS 6K 5.0
Units n/a
Range n/a
Default n/a

Response TVMAS *TVMAS+0,+0,+0,+0,+0,+0,+0,+0
1TVMAS *1TVMASO

See Also FFILT, FOLMAS, SCALE, SCLMAS, V, [VMAS]

TheTvMAScommand transfers the current velocity of the master. The master must be assigned first
(FOLMASTommand) before this command will be useful.

The precision of the reportdd/MASvalue is dependent upon tREILT filter value (details are provided in
the “Master Position Filtering” section in the Following chapter oftt@grammer's Guide.

If scaling is enabledSCALEY), the value returned is scaled by the master scaling f&taMA$. If scaling
is disabled $CALEQ, the value returned is in counts/sec.

Command Descriptions 287

[TW] Thumbwheel Assignment

Type Assignment or Comparison Product Rev
Syntax TWi (See below for examples) 6K 5.0
Units i = sets used by INPLC, INSTW, OUTPLC and OUTTW

Range 1-8

Default n/a

Response n/a

See Also INPLC, INSTW, OUTPLC, OUTTW, [SS], TSS

The Thumbwheel Assignmerit\§j command, executed from within another command, reads data from a
parallel device and loads it into the command fieldhveommand is occupying. Rule of Thumb for

command value substitutions: If the command syntax shows that the command field requires a real number
(denoted byr>) or and integer value (denoted &y), you can use thewsubstitution (e.gy2,(TW)).

The value of th&@wcommand designates which input and output set torusealues 1-4 correspond to
INSTWandOUTTWsets 1 - 4, respectivelywvalues 5-8 correspond lPLC andOUTPLCsets 1 - 4,
respectively.

TheTwcommand can be used as a variable assignmaRtLETWR or in another command (e.g.,
A10,(TW2),10,1). However, th&@wcommand cannot be used in an expression su¢hrRs=1+ TW2or
IF(TW2<8) .

For more information on interfacing thumbwheels, refer to your produstallation Guide

Example:

INST\F;VZ,l-4,5 ; Set INSTW set 2 as BCD digits on onboard inputs 1-4, with
; input 5 as the sign bit

OUTTW2,1-3,4,50 ; Set OUTTW set 2 as output strobes on onboard outputs 1-3,
; with output 4 as the output enable bit, and strobe time
; of 50 milliseconds

A(TW2) ; Read data into axis 1 acceleration using INSTW set 2 and
; OUTTW set 2 as the data configuration

288 6K Series Command Reference

UNTIL() Until Part of Repeat Statement

Type Program Flow Control Product Rev
Syntax <I>UNTIL(expression) 6K 5.0
Units n/a

Range Up to 80 characters (including parentheses)

Default n/a

Response n/a

See Also JUMP, REPEAT

The Until Part of Repeat StatemeuiN([IL()) command, in conjunction with tHREPEATcommand,
provide a means of conditional program flow. REPEATcommand marks the beginning of the
conditional statement. The commands betweeREREATand theUNTIL command are executed at least
once. Upon reaching théNTIL command, the expression contained withinuk&IL command is
evaluated. If the expression is false, the program flow is redirected to the first command RfERRAE
command. If the expression is true, the first command aftasNiid. command is executed.

Up to 16 levels oREPEAT... UNTIL() commands may be nested.

NOTE: Be careful about performing@OThetweerREPEATandUNTIL. Branching to a different
location within the same program will cause the mE®EATstatement encountered to be nested
within the previouREPEATstatement, unless aNTIL command has already been encountered.
The JuMPcommand should be used in this case.

All logical operatorsANDQ OR NOT), and all relational operators, &, >=, <, <=, <>) can be used within the
UNTIL expression. There is no limit on the number of logical operators, or on the number of relational
operators allowed within a singeNTIL expression.

The limiting factor for theJNTIL expression is the command length. The total character count for the

UNTIL command and expression cannot exceed 80 characters. For example, if you add all the letters in the
UNTIL command and the letters within tf)e expression, including the parentheses and excluding the
spaces, this count must be less than or equal to 80.

All assignment operatorg(AD, ANI, AS, D, DAG DPTR ER IN, INO, LIM, MOYOUT, PC, PCG PCE PCM$
PE, PER SS, TIM, US V, VEL, etc.) can be used within theTIL expression.

Example:

REPEAT ; Beginning of REPEAT ... UNTIL() loop

GO1110 : Initiate motion on axes 1, 2, and 3

IF(IN=b1XO0) ; IF condition: if onboard input 1 =1, input 3 =&

VAR1=VAR1+1 ; If condition comes true increment variable 1 by 1

ELSE ; Else part of IF condition

TPE ; If condition does not come true transfer position of
: all encoders

NIF : End IF statement

UNTIL(VAR1=12) ; Repeat loop until variable 1 = 12

Command Descriptions 289

[US] User Status

Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also INDUSE, INDUST, TUS

The User StatusJg§) operator is used to assign the user status bits to a binary variable, or to make a comparison
against a binary or hexadecimal value. To make a comparison against a binary value, the letter b (b or B) must be
placed in front of the value. The binary value itself must only contain ones, zeros, or Xs (1, @, X, x). To make a
comparison against a hexadecimal value, the letter h (h or H) must be placed in front of the value. The
hexadecimal value itself must only contain the letters A through F, or the numbers @ through 9.

Syntax: VARBn=USwhere ‘h” is the binary variable number,
or UScan be used in an expression suclF@sS=b11@1) , or IF(US=h7)

All 16 bits of the user status word are defined withifEUST command. Each bit can correspond to an
axis status bit, a system status bit, or an input.

If it is desired to assign only one bit of the user status value to a binary variable, instead of all 16, the bit
select () operator can be used. For exampleRB1=US.12 assigns user status bit 12 to binary variable 1.

Example:

VARB1=US ; User status assigned to binary variable 1
VARB2=US.12 ; User status bit 12 assigned to binary variable 2
VARB2 ; Response, if bit 12 is set to 1, will be:

©FVARB2=XXXXXXXX XXXL XXXX XXXX XXXX_ XXXX_XXXX
IF(US=b111011X11) ; If the user status contains 1's in bit locations

:1,2,3,5,6,8,and 9, and a 0 in bit location 4,

; do the IF statement

TREV : Transfer revision level
ELSE ; Else
IF(US=h7F00) ; If the user status contains 1's in bit locations

;1,2,3,5,6,7,and 8, and O's in every other bit
; location, do the IF statement

TSTAT ; Transfer statistics
NIF ; End of second if statement
NIF ; End of first IF statement
V Velocity
Type Motion Product Rev
Syntax <I><@><a>V<r>,<r>,<r>,<r>,<r>,<r>,<r> <r> 6K 50
Units r = units/sec
Range Stepper Axes:0.00000-2,048,000 (max. depends on SCLV&PULSE)
Servo Axes: 0.00000-6,500,000 (max. depends on SCLV)
Default 1.0000

Response V: *v1.0000,1.0000,1.0000,1.0000 ...
1v: *1V1.0000

See Also GO, MC, PULSE, SCALE, SCLV, TSTAT, TVEL, TVELA, [V],
[VEL], [VELA], VF

The Velocity §) command defines the speed at which the motor will run when gi@g@tammand. The
motor will accelerate at a predefined acceleratiyndte, before reaching the velocity) Epecified. The
maximum velocity attainable is 2,048,000 units/sec (stepper axes) or 6,5000,000 units/sec (servo axes).

The velocity remains set until you change it with a subsequent velocity command. Velocities outside the
valid range are flagged as an error, with a messSByaLID DATA-FIELD x, wherex is the field number.
When an invalid velocity is entered the previous velocity value is retained.

UNITS OF MEASURE andSCALING : refer to page 16.

290 6K Series Command Reference

ON-THE-FLY CHANGES : While running in the continuous modeJ), you can change velocign the
fly (while motion is in progress) in two ways. One way is to send an immediate velocity contivhand (
followed by an immediate go commana@®). The other, and more common, way is to enable the
continuous command execution mod®MEXCLand execute a buffered velocity commawidf¢llowed by
a buffered go comman&().

Example:
SCALE1
SCLA25000,25000,1,1

SCLV25000,25000,1,1
SCLD1,1,1,1

DEL proge

DEF proge

MAO000

MCO0000

A10,12,1,2

Vv1,1,1,2

D100000,1000,10,100

; Enable scaling
; Set the acceleration scaling factor for axes 1 and 2 to
; 25000 steps/unit/unit, axes 3 and 4 to 1 step/unit/unit
; Set the velocity scaling factor for axes 1 and 2 to
; 25000 steps/unit, axes 3 and 4 to 1 step/unit
; Set the distance scaling factor for axes 1, 2, 3, and 4
; to 1 step/unit
; Delete program called proge
; Begin definition of program called proge
: Incremental index mode for axes 1-4
: Preset index mode for axes 1-4
: Set the acceleration to 10, 12, 1, and 2 units/sec/sec
;foraxes 1,2,3and 4
; Set the velocity to 1, 1, 1, and 2 units/sec for
;axes 1,2,3and 4
: Set the distance to 100000, 1000, 10, and 100 units
;foraxes 1,2, 3and 4

G0O1100 : Initiate motion on axes 1 and 2, 3 and 4 do not move

END ; End definition of proge

[V] Velocity (Programmed) Assignment

Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a
See Also

GO, SCALE, SCLV, SSV, V, [VEL]

The velocity assignmenv) operator is used to compare the programmed velocity value to another value or
variable, or to assign the current programmed velocity to a variable.

Syntax: VARn=aVvwhere ‘h” is the variable number, and

is the axis number,

orV can be used in an expression suchr@s/<25)

When assigning the velocity value to a variable, an axis specifier must always precede the assijnment (
operator or it will default to axis 1 (e.¢.AR1=1\). When making a comparison to the programmed
velocity, an axis specifier must also be used (EE(LY<2@)). The) value used in any comparison, or in
any assignment statement is the programnagda]lue. If the actual velocity information is required, refer

to theVEL command.

UNITS OF MEASURE andSCALING : refer to page 16.

Example:
IF(2V<25) ; If the programmed velocity on axis 2 is less than 25

; units/sec, then do the statements between the IF and NIF
VAR1=2V*2 ; Variable 1 = programmed velocity of axis 2 times 2
V,(VAR1) ; Set the velocity on axis 2 to the value of variable 1
NIF : End the IF statement

Command Descriptions 291

VAR Numeric Variable Assignment

Type Variable Product Rev
Syntax <I>VAR<i><=r> 6K 5.0
Units i = variable number
r = number or expression
Range i=1-225
r=%999,999,999.99999999
Default n/a
Response VARL1: *VAR1=+0.0
See Also DVAR, VARB, VARCLR, VARI, VARS, WRVAR

Numeric variables can be used to store any real number value, with a range from -999,999,999.99999999 to
+999,999,999.99999999. The information is assigned to the variable with the equal sigrLg32.3).

All variables (numericYAR, integer VARI], binary [VARE, and string YARY) are automatically stored in
battery-backed RAM.

Variables are also used in conjunction with mathematical, ¢ , *, /, SQRT, trigonometric ATAN COS
PI, SIN, TAN), and bitwise operatorg(| , ~, ~). For exampleyAR1=(3+4-7*4/4+3-2/1.5)*3

Each variable expression must be less than 80 characters in length, includiagtheart of the
expression.

Numeric data can also be read into a variable, through the useR¥AlDe DAT, or Twcommands (e.g.,
VAR1=READ)L

All variables can be used within commands that require a real or integer value. For example, the
command requires real values for acceleration; therefore, the comfweiRril),10,12,(VAR2) s legal.
Indirect variable assignments are also legal; (§AR(VAR1)=5 or VAR(VAR2)=VAR(VAR4)).

Rule of Thumb for command value substitutions: If the command syntax shows that the command field
requires a real number (denoteddpy) or and integer value (denoted &y), you can use theAR
substitution.

Example:
VAR1=2*P| ; Set Variable 1 to 2p
D(VAR2),,(VAR3) ; Set the distance value on axis 1 equal to variable 2,

; and the distance on axis 3 equal to variable 3

Indirect Variables: Numeric variables can be used indirectly. Only one level of indirection is possible
(e.g.,VAR(VAR(VARN)) is not a legal command). The example below shows how indirect variables are
used to clear 50 variables (from 1 to 50).

Example:
VAR51 =1 ; Set Variable 51 to 1
REPEAT ; Begin repeat/until loop
VAR(VAR51) =0 ; Clear variables (e.g., if VAR51 = 8,
; then VAR(VAR51)=0 is equivalent to VAR8=0)
VAR51 = VAR51 + 1 ; Increment counter

UNTIL (VAR51 =51) ; End repeat/until loop

292 6K Series Command Reference

VARB Binary Variable Assignment

Type Variable Product Rev
Syntax <I>VARB<i><=bb...bbb> (32 bltS) 6K 5.0
Units i = variable number
Range i=1-125

b=0,1, X, orx
Default n/a

Response VARBL: *VARBL=XXXX_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX
See Also DVARB, PLCP, VAR, VARI, VARCLR, VARS, VCVT, WRVARB

Binary variables can be used to store any 32-bit or less binary value. The 32-bit binary value must be in the
form of 32 ones, zeros, or Xs. The information is assigned to the binary variable with the equal sign.

All variables (numericVAR, integer VARI], binary [VARE, and string YARY) are automatically stored in
battery-backed RAM.

Example: VARB1=b11118@3@@1111XXXX1111BBBBxxxx1111
Notice that the lettes is required. Theé signifies binary, 1's, @'s, and X's only.

Example: VARB1=h7F4356A3
Notice that the letten is required. Thé signifies hexadecimal, @-9, A-F only.

Binary variables are also used in conjunction with bitwise operagpys 4, and-~).
Example . VARB1=VARBZ VARB3& bl1110300Q0110D1

The expression must be less than 80 characters in length, includivg\Ri&LEbor VARB1=h part of the
expression.

All binary variables can be used to set bits for commands that require at least 4 bits of binary information.
For example, the@uTcommand requires 24 bits of binary information; therefore, the command
OUT(VARB1) is legal.

Rule of Thumb for command value substitutions: If the command syntax shows that the command field
requires a binary value (denoted4iy), you can use theARBsubstitution.

Example :
VARB1=b1110 & hA ; Binary variable 1 is set to binary 1110 bitwise
: "AND"ed with hexadecimal A
VARB1=IN.7 ; State of onboard input bit 7 assigned to binary variable 1
OUT(VARB2) ; State of all onboard outputs assigned to binary variable 2

VARCLR Variable Clear

Type Variable Product Rev
Syntax <I>VARCLR 6K 5.0
Units n/a
Range n/a
Default n/a
Response n/a

See Also DVAR, DVARI, DVARB, VAR, VARB, VARI, VARS

VARCLRresets all numeric variablegAR), integer variablesvaRlI), binary variables\ARB, and string
variables YARS to their factory default values:

Numeric AR and Integer{ARI) variables are set 0
Binary (VARB variables are set txxxx_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX
String (VAR variables are set to

Command Descriptions 293

VARI Integer Variable Assignment

Type Variable Product Rev
Syntax <I>VARI<i><=i> 6K 5.0
Units 1% i = variable number
2" i = integer number
Range 1%t i=1-225
2™ j = -2,147,483,647 to +2,147,483,647
Default n/a
Response VARIL: *VARI1=+Q
See Also DVARI, PLCP, VARB, VAR, VARCLR, WRVARI

Integer variables can be used to store integer number value, with a range from -2,147,483,647 to
+2,147,483,647. The information is assigned to the variable with the equal sigWARIg=32.).

All variables (numericAR, binary [VARE, integer [ARI], and string YARg are automatically stored in
battery-backed RAM.

Integer variables can be used with mathematicad,(-, *, /) and bitwise operatorg(]| , ~, ~). For example,
VARI1=(3+4-7*4/4+3-2/2)*3 . Numeric ¥AR and integer\(ARI) variables can be mixed in the
mathematical expressions. The results, if fractional, are trunc®N&IE: VARI cannot be used with
trigonometric operatorsATAN COS PI, SIN, TAN) and square rooSQR7.

Each variable expression must be less than 80 characters in length, includiagtheart of the
expression.

Numeric data can also be read into a variable, through the useR¥AlDe DAT, or Twcommands (e.g.,
VARI1=READJ). Setting an integer variable to a real number results in a truncation.

All integer variables can be used within commands that require a real or integer value. For example, the
command requires real values for acceleration; therefore, the comfwari1),13,12,(VARI2) is

legal. Indirect variable assignments are also legal; &@RI(VARI1)=5 or

VARI(VARI2)=VARI(VARI4)).

Integer variables should be used whenever possible to allow faster math operation than the numeric
variables YAR.

Rule of Thumb for command value substitutions: If the command syntax shows that the command field
requires a real number (denoted by <r>) or an integer value (denoted by <i>, you carnvase the
substitution.

Example :

VARI1=2*3 ; Set Variable 1 to 6

D(VARI2),,(VARI3) ; Set the distance value on axis 1 equal to
; integer variable 2, and the distance on axis 3
; equal to integer variable 3

Indirect Variables: Integer variables can be used indirectly. Only one level of indirection is possible (e.g.,
VARI(VARI(VARIN)) is not a legal command). The example below shows how indirect variables are used
to clear 50 variables (from 1 to 50).

Example :

VARI51 =1 ; Set Integer Variable 51 to 1

REPEAT ; Begin repeat/until loop
VARI(VARI51) = & ; Clear variables (e.g., if VARI51 = 8, then

; VARI(VARI51)=@ is equivalent to VARI8=0)
VARI51 = VARI51 +1 ;Increment counter
UNTIL (VARI51 = 51)

294 6K Series Command Reference

VARS String Variable Assignment

Type Variable Product Rev
Syntax <I>VARS<i><="message"> 6K 5.0
Units i = variable number
message = text string
Range i=1-25
Message = up to 20 characters
Default n/a
Response VARS1: *VARS1="Hi John"
See Also ' [\], EOT, [READ], VAR, VARB, VARCLR, VARI, VCVT, WRITE,
WRVARS

String variables can be assigned a character string up to 20 characters long. The characters within the string
can be any character except the quojethie semicolon;(), and the colon: (). The backslash characté (
immediately followed by a number is okay.

All variables (numericYAR, integer VARI], binary [VARH, and string YARS) are automatically stored in
battery-backed RAM.

To place specific control characters that are not directly available on the keyboard within a character string,
use the backslash characte), followed by the control character's ASCII decimal equivalent. Multiple
control characters can be sent.

For example, to set the string for variable #1 equall tOM<cr> use the commandARS1="HI MOM\13"
where\13 corresponds to the carriage return character.

Common characters and their ASCII equivalent value:

Character Description ASCII Decimal Value
<If> Line Feed 10
<cr> Carriage Return 13
" Quote 34
Colon 58
; Semi-colon 59
\ Backslash 92
Example :
VARS1="Enter velocity >" ; Assign a message to string variable #1
VAR2=READ1 ; Transmit string variable 1, and wait for numeric

: data entered in the format of !'<data>.

; Once numeric data is received, place itin

: numeric variable 2.

; Example of data entry is to type "I'10.0", which
; will assign numeric variable 2 the value 10.00

Command Descriptions 295

VCVT Variable Type Conversion

Type Operator (Mathematical) Product Rev
Syntax See below 6K 5.0
Units n/a
Range n/a
Default n/a

Response n/a
See Also VAR, VARB, VARI

Using the Variable Type ConversioviGVT) operator, you can convert numen®Ror VARI) values to

binary (/ARB values, and vice versa. The operation is a signed operation as the binary value is interpreted
as a two's complement number, with the least significant bit (LSB) on the left and the most significant bit
(MSB) on the right. Adon't care(X) in a binary value will be interpreted as a zefp (

If the mathematical statement's result is a numeric value vibgmconverts binary values to numeric
values. If the statement's result is a binary value, W@ converts numeric values to binary values.

You can also convert realAR values to integeMARI) values (real values are truncated in the process).

NOTE: Numeric variablesAR have insufficient range to convert a full 32-bit binary variatskeRB. For
example, executing théARB1=h00000004 command and then th&AR1=VCVT(VARB1)command yields
anINVALID DATA error.

Numeric-to-Binary Conversion:

VAR1=-5 ; Set numeric variable value = -5
VARB1=VCVT(VAR1) ; Convertthe numeric value to a binary value and
; store in VARBL1
VARB1 ; Display value of VARB1. The response should be:
; *VARB1=1101 1111 1111 1111 1111 1111 1111 1111

VAR1=25 ; Set numeric variable value = 25
VARB1=VCVT(VAR1) ; Convertthe numeric value to a binary value and
; store in VARBL1
VARB1 ; Display value of VARB1. The response should be:
; *VARB1=1001_1000_0000_0000_0000_0000_0000_0000

Binary-to-Numeric Conversion:

VARB1=b0010_0110_0000_0000_0000_0000_0000_0000 ; Set binary variable = +100.0
VAR1=VCVT(VARB1) ; Convert the binary value to a numeric value

VAR1 ; *VAR1=+100.0

[VEL] Velocity (Commanded) Assignment

Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a

Range n/a

Default n/a

Response n/a

See Also SCALE, SCLV, SFB, TVEL, TVELA, V, [V], VELA

Use theVEL operator to compare the curresimmandedelocity to another value or variable, or to assign
the current commanded velocity to a variable. The velocity value used in any comparison, or in any
assignment statement is the current commanded velocity value, pobgnemmedrelocity () or the

actual velocity as measured from the feedback deVige4).

Syntax: VARn=aVELwhere ‘h” is the variable number, and™is the axis number, ofEL can be used
in an expression such B$2VEL>4) . When assigning the current velocity value to a variable,
an axis specifier must always precede the assignivEn} ¢perator (e.gVAR1=1VEL. When
making a comparison to the current velocity, an axis specifier must also be used, or else it will
default to axis 1 (e.gIF(1VEL<2@)).

296 6K Series Command Reference

The VEL value represents the current commanded velocity. It is not the programmed vE)otitydaling
is enabled$CALEY), theVEL value is scaled by the velocity scaling fac®eci(\).

Stepper Axes:lf scaling is disabledSCALEQ, the value is measured in revolutions/sec (actual velocity in
commanded counts/sec divided by the drive resoliRBSvalue).

Servos:If scaling is disabledSCALE, the value is measured in encoder revs/sec or ANI volts/sec.

Example:
IF(2VEL<25) ; If the current velocity on axis 2 is less than 25 units/sec,
: then do the statements between the IF and NIF

VAR1=2V*2 ; Variable 1 = programmed velocity of axis 2 times 2
NIF : End the IF statement
[VELA] Velocity (Actual) Assignment
Type Assignment or Comparison Product Rev
Syntax See below 6K 5.0
Units n/a
Range n/a
Default n/a
Response n/a
See Also ENCCNT, ERES, SCLV, TVEL, TVELA, [V], V, [VEL]

TheVELA operator is used to compare the cureattal velocity (as derived from the feedback device) to
another value or variable, or to assign the current velocity to a variable. If the programmed velocity
information is required, refer to ti¢] operator; if the current commanded velocity information is
required, refer to the/EL] operator.

The sign determines the direction of motion. You can useEhe operator at all times; therefore, even if
no motion is being commander/ELA will still report a non-zero value as it detects the servoing action.

Syntax: VARn=aVELAwhere ‘h” is the variable number, and™is the axis number, ofELA can be
used in an expression suchiB@VELA>4) . When assigning the current velocity value to a
variable, an axis specifier must always precede/ged assignment operator (e.g.,
VAR1=1VELA. When making a comparison to the current velocity, an axis specifier must also
be used, or else it will default to axis 1 (elg(1VELA<2@)).

Units of Measure:

Steppers: The velocity is always revs/sec (actual velocity in counts/sec multipliedBRE®ealue
if in ENCCNTImode, or multiplied bypRESIf in ENCCNTOMode).

Servos: If scaling is enableHEALEJ), the velocity value will be scaled by the velocity scaling factor
(SCLV). If scaling is not enable&CALEY, the value returned will be in encoder revs/sec or ANI

volts/sec.
Example:
IF(2VELA<25) ; If the current velocity on axis 2 is less than 25 units/sec,
; then do the statements between IF and NIF
VAR1=2V*2 ; Variable 1 = programmed velocity of axis 2 times 2
NIF ; End the IF statement

Command Descriptions 297

VF Final Velocity

Type Compiled Motion Product Rev
Syntax <I>S<@>VF<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r> 6K 5.0
Units n/a

Range 0 (non-zero values result in error message)

Default 0

Response n/a

See Also FOLRN, FOLRD, FOLMAS, FOLMD, GOBUF, SCLD, FOLEN, V

The Final Velocity YF) command designates that the motor will move the load the programmed distance in
a preseGOBURsegment, completing the move at a final speed of a¢k@pplies only to the next
(subsequentpOBUFwhich marks an intermediate “end of move” within a profi€.is used only in

conjunction with thesOBUFcommand. Normal preseéOmoves always finish with zero velocity.

TheVF command remains in effect for the affected axis urGib8UHAs executed on that axis, or until you
issue eRESETcommand.

Any non-zero value that is entered YoF will result in an immediate error message.

[VMAS] Current Master Velocity

Type Following; Assignment or Comparison Product Rev
Syntax See below 6K 50
Units n/a

Range n/a

Default n/a

Response n/a

See Also FFILT, FMCNEW, FMCP, FOLMAS, FOLMD, SCALE, SCLMAS, TVMAS

The Master Velocity(MA$ command is used to assign the master velocity value to a variable, or to make a
comparison against another value. The master must be assigneetiingiAScommand) before this
command will be useful.

Syntax: VARn=aVMASwhere ‘h” is the variable number and “a” is the axis numbelMAScan be used
in an expression such B{2VMAS>1d) . TheVMAScommand must be used with an axis
specifier, or it will default to axis 1 (e./AR1=1VMASIF(2VMAS>5) , etc.).

The precision of th&MASvalue is dependent upon tREILT filter value.

If scaling is enabledSCALEY), the velocity value is scaled by the master scaling fagtirNIA$. If scaling
is disabled $CALEg, the velocity value is in counts/sec.

Example:
IF(2VMAS>4.3) ; If the master of axis 2 is traveling at more than
: 4.3 user units/sec then do the IF statement
OUT.4=b1 ; Set onboard output #4 to 1
NIF : End of IF statement
VAR14=3VMAS ; Set VAR14 to axis 3's master velocity

298 6K Series Command Reference

WAIT() Wait for a Specific Condition

Type Program Flow Control Product Rev
Syntax <I>WAIT(expression) 6K 50
Units n/a

Range Up to 80 characters (including parentheses)

Default n/a

Response n/a

See Also FMCLEN, FMCNEW, FMCP, GOWHEN, IF, NWHILE, REPEAT,[SS], T,
TSS, UNTIL, WHILE

The Wait for a Specific Conditiom(AIT) command is used to wait for a specific expression to evaluate
true. No commands, except for immediate commands, aftgvaliecommand will be processed until the
expression contained within the parentheses ofwhE command evaluates true. TRO@MEX@Command
has no effect on th&/AIT command.

All logical operatorsAND OR NOT), and all relational operators, >, >=, <, <=, <>) can be used within the
WAIT() expression. There is no limit on the number of logical operators, or on the number of relational
operators allowed within a singlgAIT() expression.

The limiting factor for thavAIT() expression is the command length. The total character count for the

WAIT() command and expression cannot exceed 80 characters. For example, if you add all the letters in the
WAIT command and the letters within tf)e expression, including the parenthesis and excluding the spaces,
this count must be less than or equal to 80.

All assignment operatorg(AD, AS, D, ER IN, INO, LIM, MOYOUT, PC, PCE PCM$PE, PER SS, TIM, US
V, VEL, etc.) can be used within teAIT() expression.

Example:

MC1 ; Mode continuous

COMEXC1 ; Enable continuous command mode

GO1 ; Initiate motion on axis 1

WAIT(IN=b1) ; Wait for onboard input 1 to be active

S1 ; Stop motion on axis 1

WAIT(MOV=b0) ; Wait for motion complete on axis 1

COMEXCO0 ; Disable continuous command execution mode

WHILE() WHILE Statement

Type Program Flow Control; Conditional Branching Product Rev
Syntax <I>WHILE(expression) 6K 5.0
Units n/a

Range Up to 80 characters (including parentheses)

Default n/a

Response n/a

See Also IF, JUMP, NWHILE, REPEAT, UNTIL

The While Statement(HILE) command, in conjunction with tiéwWHILEcommand, provide a means of
conditional program flow. The/HILE command marks the beginning of the conditional statement, the
NWHILEcommand marks the end. If the expression contained within the parenthesigveiiitREecommand
evaluates true, then the commands betweewthieE andNWHILEare executed, and continue to execute as

long as the expression evaluates true. If the expression evaluates false, then program execution jumps to the
first command after theWHILE Up to 16 levels ofvHILE... NWHILEcommands may be nested.

Programming ordemVHILE(expression) ...commands... NWHILE

NOTE: Be careful about performing@OThetweenVvHILE andNWHILE Branching to a different
location within the same program will cause the WeXILE statement encountered to be nested
within the previousVHILE statement, unlessNwHILEcommand has already been encountered.
The JuMPcommand should be used in this situation.

Command Descriptions 299

All logical operatorsAND OR NOT), and all relational operators, >, >=, <, <=, <>) can be used within the
WHILE() expression. There is no limit on the number of logical operators, or on the number of relational
operators allowed within a singlgHILE() expression.

The limiting factor for thevHILE() expression is the command length. The total character count for the
WHILE() command and expression cannot exceed 80 characters. For example, if you add all the letters in
theWHILE command and the letters within tf)e expression, including the parenthesis and excluding the
spaces, this count must be less than or equal to 80.

All assignment operatorg(AD, AS, D, ER IN, INO, LIM, MOYOUT, PC, PCE PCM$PE, PER SS, TIM, US
V, VEL, etc.) can be used within teHILE() expression.

Example:
WHILE(IN=b1X0) ; While onboard input1 =1, input 3 =@,
; execute commands between WHILE and NWHILE

T5 ; Wait 5 seconds
TPE ; Transfer position of all encoders
NWHILE : End WHILE statement

WHILE(1ANV<2.3) ; While analog channel 1's voltage is less than 2.3 volts,
; execute commands between WHILE and NWHILE

TPC ; Transfer commanded position of all axes

NWHILE ; End WHILE statement

WRITE Write a Message

Type Communication Interface Product Rev
Syntax <I>WRITE"<message>" 6K 5.0
Units n/a

Range Up to 69 characters (may not use ", ; or :)

Default n/a

Response WRITE"message": message

See Also [\], EOT, PORT, [READ], VARS, WRVAR, WRVARB, WRVARS

The Write a Messag®MRITE) command provides an efficient way of transmitting message strings to the
Ethernet port and the RS-232C or RS-485 ports. These messages can then be used by the operating
program. Th&OTcommand characters will be transmitted after the message.

Each message can be assigned a character string up to 69 characters long. The characters within the string
can be any character except the quojethe colon (), and the asterisk].

To place specific control characters that are not directly available on the keyboard within the character
string, use the backslash charactgr followed by the control character's ASCII decimal equivalent.
Multiple control characters can be sent. For example, to set the message equal to

HI MOM<cr3 use the commandRITE"HI MOM\13" where\13 corresponds to the carriage return
character. Common characters and their ASCII equivalent values are listed below:

Character Description ASCII Decimal Value

<If> Line Feed 10

<cr> Carriage Return 13

" Quote 34

Colon 58

; Semi-colon 59

\ Backslash 92

Example:

WRITE"It's a wonderful life!" ; Send the message "It's a wonderful life!"

300 6K Series Command Reference

WRVAR Write a Numeric Variable

Type Communication Interface Product Rev
Syntax <I>WRVAR<i> 6K 5.0
Units i = variable number

Range i=1-225

Default n/a

Response WRVAR1: +0.0

See Also EOT, [READ], VAR, WRITE, WRVARB, WRVARI, WRVARS

Use thewRVARommand to transfer a specific numeric varialskeq to the Ethernet port and the RS-232C
or RS-485 ports. Only the value and #@Tcommand characters are transmitted.

Example:
VAR1=100 ; Set variable 1 equal to 100
WRVAR1 ; Transmit variable 1 (the value +100.0 is transmitted)

WRVARB Write a Binary Variable

Type Communication Interface Product Rev
Syntax <I>WRVARB<i> 6K 5.0
Units i = variable number

Range i=1-125

Default n/a

Response WRVARBL: XXXX_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX
See Also EOT, [READ], VARB, WRITE, WRVAR, WRVARI, WRVARS

Use theWwRVARBommand to transfer a specific binary variableRB to the Ethernet port and the
RS-232C or RS-485 ports. Only the binary value andE®Ecommand characters are transmitted.

Example:
VARB1=b1101 ; Set binary variable 1 to 1101
WRVARB1 ; Transmit binary variable 1

; (value transmitted =1101_ XXXX_XXXX_XXXX_XXXX XXX X XXX X_XXXX)
WRVARI Write an Integer Variable
Type Communication Interface Product Rev
Syr_1tax §!>WRVARI<i> 6K 5.0
Units i = variable number
Range i=1-225
Default n/a

Response WRVARI1: +0
See Also EOT, [READ], VARI, WRITE, WRVAR, WRVARB, WRVARS

Use thewRVARIcommand to transfer a specific integer variakieR() to the Ethernet port and the
RS-232C or RS-485 ports. Only the integer value ang&@vcommand characters are transmitted.

Example:
VARI1=100 ; Set integer variable 1 equal to 100
WRVARI1 ; Transmit integer variable 1 (the value +100 is transmitted)

Command Descriptions 301

WRVARS write a String Variable

Type Communication Interface Product Rev
Syntax <I>WRVARS<i> 6K 5.0
Units i = variable number

Range i=1-25

Default n/a

Response WRVARS1: No response until a string is placed in VARS1

See Also EOT, [READ], VARS, WRITE, WRVAR , WRVARB, WRVARI

Use thewRVARSommand to transfer a specific string variablaR9 to the Ethernet port and the RS-232C
or RS-485 ports. Only the string and #@Tcommand characters are transmitted.

Example:
VARS1="John L" ; Set string variable 1 = "John L"
WRVARS1 ; Transmit string variable 1 (string "John L" is transmitted)

XONOFF Enable/Disable XON / XOFF

Type Communication Interface Product Rev
Syntax <I>XONOFF 6K 5.0
Units n/a

Range 0 (disable), 1 (enable)

Default 1 for COM1, 0 for COM2 (PORT command setting determines which

COM port's XONOFF setting is checked)
Response XONOFF *XONOFF1

See Also 1. [, BOT, DRPCHK, E, EOT, ERRBAD, ERROK, LOCK, PORT

Use thextONOFFeommand to enable or disable XON/XOFF (ASCII handshaking).

XONOFFIenables XON/XOFF, which allows the 6K product to recognize ASCII handshaking control
characters. When XON/XOFF is enabled, ASCII 17Q@is a signal to start sending characters; ASCII 19
or“Sis a signal to stop sending charactet@NOFF@lisables XON/XOFF.

ThePORTcommand determines which COM port is affected byxtbsOFFcommand. Each port will track
its XON/XOFFvalues

RS-485 Multi-drop: If you are using RS-485 multi-drop, disable XON/XOFF by executin@ @2
command followed by thEONOFF@ommand.

NOTE: COM1 is the “RS-232” connector or “ETHERNET” connector; COM2 is the “RS-232/485"
connector.

302 6K Series Command Reference

Appendix A: 6K Command List

(Firmware Revision 5.0)

Command Description Command Description

% Task Identifier COMEXL Continue Execution on End-of-Travel Limit
['] Immediate Command Identifier COMEXR Continue Motion on Pause/Continue Input
[@ Global Command Identifier COMEXS Continue Execution on Stop

; Begin Comment [COS()] Cosine [operator]

$ Label Declaration D Distance

[#] Step Through a Program [D] Distance [operator]

' Enter Interactive Data [DAC] Value of DAC Output Voltage [operator]
[.1] Bit Select DACLIM DAC Output Voltage Limit

["] Begin and End String [DAT] Data Assignment [operator]

[V] ASCII Character Designator DATA Data Statement

[=1 Assignment or Equivalence [DATP] Data Program

[>] Greater Than DATPTR Set Data Pointer

[>=] Greater Than or Equal DATRST Reset Data Pointer

[<] Less Than DATSIZ Data Program Size

[<=1 Less Than or Equal DATTCH Data Teach

[<=1 Not Equal DCLEAR Clear RP240 Display

[()] Operation Priority Level DEF Begin Definition of Program

[+] Addition DEL Delete Program

[-1 Subtraction DJOG Enable RP240 Jog Mode

[*] Multiplication [DKEY] Value of RP240 Key

[7] Division DLED Turn RP240 LEDs ON/OFF

[&] Boolean And DPASS Change RP240 Password

[1] Boolean Inclusive Or DPCUR Position RP240 Display Cursor

[~] Boolean Exclusive Or [DPTR] Data Pointer Location [operator]

[~()] Boolean Not [DREADQ Read RP240 Numeric Data [operator]
[<<] Shift from Right to Left (bit 32 to bit 1) [DREADH Read RP240 Function Key [operator]
[>>] Shift from Left to Right (bit 1 to bit 32) DREADI RP240 Data Read, Immediate Mode
[Send Response to Both COM Ports DRES Drive Resolution

] Send Response to Alternate COM Port DRFEN Drive Fault Input Enable

A Acceleration DRFLVL Drive Fault Input, Active Level

[A] Acceleration [operator] DRIVE Drive Enable/Disable

AA Acceleration, S-curve DRPCHK RP240 COM Port Check

AD Deceleration DSTP Enable/Disable RP240 Stop Key

[AD] Deceleration [operator] DVAR Display Numeric Variable on RP240
ADA Deceleration, S-curve DVARB Display Binary Variable on RP240
ADDR Auto-Address Multiple Serial Units DVARI Display Integer Variable on RP240

[AND] And [operator] DWRITE Write Text to RP240

[ANI'] Analog Input Voltage [operator] E Enable Serial Communication
ANIEN Analog Input Enable ECHO Enable Communication Echo

ANIFB Analog Inputs as Axis Feedback EFAIL Encoder Failure Detect

ANIMAS Assign Analog Input as Master ELSE Else Condition of IF Statement
ANIRNG Analog Input Voltage Range ENCCNT Encoder Count Reference Enable

[AS] Axis Status [operator] ENCPOL Encoder Polarity

[ASX] Axis Status, Extended [operator] ENCSND Encoder Step & Direction Mode

[ATAN()] Arc Tangent [operator] END End Definition of Program

AXSDEF Axis Definition EOL End-of-Line Termination Characters
BAUD Baud Rate EOT End-of-Transmission Characters
BOT Beginning of Transmission Characters [ER] Error Status [operator]

BP Set a Program Break Point ERASE Erase All Programs

BREAK Terminate Program Execution ERES Encoder Resolution

Cc Continue Command Execution ERRBAD Error Prompt Characters

CMDDIR Commanded Direction Voltage ERRDEF Program Definition Prompt Characters
COMEXC Continuous Command Processing Mode ERRLVL Error Detection Level

Appendix A: 6K Series Command List 303

Command Description Command Description

ERROK Good Prompt Characters INTSW Force an Alarm Event

ERROR Enable Error Checking JOG Enable Jog Mode

ERRORP Assign an Error Program JOGA Jog Acceleration

ESDB Stall Backlash Deadband JOGAA Jog Acceleration, S-curve

ESK Kill on Stall JOGAD Jog Deceleration

ESTALL Enable Stall Detection JOGADA Jog Deceleration, S-curve

EXE Execute Program from a Compiled Program JOGVH Jog Velocity, High

[FB] Value of Feedback Device [operator] JOGVL Jog Velocity, Low

FFILT Following Filter JOoYy Enable Joystick Mode

FGADV Following Geared Advance JOYA Joystick Acceleration

FMAXA Follower Axis Maximum Acceleration JOYAA Joystick Acceleration, S-curve

FMAXV Follower Axis Maximum Velocity JOYAD Joystick Deceleration

FMCLEN Master Cycle Length JOYADA Joystick Deceleration, S-curve
FMCNEW Restart Master Cycle Counting JOYAXH Joystick Analog Channel, High

FMCP Initial Master Cycle Position JOYAXL Joystick Analog Channel, Low

FOLEN Enable Following Mode JOYCDB Joystick Center Deadband

FOLK Following Kill, Limitations JOYCTR Joystick Center

FOLMAS Assignment of Master to Follower JOYEDB Joystick End Deadband

FOLMD Master Distance JOYVH Joystick Velocity, High

FOLRD Denominator of Follower-to-Master Ratio JOYVL Joystick Velocity, Low

FOLRN Numerator of Follower-to-Master Ratio JOYz Joystick Zero (Center)

FOLRNF Numerator of Final Follower-to-Master Ratio JUMP Jump to Program or Label (No Return)
FPPEN Enable Master Position Prediction K Kill Motion

[FS] Following Status [operator] <ctrl>K Kill Motion

FSHFC Continuous Shift KDRIVE Disable Drive on Kill

FSHFD Preset Shift L Loop

FVMACC Virtual Master Count Acceleration LH Enable Hardware End-of-Travel Limits
FVMFRQ Virtual Master Count Frequency LHAD Hardware EOT Limits Deceleration

GO Initiate Motion LHADA Hardware EOT Limits Decel, S-curve
GOBUF Store a Compiled Motion Segment [LIM] Hardware EOT & Home Limit Inputs, Status
GOL Initiate Linear Interpolated Motion LIMEN Limit Input Enable

GOSuUB Call a Subroutine LIMFENC Limit Input Function Assignment
GOTO Goto a Program or Label LIMLVL Hardware EOT & Home Inputs, Active Level
GOWHEN Conditional Go LN End of Loop

HALT Terminate Program Execution LOCK Lock Resource to a Task

HELP Technical Support Phone Numbers LS Enable Software End-of-Travel Limits
HOM Initiate Homing Operation LSAD Software EOT Limits, Deceleration
HOMA Homing Acceleration LSADA Software EOT Limits Decel, S-curve
HOMAA Homing Acceleration, S-curve LSNEG Negative-Direction Software EOT Limit
HOMAD Homing Deceleration LSPOS Positive-Direction Software EOT Limit
HOMADA Homing Deceleration, S-curve LX Terminate Loop

HOMBAC Backup to Home MA Enable Absolute/Incremental Positioning
HOMDF Homing Final Direction MC Enable Continuous/Preset Positioning
HOMEDG Home Reference Edge MEMORY Partition Product Memory

HOMV Homing Velocity MEPOL Master Encoder Polarity

HOMVF Homing Velocity, Final Approach MESND Master Encoder Step & Direction Mode
HOMZ Home to Encoder Z Channel [MOV Axis Moving Status [operator]

IF() IF Statement NIF End IF Statement

[IN] Input Status [operator] [NMCY Master Cycle Number Status [operator]
INDEB Input Debounce Time [NOT] Not [operator]

INDUSE Enable User Status NTADDR Set IP Address

INDUST User Status Definition NTMASK Ethernet Network Mask

INEN Enable Specific Inputs NWHILE End of WHILE Statement

INFNC Input Function Assignment ONCOND Enable Program Interrupt (“On”) Conditions
INLVL Input Active Level ONIN On an Input Condition GOSUB

[INO] Other Inputs (Enable Input) Status [operator] ONP On Condition Program Assignment
INPLC Establish PLC Data Inputs ONUS On a User Status Condition GOSUB
INSELP Enable Program Selection via Inputs ONVARA On Numeric Variable 1 Condition GOSUB
INSTW Establish Thumbwheel Data Inputs ONVARB On Numeric Variable 2 Condition GOSUB
INTHW Enable Checking for Alarm Events [OR] Or [operator]

304 6K Series Command Reference

Command Description Command Description

ouT Activate Programmable Outputs REGLOD Registration Lockout Distance

[ouT] Programmable Outputs Status [operator] REGSS Registration Single-Shot

OUTALL Activate Programmable Outputs, Range REPEAT REPEAT Statement

OUTEN Disable Programmable Outputs RESET Reset the 6K Controller

OUTFNC Programmable Output Function Assignment RUN Begin Executing a Program
OUTLVL Programmable Output Active Level S Stop Motion

OUTPnN Output on Position — Axis Specific SCALE Enable Scaling Factors

OUTPLC Establish PLC Strobe Outputs SCANP Scan a Compiled PLC Program
OUTTW Establish Thumbwheel Strobe Outputs SCLA Acceleration Scale Factor

PA Path Acceleration SCLD Distance Scale Factor

PAA Path Acceleration, S-curve SCLMAS Master Axis Scale Factor

PAB Path Absolute SCLV Velocity Scale Factor

PAD Path Deceleration [SEG] Number of Free Segment Buffers [operator]
PADA Path Deceleration, S-curve SFB Select Servo Feedback Source

[PANI] Position of ANI Inputs SGAF Gain — Acceleration Feedforward
PARCM Radius-Specified CCW Arc Segment SGENB Enable a Servo Gain Set

PARCOM Origin-Specified CCW Arc Segment SGI Gain — Integral Feedback

PARCOP Origin-Specified CW Arc Segment SGILIM Gain — Integral Windup Limit
PARCP Radius-Specified CW Arc Segment SGP Gain — Proportional Feedback
PAXES Participating Axes for Contouring SGSET Save a Servo Gain Set

[PC] Position Commanded [operator] SGV Gain — Velocity Feedback

[PCC] Captured Commanded Position [operator] SGVF Gain — Velocity Feedforward

[PCE] Position of Captured Encoder [operator] [SINO 1] Sine [operator]

[PCMH Position of Captured Master Encoder [operator] SINAMP Virtual Master Sine Wave Amplitude
[PCMS Position of Captured Master Cycle [operator] SINANG Virtual Master Sine Wave Angle
PCOMP Compile a Profile or Program SINGO Virtual Master - Start Internal Sine Wave
[PE] Position of Encoder [operator] SMPER Maximum Allowable Position Error

[PER] Position Error [operator] SOFFS Servo Control Signal Offset

PESET Set Encoder Absolute Position (steppers) [SQORT] Square Root [operator]

PEXE Execute a Compiled Program [SS] System Status [operator]

[PI'] Pi () [operator] STARTP Start-up Program

PL Select Path Local/Work Coordinate System STEP Enable Single Step Mode

PLC Define Path Local Coordinates STRGTD Target Zone Distance

PLCP Compiled PLC Program STRGTE Enable Target Zone Mode

PLIN Move in a Line (Line Segment) STRGTT Target Zone Timeout Period

PLN End of Loop, Compiled Motion STRGTV Target Zone Velocity

PLOOP Start of Loop, Compiled Motion [SWAR Task Swap Assignment [operator]

[PMAS Current Master Cycle Position [operator] T Time Delay

[PME] Position of Master Encoder [operator] [TANQ 1] Tangent [operator]

PMECLR Clear Master Encoder Absolute Position TANI Transfer ANI Analog Input Voltage
PMESET Set Master Encoder Absolute Position TAS Transfer Axis Status

PORT Designate Destination COM Port TASF Transfer Axis Status (full-text report)
POUT Compiled Output (Contouring) [TASK] Task Number Assignment [operator]
POUTN Compiled Output (Compiled Motion), Axis Specific TASX Transfer Axis Status, Extended
PPRO Path Proportional Axis TASXF Transfer Axis Status, Extended (full-text)
PRTOL Path Radius Tolerance TCMDER Transfer Command Error

PRUN Run a Compiled Profile TDAC Transfer DAC Voltage

PS Pause Program Execution TDIR Transfer Program Directory

PSET Establish Absolute Position Reference TDPTR Transfer Data Pointer Status

[PSHF] Net Position Shift Status [operator] TER Transfer Error Status

[PSLV] Commanded Follower Position [operator] TERF Transfer Error Status (full-text report)
PTAN Path Tangent Axis Resolution TEX Transfer Program Execution Status
PUCOMP Un-Compile a Compiled Profile TFB Transfer Position of Feedback Devices
PULSE Step Output Pulse Width TFS Transfer Following Status

PV Path Velocity TFSF Transfer Following Status (full-test report)
PWC Path Work Coordinates TGAIN Transfer Servo Gains

RADIAN Specify Units in Radians or Degrees [TIM] Current Timer Value [operator]

RE Enable Registration TIMINT Timer Value to Cause an Alarm Event
[READ] Read a Value TIMST Start Timer

REG Registration Distance TIMSTP Stop Timer

Appendix A: 6K Series Command List 305

Command Description Command Description

TIN Transfer Programmable Input Status TSS Transfer System Status

TINO Transfer Other Input Status TSSF Transfer System Status (full-text report)
TINOF Transfer Other Input Status (full-text report) TSTAT Transfer Controller Statistics

TIO Transfer Expansion I/O Status TSTLT Transfer Settling Time

TLABEL Transfer Labels TSWAP Transfer Currently Active Tasks

TLIM Transfer Hardware Limit Status TTASK Transfer Task Number

TMEM Transfer Memory Usage TTIM Transfer Timer Value

TNMCY Transfer Master Cycle Number TTRIG Transfer Trigger Interrupt Status
TNTMAC Transfer Ethernet Address TUS Transfer User Status

TOUT Transfer Programmable Output Status TVEL Transfer Current Commanded Velocity
TPANI Transfer Position of ANI Inputs TVELA Transfer Current Actual Velocity

TPC Transfer Commanded Position TVMAS Transfer Current Master Velocity
TPCC Transfer Captured Commanded Position [TW] Thumbwheel Assignment [operator]
TPCE Transfer Position of Captured Encoder UNTIL() Until Part of REPEAT Statement
TPCME Transfer Position of Captured Master Encoder [US] User Status [operator]

TPCMS Transfer Position of Captured Master Cycle \% Velocity

TPE Transfer Position of Encoder [V] Velocity [operator]

TPER Transfer Position Error VAR Numeric Variable Assignment

TPMAS Transfer Position of Master (current cycle) VARB Binary Variable Assignment

TPME Transfer Position of Master Encoder VARCLR Clear All Variables

TPROG Transfer Program Contents VARI Integer Variable Assignment

TPSHF Transfer Net Position Shift VARS String Variable Assignment

TPSLV Transfer Commanded Position of Follower VCVT() Variable Type Conversion

TRACE Enable Program Trace Mode [VEL] Commanded Velocity Assignment [operator]
TRACEP Enable Program Flow Mode [VELA] Actual Velocity Assignment [operator]
TRANS Enable Translation Mode VF Final Velocity

TREV Transfer Revision Level [VMAS Velocity of Master [operator]

TRGFN Trigger Functions WAIT() Wait for a Specific Condition

[TRIG] Trigger Interrupt Status [operator] WHILE() WHILE Statement

TRGLOT Trigger Interrupt Lockout Time WRITE Write a Message

TSCAN Transfer Scan Time of PLC Program WRVAR Write a Numeric Variable

TSEG Transfer Number of Free Segment Buffers WRVARB Write a Binary Variable

TSGSET Transfer Servo Gain Set WRVARI Write a Integer Variable

TSKAX Task Axis Association for Multi-Tasking WRVARS Write a String Variable

TSKTRN Task Turns Before Swapping XONOFF Enable XON/XOFF ASCII Handshaking

306 6K Series Command Reference

Appendix B: ASCII Table

HEX CHAR

DEC

CHAR

HEX

DEC

CHAR

HEX

DEC

54
55
56
57
58
59
5A
5B

84
85
86

87

88
89
90
91

5C
5D
5E
5F

92

93
94
95
96

60
61

97

62
63
64
65
66
67
68
69

98
99
100
101
102
103
100
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

6A
6B
6C
6D
6E
6F
70
71

72
73
74
75
76
77
78
79

7A
7B
7C
7D

2A
2B
2C
2D
2E
2F
30
31

42

43

44
45

46

47

48

49

32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40

50
51

52

53
54
55
56

57

58
59
60
61

62
63
64
65
66
67
68
69
70
71

41

42

43

44
45

46

47

48

72
73
74
75
76
77
78
79
80
81

49

4A
4B
4C
4D
4E
4F

50
51

52
53

82

83

NUL
SOH
STX

00
01

02

EXT
EOT
ENQ

03

04
05

ACK

06

BEL

07

BS
HT

08

09

LF
VT

0A
0B
ocC
0D
OE
OF

10
11
12
13
14
15
16
17
18
19
20
21

FF
CR

SO

S1
DLE
XON

10
11
12
13

DC2
XOFF

DC4
NAK
SYN
ETB
CAN

14
15
16
17
18
19

22
23
24
25
26
27
28
29
30
31

EM
SUB

1A
1B

ESC

FS
GS

1C
1D
1E
1F
20
21

RSt
us
SPACE

32

33
34
35
36

22
23
24
25
26
27
28
29

%

37

38
39
40

41

307

Appendix B: ASCII Table

HEX CHAR

DEC

CHAR

HEX

DEC

CHAR

HEX

DEC

L k=4 " HEImmll caL EWbOLOIrgoOCw OO cm +H AV i— — n o > O N e

SN O ~0 O <00 QOWULodNMSOLONMOBDOCOD O AWML OANMSLONMNMOO<CMNM OO W LW
oo o000 W W W W oW oW owowow oW wowowowow e W Wl W
N M DO MN~NOW OO d NMTELWW OMNOOMOO AdNMSTL ONOOO AdANMSTLL ONNWOWOOOANMS W
A d d dd d 94 AN N NN NN NNNNOONODOOHOOONOHOOO ST IITITITST T TSI T OO O O W
N NN NN N N NN N NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNA
N-—yvyA2amDmmm -7 T T F T =T4d T~ - 4F 1+ 1+ L JL 9w __%47#?1\&
ONQO WL O d AN M < 1 O~ 00 <0 0OANAW W oddN M I wWmw © ~Noo<<m OO0 WWWodoNm
A< O O MM 0O 0O 0NN oomnmommom@m OO0 OO O O OOLOLOLOOLOLOLOLOLbLOOAOA
NOMO SO © ~ 000 O d ANMSTLW O~ 0000 d AN MST D O 0 OO0 dNM ST LW OO O -
NNMNNMNNM SN NMNDNMMN O O QW O O 0O 00O O OO O O O O OO0 000 OO0 0000 dd
A A dd d A A d A A A -d d d A -dddd d d-dd 4 94 d d 4NN AN NN
L -

~_._DLC,"ueAaaaoa WV O - L LW BHPO—0c 0D RAHRE-—C -0 S CZs o v I
WL odammgsmoN~Noo<nOOAOWLLOANMSISOLONODOCNDOAWLWLOANMSTSWL ONOO<CM
I~ T~ 0 00 00 00 00 0O 0 0 NV NV KB OV MMWOMN®NVDODADOOOODODOODIDOODOODODIDD DD ILAIILCILCLCILCILIILIILCILIICLT
OMNNOWOO ANMITLL OMNOVOODO AdANMITLL ONNOVWOO AdANMSITLL ONOVOODOANMSSTL ONNOBDOO O A
NN ANNOMOOHOOHOONHOONHOOHONOHNHITITAITIAITITTTITTITOLOLHOODOODOOONDLN O O© O O O© O O OO ONK~ N~
A ddddddd A dAdAdd A d A

6K Series Command Reference

308

Appendix C: 6K vs. 6000 Programming Differences

The 6K Series product family is a “next generation” version of the existing 6000 Series product family.
Because of changes in hardware and enhancements to firmware features, the command language (now
referred to as the “6K command language”) is slightly different.

Features That Work Differently

1/0 Handling

Programmable and analog I/O configuration is
different. Referencing requires brick identifier
() — a “brick” is onboard I/O or an extended
1/0O brick that has any combination of 8 SIM
modules for digital and analog I/O. 1/O bit
patterns no longer conform to old syntax.
Onboard /O are considered 1/O brick zero (0).
New status command (TIO) displays the
controller’s I/O configuration. The “@" prefix
makes a command apply to all I/O bricks (e.g.,
@TIN reports status of all inputs on all /10
bricks).

Position capture only captures the dedicated axis
(not all axes anymore); ANI position can no

longer be captured. When trigger nA or nB is
activated, the 6K performs a “hardware capture”
(encoder/commanded position capture accuracy is
+ 1 count) of the dedicated “n” axis: Servos
capture the encoder and commanded; steppers
capture the commanded position by default, or the
encoder position if encoder capture is enabled
(ENCCNT1). If the axis is a slave in a Following
application, the position of the associated master
is also captured (interpolated, accuracy ius0
multiplied by the velocity at the time of the
capture). The Master Trigger (“TRIG-M") does a
hardware capture of the “Master Encoder and all
axes (encoder on servo axes, commanded (if
ENCCNTO) or encoder (if ENCCNT1) on stepper
axes). TSS/SS bits 25-28 no longer indicate .
position captures; instead, this status information

is now reported with TTRIG/TRIG.

OUT, OUTALL, and POUTnN no longer reference
only the programmable outputs that have the
default function assignment (OUTFNCI-A);
instead, OUT, OUTALL, and POUTn now
reference all programmable outputs by their
absolute reference as onboard outputs or outputs
on a serial I/O brick. An attempt to change an
output that is not an OUTFNCiI-A output will

elicit an error message (message is TBD), and the
command will be ignored, but command
processing will keep going. No error bit is set.

Joystick control method uses digital inputs
(external serial 1/0, or onboard limits or triggers)
and INFNC or LIMFNC definitions (M =
Release, N = Axis select, and O = Velocity
select). JOYAXL, JOYAXH, JOYCDB,

JOYCTR, JOYEDB, and JOYZ syntax is changed to
accommodate (e.g., JOYAXH3-2 assigns analog
input #2 on brick #3 to control axis 1). Range for the
analog channels is -10 to +10VDC (on existing
products, it's 0-2.5VDC). TINOF (bits 1-5) no longer
reports joystick input status—instead, refer to the
respective TIN or TLIM bits for the inputs configured
as joystick inputs (M, N, and O function
assignments). Because the analog input voltage range
is increased to +/- 10V with 12-bit resolution and
because of the requirement to use external 1/O, the
syntax, ranges and defaults for joystick setup
commands are changed (JOYCDB, JOYCTR,
JOYEDB).

INPLC, OUTPLC, INSTW, & OUTTW now require
the I/O brick prefix (); otherwise, these
commands are applied only to the on-board inputs or
outputs. All thumbwheel inputs must be on the same
brick.

INDUST syntax is altered. To use the system status
(selection "I"), you should prefix the INDUST
command with the task # for the system status you
want (otherwise the default is task 1) — e.g.,
3%INDUST16-2I assigns user status bit 16 to the 2nd
bit of system status for task 3. To use the IN input
status (selection "J"), you must prefix the INDUST
command with the 1/O brick # (otherwise, the default
is on-board triggers) — e.g., 2INDUST14-4J assigns
user status bit 14 to the status of I/O point 4 on 1/O
brick 2 (2IN.4).

Debounce: INDEB is now brick-specific (all triggers
constitute brick 0) — i.e., the INDEB value applies to
all inputs on the specified brick. Therefore the syntax
is changed to <!>INDEB<i> (drop the first
integer field, which was used for the input number).
INDEB now works the same for all general-purpose
and trigger inputs (using the functionality the was
previously applicable only to the general-purpose
inputs). A new command, TRGLOT, sets the lock-out
time for only the triggers defined as Position Capture
inputs (INFNCi-H) — TRGLOT overrides the

INDEB setting for the affected trigger inputs. INDEB
also applies to limit inputs that are assigned standard
input functions (e.g., Stop input) with the LIMFNC
command. If an input is assigned a limit input
function (R, S, or T), the input is not debounced
(INDEB has no effect).

Limit functions are added to INFNC so that external
inputs can be used as limit inputs: R = positive limit,

Appendix C: 6K vs. 6000 309

S = negative limit, T = home limit. If an input is
assigned a limit input function, it is no longer
debounced (INDEB has no affect on it), and LH
applies to the input, according to the axis and
limit function assignment. It is still affected by
INEN.

¢ The new LIMEN command adds INEN
functionality for physical limit inputs (on the
“LIMITS” connector), regardless of the inputs’
assigned LIMFNC function. LH is still used to
enable checking the state of the EOT limits (LH1,
LH2 or LH3 is still required to detect errors).

¢ Limit inputs are programmable with the LIMFNC

Steppers no longer stop instantaneously on a Kill,
drive fault, limit, etc. — steppers now stop at
LHAD/LHADA.

Stepper axes now support s-curve profiles.

Commanded position (AKA "motor" position) for
steppers is now reported with the PC, TPC, & TPCC
commands. The PM, TPM, PCM, and TPCM
commands can still be in the product but they will not
be documented.

FOLK is now applicable to steppers.

Output on Position works for steppers, now.

command. The default power-up state is such that Encoders

each limit input is assigned to the correct
LIMFNC function (e.g., the positive travel EOT
limit for axis one is assigned LIMFNC1-1R).
When an external input on and I/O brick is
assigned a limit function, the user should reassign
the hardware limit input as a general-purpose
input (LIMFNCI-A) or as a different non-limit
LIMFNC function. When left in the default
function assignment (R, S, or T), the limits are
not debounced; but if assigned other LIMFNC
functions (including LIMFNCI-A), they are
debounced with the INDEB setting for the on-
board inputs.

¢ The functions of LHLVL and HOMLVL have
been consolidated into LIMLVL (same bit
assignments as LIM & LIMEN).

¢ INFEN and OUTFEN have been removed. Use
the new DRFEN command to enable or disable
checking the drive fault input.

« The digital outputs on the serial I/O bricks will be
sinking or sourcing, depending on the jumper
setting (on the 1/O brick). The controller will
auto-detect the jumper setting on power up and
set the OUTLVL accordingly.

¢ TRGFN syntax changes: It now requires an axis
identifier prefix, eliminating the succession of 8-
bit patterns for each axis. Only A, B and M are
allowed for the trigger identifier. When web
registration (Following enhancements) is
released, an additional function will be added to
the TRGFN syntax.

« Analog input voltage range can be set with
ANIRNG. Default is -10V to +10V. Other
options are: 0 to +5V, -5 to +5V, and 0 to +10V.

Stepper Axis Behavior

* No Encoder position feedback (closed loop)
features for steppers. MANY references to
operation being different based on ENC. These
features are no longer available to steppers: ENC
Mode, Position Maint. features, Target Zone
mode, and TPER & PER.

e Can't capture encoder position unless ENCCNT1
is used (and then commanded position can't be
captured).

310 6K Series Command Reference

EFAIL added to detect encoder failures. Error
reported with TASX bit 5 and error bit 17. Works

only on differential encoders. By default, the 6K is
compatible with differential encoders, but if you
jumper pins 8 & 9 on the encoder connector (this
feature requires a PCB modification) you can connect
a single-ended encoder.

New commands for addressing only the “Master
Encoder”, to check position (TPME, PME), captured
position (TPCME, PCME), set absolute position
(PMESET, PMECLR), change polarity (MEPOL),
change to step and direction input (MESND).

“FOLSND” is changed to “ENCSND” to avoid
confusion about the functionality (does not depend on
Following). FOLSND is still available as a hidden
command for users of existing 6000 products.

No counter commands (CNTE, CNT, CNTINT,
CNTR). Instead, you must use ENCSND.

New Error Messages

“ALTERNATIVE TASK NOT ALLOWED:
Attempted to execute a LOCK command in another
task.

“AXIS NOT PART OF TASK ": Atask is

attempting to execute a contouring path whose
participating axis or axes (PAXES) are not associated
with the task (TSKAX).

“COMMAND/DRIVE MISMATCHThe command (or
> one field in the command) is not appropriate to the
AXSDEF configuration (e.g., attempting to execute a
servo tuning command on a stepper axis).

“COMMAND NOT ALLOWED IN PROGRAM
Attempted to place a non-allowed command (e.g.,
scaling command) in a program.

“INCORRECT BRICK NUMBER Attempted to
execute a command that addresses an I/O brick that is
not connected to your 6K controller.

“INVALID TASK IDENTIFIER ”: Attempting to
launch a PEXE or EXE command into the supervisor
task (task 0).

“INPUT NOT DEFINED AS JOYSTICK

INPUT”: Attempting to execute JOYCDB, JOYCTR,
JOYEDB, or JOYZ before executing JOYAXH or
JOYAXL to assign the analog input to an axis.

Communications

¢ COM1 is the connector labeled “RS-232" or
“ETHERNET"”, and COM2 is the connector
labeled “RS-232/485".

¢ LOCK allows users to tie up the COM ports for a
specific task (affects port handling — [,],
DRPCHK, PORT)

e RS-422in 6K only

¢ Baud rate adjusted with BAUD command (new)
— default is 9600.

« Fast status (FASTAT) is removed. Status
information is fixed and accessed through the
Communications Server.

« Interrupts are now “alarms” and are available
only through use of the Communications Server
and ActiveX control (via Ethernet only)

¢ RP240 canned menus are different (run only);
DVARI & DVARB are new; DSTP to
enable/disable RP240 Stop button.

Miscellaneous

¢ Scaling changes: Scaling commands are now

automatically stored in battery-backed RAM, and
they are no longer allowed in a program (must be

outside — this is handled by Motion Planner).

Separate contouring and linear interpolation path

scaling parameter®$CLA PSCLD, PSCLV) are
no longer required; instead, use the SCLD value

to scale all path motion (accel/decel, velocity, and

distance).

« Command syntax & reporting formats have been
modified to accommodate 8 axes (e.g., added
fields per axis).

« Servo updates are fixed (this obsoletes the SSFR

& INDAX commands); Only one system update
now (2 ms)

< Status bit information (axis, system, error, user,
Following, TSTAT, etc.) — deletions, additions,
alterations:

ASX: bit 5 for encoder fail,
bit 6 for Z channel state (1 = active,
0 = inactive)

ER: bit 16 for command error (Cleared with
TCMDER),
bit 17 for encoder fail (if EFAIL1.
Cleared with EFAILO)

< Error conditions/handling — Each task has its
own error status register and error program.

¢ SYNTAX: Syntax change for REG: axis specific,
only A and B are allowed.

« SYNTAX: Bit select syntax (syntax that required
"-" before now allows you to use "=" instead, but
not vice versa)

¢ SYNTAX: New ability to address a command to a

specific address (and group of addresses of n,
n+1, n+2, etc.)

¢ Timer enhancement: TIMST syntax has an additional
optional field (<r>) — new syntax is TIMST,<r>.
If TIMSTO, then <r> represents an absolute time; if
TIMST1, then <r> represents a task number (timer
will resume with the value of the timer for the
specified task). Timer resolution is fixed at 2 ms.

« Program interrupts (ON conditions) — Each task has
its own ON conditions and ONP program.

« Memory allocation for all 6K products most closely
resembles the allocation for existing AT6000
products.

« 6K does not support COMEXK and COMEXP
modes.

¢ Following enhancements— Geared Advance
(FGADV) and virtual master and sine wave
(FVMACC, FVMFRQ, SINAMP, SINANG, SINGQ

¢ Contouring enhancements — axes may now have
different DRES and PULSE (steppers) and feedback
resolutions (servo). Mechanical resolutions may also
be different.

New Commands/Features for the 6K

Commands

L T Task Identifier

ANIEN Analog Input Enable

ANIFB Assign Analog Inputs as Axis Feedback

ANIMAS .. Assign Analog Inputs to Axes

ANIRNG .. Analog Input Voltage Range

AXSDEF . Axis Definition

BAUD....... Baud Rate

[DKEY] .. Value of RP240 Key

DRFEN Drive Fault Input Enable

DSTP....... Enable/Disable RP240 Stop Key

DVARB ... Display Binary Variable on RP240

DVARI Display Integer Variable on RP240

EFAIL Encoder Failure Detect

ENCCNT . Encoder Count Reference Enable

ENCSND.. Encoder Step & Direction Mode

EXE Execute Program from a Compiled PLCP
Program

FGADV ... Following Geared Advance

FVMACC . Virtual Master Count Frequency Acceleration

FVMFRQ . Virtual Master Count Frequency

LIMEN...... Enable Limit Inputs Defined as Non-Limit Inputs

LIMFNC .. Limit Input Function

LIMLVL Limit Input Active Level

LOCK Lock Resource to Task

MEPOL Master Encoder Polarity

MESND.... Master Encoder Step & Direction Mode

NTADDR . IP Address for Ethernet Communication

NTMASK.. Network Mask for Ethernet Communication

[PCMS] . Captured Master Cycle Position

PESET..... Establish Encoder Absolute Position Reference

PEXE Execute Compiled Prog. from Compiled PLCP
Prog.

PLCP Compiled PLC Program

[PCME] .. Captured Master Encoder Position

[PME]..... Position of Master Encoder

PMECLR.. Clear Master Encoder Absolute Position
Reference

PMESET .. Establish Master Encoder Absolute Position
Reference

Appendix C: 6K vs. 6000 311

SCANP ...
SINAMP ..

SINANG ..
SINGO ...
[SWAP]
[TASK] ..
TIO ...

TNTMAC
TPCME

TPCMS ...

WRVARI

Features

* Multi-tasking (impact: task-specific commands &
report-backs, and syntax)

¢ PLC Scan mode

« Following enhancements: Geared Advance and
Virtual Master

« Integer variables (VARI)
« Master encoder handling
* TRACEP (trace mode enhancement)

« Compiled conditionals (not first release)

¢ Baud

* RP240 menus, DVARI, DVARB, DSTP

« Ethernet communication and “alarm” event
handling

¢ Additional syntax symbols (% for addressing
specific tasks, for addressing specific /O
bricks)

312

. Task Swap Assignment

. Transfer Ethernet Address

. Program Flow Mode Enable
. Trigger Lockout Time
... Trigger Capture Status

... Task Axis

.. Task Turns Before Swapping
... Transfer Task Swap

... Transfer Task Number

. Write an Integer Variable

Scan Compiled PLCP Program

Virtual Master Internal Sine Wave
Amplitude

Virtual Master Internal Sine Wave Angle
Virtual Master - Initiate Internal Sine Wave

Task Number Assignment
Transfer Current Expansion /O
Configuration

Transfer Position of Captured Master
Encoder

Transfer Captured Master Cycle Position
Transfer Position of Master Encoder

Scan Time of Last PLCP Program

Transfer Trigger Capture Status
Integer Variable Assignment

rate changed with command (BAUD) only

6K Series Command Reference

6000 Commands not in the
6K Command Language

ANI Option
ANIPOL
ANV
ANVO
ANVOEN
CA
PCA
TCA
TPCA

Counter
CNT
CNTE
CNTINT
CNTR
TCNT

Command Processing

Product Specific: ZETA610n

DACTDP
DAREN
DAUTOS
DELVIS
DMTIND
DMTSTT
DWAVEF

Product Specific: APEX615n

DRESET

Product Specific: 6270

COMEXK
COMEXP

Encoder
EMOVDB
ENC
EPM
EPMDB
EPMG
EPMV

Feedrate
FR
FRA
FRH
FRL
FRPER

Servo (misc.)
INDAX

SSFR
SDTAMP
SDTFR

Interrupt
INTCLR

TINT

Data Streaming Mode
SD
STD
STREAM

Scalin

DACMIN
LDT
LDTGRD
LDTPOL
LDTRES
LDTUPD
PCL
SGAFN
SGIN
SGPN
SGVFN
SGVN
SOFFSN
SSWD
SSWG
TLDT
TPCL

Miscellaneous

OUTANA
SSV
TANV
TEST
FASTAT

contouring and linear interpolation onl

PSCLA (use SCLA instead)
PSCLD (use SCLD instead)
PSCLV (use SCLV instead)

Operator Symbols

- 29
', 24
1,24
1,22
", 25
#, 24
TT(pi), 198
$, 23
&, 30
()29
*, 30

. (bit select operator), 25
/, 30
22
@, 22
\, 26
A, 32
|, 31
~(), 32
+, 29
<, 27
<<, 33
<=, 28
<>, 28
=, 26
>, 27
>=, 27
>>, 33

A

absolute position
absolute path (PAB), 184
absolute positioning mode
(MAL), 163
effect on distance, 55
establishing, 197, 209
effect on position report, 90,
189, 190, 191, 192, 193,
196, 203, 256, 266, 267,
268, 269, 270, 271, 272
master encoder
clear, 203
establishing, 203
zeroed after homing, 116
acceleration, 35
assignment of, 36
change on-the-fly, 51, 164
feedforward gain, 233
jerk calculations, 15
maximum, follower axis, 92
path, 183
scaling, 17
scaling factor (SCLA), 223, 227
s-curve profiling, 13, 36
homing, 117
jogging, 138
joystick, 142
paths, 183
access, 130, 156
actual feedbackdevice position. See
position
addition (+), 29

Index

address
Ethernet, 265
IP, 170
address, auto-addressing units in a
chain, 39
advance, geared (Following), 91
alarm event
enable checking (INTHW), 135
force a condition (INTSW), 136
trigger with an input, 129, 155
trigger with timer value, 259
analog input
ANl option. See ANI
joystick, 144, 145, 146, 147
voltage range, 145
voltage range selection, 42
analog output offset (servo), 241
AND (logical operator), 40
ANI
as Following master (ANIMAS),
42
check input voltage, 248
enable (ANIEN), 41
feedback (ANIFB), 41
override (ANIEN), 41
position
assignment/comparison, 90, 185
status, 248, 256, 266
selected with SFB, 231, 256
voltage
assignment/comparison, 40
status, 40, 248, 262
voltage range section (ANIRNG),
42
application examples
continuous phase shift, 104
Following, 95
GOWHEN, 112
preset phase shift, 105
scaling setup, 19
applications help (HELP), 115
arc segment, 186, 187, 188
arc tangent, 46, 214
ASCII character designator (\), 26
ASCII Table, 307
assignment of axes to tasks, 279
assignment of master and follower,
97
axis assigned to task (TSKAX), 279
axis moving status, 43, 167, 249
axis scaling, 16
axis status, 43, 248
axis status, extended, 45, 250, 251,
252
axis type definition (AXSDEF), 46
axis, contouring, 189

B

backup to home (HOMBAC), 120,
121

baud rate, establish, 47

BCD program select input, 127, 133,
154

begin and end string ("), 25

begin comments (;), 22
begin executing a program (RUN),
222
begin program definition (DEF), 62
beginning of transmission characters
(BOT), 47
binary value identifier (b), 4
binary variable (VARB), 293
clearing, 293
display of bits, 33
display on RP240, 73
writing, 301
bit select operator (.), 4, 25
bitwise AND (&), 31
bitwise exclusive OR (%), 32
bitwise NOT (~), 33
bitwise OR (|), 31
Boolean And (&), 30
Boolean Exclusive Or (%), 32
Boolean Inclusive Or (]), 31
Boolean Not (~), 32
branching
ELSE, 76
error program, 86
GOSUB, 110
GOTO, 111
IF, 122
JUMP, 147
NIF, 168
NWHILE, 170
REPEAT, 221
UNTIL, 289
WHILE, 299
BREAK, 48, 110
break point (BP), 47
buffered commands
looping (begin - L), 150
looping (end - LN), 158
looping, compiled, 201

C

call a subroutine (GOSUB), 110
carriage return
command delimiter, 4
transmission character, 79
case sensitivity, 4
center position specifications, 187,
188, 207
characters
command delimiters, 4
comment delimiter, 4, 22
field separators, 4
limit per line, 4
neutral (spaces), 4
circular interpolation. See
contouring
clear display (DCLEAR), 62
clear error condition, 85
clear variables (VARCLR), 293
COM port
enable/disable (E), 75
function, setup, 71
lock to a task, 158
selection (PORT), 204

Index 313

commanded acceleration,
feedforward gain, 233
commanded direction polarity, 50
commanded position, 196, 271
capture, 128, 190, 267
comparison or assignment, 189
display, 266
follower
assignment/comparison, 210
transfer, 273
commands
buffered, 22
looping, 158
looping, compiled, 201
command buffer execution
after end-of-travel limit
(COMEXL), 52
after pause/continue input
(COMEXR), 52
after stop (COMEXS), 53
con