
PCOMP

TIN

A

INFNC
OUTFNC

RESET

READ
DRES

FOLEN

FOLMAS

STRGTETSTAT

GOWHEN
CMDDIR

ENC

ERES

GO

KS

C

PS

LS

LIMFNC

TPETRGFN

DEF

DEL
ERASE

END

STARTP

ERROR

VAR VARB

VARS

SFB

HOM

JOY JOG

TIO

TASF

TSSF

TINOF

DATSIZTFSF

TREV

TOUT

SOFFS

TDIR

MA
MC

DRFEN

GOBUF

PRUN

IF

WHENLH ELSE

WHILE

ONIN

OUT
HELP

GOTO

WAIT

V

TSKAX

D

Effective: November 5, 1998

p/n 88-017136-01 A

6K Series
Command Reference

Automation

North America and Asia:
Compumotor Division of Parker Hannifin
5500 Business Park Drive
Rohnert Park, CA 94928
Telephone: (800) 358-9070 or (707) 584-7558
Fax: (707) 584-3793
FaxBack: (800) 936-6939 or (707) 586-8586
e-mail: tech_help@cmotor.com
Internet: http://www.compumotor.com

Europe (non-German speaking):
Parker Digiplan
21 Balena Close
Poole, Dorset
England BH17 7DX
Telephone: +44 (0)1202 69 9000
Fax: +44 (0)1202 69 5750

Germany, Austria, Switzerland:
HAUSER Elektronik GmbH
Postfach: 77607-1720
Robert-Bosch-Str. 22
D-77656 Offenburg
Telephone: +49 (0)781 509-0
Fax: +49 (0)781 509-176

Technical Assistance Contact your local automation technology center (ATC) or distributor, or ...

Automation E-mail: 6Kuser@cmotor.com

Product Feedback Welcome

6K Series products and the information in this user guide are the proprietary property of Parker Hannifin Corporation or its licensers, and may
not be copied, disclosed, or used for any purpose not expressly authorized by the owner thereof.

Since Parker Hannifin constantly strives to improve all of its products, we reserve the right to change this user guide and software and
hardware mentioned therein at any time without notice.

In no event will the provider of the equipment be liable for any incidental, consequential, or special damages of any kind or nature
whatsoever, including but not limited to lost profits arising from or in any way connected with the use of the equipment or this user guide.

© 1998, Parker Hannifin Corporation
All Rights Reserved

User Information

WARNING
6K Series products are used to control electrical and mechanical
components of motion control systems. You should test your motion
system for safety under all potential conditions. Failure to do so can result
in damage to equipment and/or serious injury to personnel.

! !

Motion Planner and Servo Tuner are trademarks of Parker Hannifin Corporation.
Microsoft and MS-DOS are registered trademarks, and Windows, Visual Basic, and Visual C++ are trademarks of Microsoft Corporation.

http://www.parkermotion.com

Introduction 1

Introduction

Purpose of this Document

This document is designed as a reference for all the 6K Series commands. To gain a full understanding of
how the 6K Series commands are used together to implement specific features, refer to the 6K Series
Programmer’s Guide (p/n 88-017137-01). For hardware-related information (e.g., electrical wiring
connections, specifications, tuning, etc.), refer to the 6K Series Hardware Installation Guide.

Table of Contents
Pages 1-20 Introduction:

Command Description Format
Syntax -- Letters and Symbols
Syntax -- General Guidelines
Syntax -- Command Value Substitutions
Programmable I/O Bit Patterns
Programming Error Messages
S-Curve Accel/Decel Profiling
Units of Measure and Scaling

Pages 21-302 Command Descriptions: Operator symbols are described first, followed by the rest of the
6K Series commands in alphabetical order.

Pages 303-306 Appendix A: 6K Series Command List: Alphabetical list of all 6K Series commands.

Pages 307-308 Appendix B: ASCII Table

Pages 309-312 Appendix C: 6K vs. 6000 Programming Differences

Pages 313-320 Index

2 6K Series Command Reference

Description of Format

1. 2. 3.

INEN Input Enable
4. Type Inputs or Program Debug Tools
5. Syntax <!>INEN<d><d><d>...<d>
6. Units d = 0, 1, E, or X
7. Range 0 = off, 1 = on, E = enable, X = don't care
8. Default E
9. Response INEN: *INENEEEE_EEEE_EEEE_EEEE_EEEE_EEEE_EEEE

10. See Also [IN], INFNC, INLVL, INPLC, INSTW, TIN, TIO

Product Rev
6K 5.0

 Item Number Description

1. Mnemonic Code : This field contains the command's mnemonic code. If the command is
in brackets (e.g., [IN]), it is an operator that must be used within the syntax of another
command (e.g., IN may be used in a conditional expression like IF(IN.3=b1)).

2. Full Name : This field contains the command's full name.

3. Valid Product & Revision : This field lists the 6K Series products and the revision of each
product when this command was incorporated or modified per the description. If the
command does not apply to that particular product, the Rev is specified as “n/a”.

You can use the TREV command to determine which product revision you are using. For
example, if the TREV response is *TREV92-012222-01-5.0 , the product revision is 5.0.

4. Type : This field contains the command's type. Inside the back cover you will find a list of
all 6K Series commands organized by command type.

5. Syntax : The proper syntax for the command is shown here. The specific parameters
associated with the command are also shown. Definitions of the parameters are
described in the Syntax sections below.

6. Units : This field describes what unit of measurement the parameter (b, d, i , r , or t) in
the command syntax represents.

7. Range : This is the range of valid values that you can specify for an argument (or any
other parameter specified).

8. Default : The default setting for the command is shown in this field. A command will
perform its function with the default setting if you do not provide a value.

9. Response : Some commands allow you to check the status of the command. In the
example above, entering the INEN command by itself, you will receive the response
*INENEEEE_EEEE_EEEE_EEEE_EEEE_EEEE_EEEE (response indicates all inputs are
enabled). The example responses provided are based on the default error level, Error
Level 4, established with the ERRLVL4 command.

10. See Also : Commands related or similar to the command described are listed here.

Introduction 3

Syntax -- Letters and Symbols

The command descriptions provided within this manual use alphabetic letters and ASCII symbols within the
Syntax description (see example below) to represent different parameter requirements.

INEN Input Enable
Type Inputs or Program Debug Tools

→ Syntax <!><%>INEN<d><d><d>...<d>
Units d = 0, 1, E, or X
Range 0 = off, 1 = on, E = enable, X = don't care
Default E
Response INEN: *INENEEEE_EEEE_EEEE_EEEE_EEEE_EEEE_EEEE
See Also [IN], INFNC, INLVL, INPLC, INSTW, TIN, TIO

Product Rev
6K 5.0

Letter/Symbol Description

aRepresents an axis specifier, numeric value from 1 to 8.

BRepresents the number of the product's I/O brick. External I/O bricks are represented by numbers 1
through n (to connect external I/O bricks, refer to your product's Installation Guide). On-board I/O are
address at brick location zero (Ø). If the brick identifier is omitted from the command, the controller
assumes the command is supposed to affect the onboard I/O.

b *.........Represents the values 1, 0, X or x ; does not require field separator between values.

c Represents a character (A to Z, or a to z)

dRepresents the values 1, 0, X or x , E or e ; does not require field separator between values. E or e
enables a specific command field. X or x leaves the specific command field unchanged or ignored. In
the ANIEN command, the “d” symbol may also represent a real numeric value.

i Represents a numeric value that cannot contain a decimal point (integer values only). The numeric
range varies by command. Field separator required.

r Represents a numeric value that may contain a decimal point, but is not required to have a decimal
point. The numeric range varies by command. Field separator required.

t Represents a string of alpha numeric characters from 1 to 6 characters in length. The string must
start with a alpha character.

! Represents an immediate command. Changes a buffered command to an immediate command.
Immediate commands are processed immediately, even before previously entered buffered
commands.

% (Multitasking Only) Represents a task identifier. To address the command to a specific task, prefix
the command with “i%”, where “i ” is the task number. For example, the 4%CUT command uses task
#4 to execute the program called “CUT”.

, Represents a field separator. Commands with the symbol r or i in their Syntax description require
field separators. Commands with the symbol b or d in their Syntax description do not require field
separators (but they may be included). See General Guidelines table below.

@Represents a global specifier, where only one field need be entered. Applicable to all commands with
multiple command fields. (e.g., @V1 sets velocity on all axes to 1 rps).

< > Indicates that the item contained within the < > is optional, not required by that command.
NOTE: Do not confuse with <cr> , <sp> , and <lf> , which refer to the ASCII characters
corresponding to a carriage return, space, and line feed, respectively.

[] Indicates that the command between the [] must be used in conjunction with another command,
and cannot be used by itself.

* The ASCII character b can also be used within a command to precede a binary number. When the b is used in this
context, it is not to be replaced with a 0, 1, X, or x . Examples are assignments such as VARB1=b10001, and
comparisons such as IF(3IN=b1001X1) .

Order of Precedence for Command Prefix Characters (from left to right):

1st: Immediate

2nd: Task number

3rd: Apply to all axes or I/O bricks

3rd: Axis number

3rd: I/O brick number

<!><%><@><a>

4 6K Series Command Reference

Syntax -- General Guidelines

Guideline Topic Guideline Examples

Command Delimiters
(<cr> , <lf> , and :)

All commands must be separated by a
delimiter. A carriage return is the most
commonly used. The colon (:)allows you to
place multiple commands on one line of code.

Set acceleration on axis 2 to 10 rev/sec/sec:
A,10,,<cr>
A,10,,<lf>
A,10,,: V,25,, : D,25000,, : @GO<cr>

Neutral Characters
(<sp> and <tab>)

Using neutral characters anywhere within a
command will not affect the command.

Set velocity on axis 1 to 10 rps, axis 2 to 25 rps:
V<sp>10,<sp>25,,<cr>

Add a comment to the command:
V 10, 25,,<tab> ;set accel.<cr>

Case Sensitivity There is no case sensitivity. Use upper or
lower case letters within commands.

Initiate motion on axes 1, 3 and 4:
GO1011
go1011

Comment Delimiter (;) All text between a comment delimiter and a
command delimiter is considered program
comments.

Add a comment to the command:
V10<tab> ;set velocity

Field Separator (,) Commands with the symbol r or i in their
Syntax description require field separators.

Set velocity on axes 1 - 4 to 10 rps, 25 rps, 5
rps and 10 rps, respectively:

V10,25,5,10

Commands with the symbol b or d in their
Syntax description do not require field
separators (but they may be included).

Initiate motion on axes 1, 3 and 4:
GO1011<cr>
GO1,0,1,1

Axes not participating in the command need
not be specified; however, field separators
that are normally required must be specified
(unless the axis prefix is used).

Set velocity on axes 4 and 6 to 5 rps:
V,,,5,,5

Alternative is to use the axis prefix:
4V5,,5

Global Command
Identifier (@)

When you wish to set the command value
equal on all axes, add the @ symbol at the
beginning of the command (enter only the
value for one command field).

Set velocity on all axes to 10 rps:
@V10

The @ symbol is also useful for checking
the status of all axes, or all inputs or
outputs on all I/O bricks.

Check the status of all digital outputs (onboard,
and on external I/O bricks):

@OUT

Bit Select Operator (.) The bit select operator allows you to affect
one or more binary bits without having to
enter all the preceding bits in the command.

Syntax for setup commands:
[command name].[bit #]-[binary value]

Syntax for conditional expressions:
[command name].[bit #]=[binary value]

Enable error-checking bit #9:
ERROR.9-1

Enable error-check bits #9-12:
ERROR.9-1,1,1,1

IF statement based on value of axis status bit
#12 for axis #1:

IF(1AS.12=b1)

Left-to-right Math All mathematical operations assume
left-to-right precedence.

VAR1=5+3*2
Result: Variable 1 is assigned the value of 16
(8*2), not 11 (5+6).

Binary and Hexadecimal
Values

When making assignments with or
comparisons against binary or hexadecimal
values, you must precede the binary value
with the letter “b” or “B”, and the hex value
with “h” or “H”. In the binary syntax, an “x”
simply means the status of that bit is ignored.

Binary: IF(IN=b1x01)

Hexadecimal: IF(IN=h7F)

Multi-tasking Task
Identifier (%)

Use the % command prefix to identify the
command with a specific task.

Launch the “move1” program in Task 1:
1%move1

Check the error status for Task 3:
3%TER

Check the system status for Task 3:
3%TSS

NOTE: The command line is limited to 80 characters (excluding spaces).

Introduction 5

Syntax -- Command Value Substitutions

Many commands can substitute one or more of its command field values with one of these substitution
items (demonstrated in the programming example below):

VAR..............Places current value of the numeric variable in the corresponding field of the command.

VARB...........Uses the value of the binary variable to establish all the fields in the command.

VARIPlaces current value of the integer variable in the corresponding field of the command.

READ........... Information is requested at the time the command is executed.

DREAD.........Reads the RP240's numeric keypad into the corresponding field of the command.

DREADF......Reads the RP240's function keypad into the corresponding field of the command.

TW................Places the current value set on the thumbwheels in the corresponding field of the command.

DAT..............Places the current value of the data program (DATP) in the corresponding field of the command.

Programming Example : (NOTE: The substitution item must be enclosed in parentheses.)

VAR1=15 ; Set variable 1 to 15
A5,(VAR1),4,4 ; Set acceleration to 5,15,4,4 for axes 1-4, respectively
VARB1=b1101XX1 ; Set binary variable 1 to 1101XX1 (bits 5 & 6 not affected)
GO(VARB1) ; Initiate motion on axes 1, 2 & 4 (value of binary

; variable 1 makes it equivalent to the GO1101 command)
OUT(VARB1) ; Turn on outputs 1, 2, 4, and 7
VARS1="Enter Velocity" ; Set string variable 1 to the message "Enter Velocity"
V2,(READ1) ; Set the velocity to 2 on axis 1. Read in the velocity for

; axis 2 , output variable string 1 as the prompting message
; 1. Operator sees "ENTER VELOCITY" displayed on the screen.
; 2. Operator enters velocity prefixed by !' (e.g., !'20).

HOMV2,1,(TW1) ; Set the home velocity to 2 and 1 on axes 1 and 2, respectively.
; Read in the home velocity for axis 3 from thumbwheel set 1

HOMV2,1,(DAT1) ; Set the home velocity to 2 and 1 on axes 1 and 2, respectively.
; Read home velocity for axis 3 from data program 1.

VARI1=2*3 ; Set integer variable 1 to 6 (2 multiplied by 3)
D(VARI2),,(VARI3) ; Set the distance of axis 1 equal to the value of

; integer variable 2, and the distance of axis 3 equal to
; the value of integer variable 3.

Rule of Thumb
Not all of the commands allow command field substitutions. In
general, commands with a binary command field (in the
syntax) will accept the VARB substitution. Commands with a real
or integer command field (<r> or <i> in the syntax) will accept
VAR, VARI, READ, DREAD, DREADF, TW or DAT.

6 6K Series Command Reference

Programmable I/O Bit Patterns

The 6K product has programmable inputs and outputs. The total number of onboard inputs and outputs (trigger
inputs, limit inputs, digital outputs) depends on the product. The total number of expansion inputs and outputs
(analog inputs, digital inputs and digital outputs) depends on your configuration of expansion I/O bricks.

These programmable I/O are represented by binary bit patterns, and it is the bit pattern that you reference when
programming and checking the status of specific inputs and outputs. The bit pattern is referenced 1 to n, from
left to right.

• Onboard I/O. For example, the status command to check all onboard trigger inputs is TIN .
An example response for the 6K8 is: *TIN0100_0001_0000_0011_0 .

• Expansion I/O. For example, the status command to check all digital inputs on I/O brick 2 is 2TIN .
An example response for the 6K8 is: *2TIN0010_0110_1100_0000_XXXX_XXXX_XXXX_XXXX .

Onboard I/O

I/O Location Programming Status Report, Assignment

Limit Inputs “LIMITS/HOME” connectors LIMFNC, LIMEN, LIMLVL TLIM , LIM

Trigger Inputs “TRIGGERS/OUTPUTS” connectors
(pins 9, 11, 13, 15, 17, 19, 21 & 23).
Master Trigger is “MASTER TRIG” on
connector on top of the 6K chassis

INFNC, INLVL , INEN, ONIN,
INPLC, INSTW

TIN , IN

Outputs (digital) “TRIGGERS/OUTPUTS” connectors
(pins 1, 3, 5 & 7).

OUT, OUTFNC, OUTLVL,
OUTEN, OUTALL, OUTPLC,
OUTTW, POUT

TOUT, [OUT]

Limit Inputs (“LIMITS/HOME” connectors)

Input bit pattern for LIM , TLIM , LIMEN, LIMFNC, and LIMLVL :

Bit # Pin # Function *

1 23 Positive end-of-travel limit, axis 1.
2 21 Negative end-of-travel limit, axis 1.
3 19 Home limit, axis 1.
4 17 Positive end-of-travel limit, axis 2.
5 15 Negative end-of-travel limit, axis 2.
6 13 Home limit, axis 2.
7 11 Positive end-of-travel limit, axis 3.
8 9 Negative end-of-travel limit, axis 3.
9 7 Home limit, axis 3.
10 5 Positive end-of-travel limit, axis 4.
11 3 Negative end-of-travel limit, axis 4.
12 1 Home limit, axis 4.

13 23 Positive end-of-travel limit, axis 5.
14 21 Negative end-of-travel limit, axis 5.
15 19 Home limit, axis 5.
16 17 Positive end-of-travel limit, axis 6.
17 15 Negative end-of-travel limit, axis 6.
18 13 Home limit, axis 6.
19 11 Positive end-of-travel limit, axis 7.
20 9 Negative end-of-travel limit, axis 7.
21 7 Home limit, axis 7.
22 5 Positive end-of-travel limit, axis 8.
23 3 Negative end-of-travel limit, axis 8.
24 1 Home limit, axis 8.

 * The functions listed are the factory default functions; other
functions may be assigned with the LIMFNC command.

 Bit 17

 Bit 1 Bit 32

Bit 1

I/O Brick 2

Sample response to TLIM (limit inputs status) command:
*TLIM001_001_001_001_001_001_001_001

Introduction 7

Trigger Inputs (“TRIGGERS/OUTPUTS” connectors)

Outputs (“TRIGGERS/OUTPUTS” connectors)

Input bit pattern for TIN , IN , INFNC,
INLVL , INEN, INPLC, INSTW, and ONIN:

Bit # Pin # Function *

1 23 Trigger input 1 (TRIG-1A).
2 21 Trigger input 2 (TRIG-1B).
3 19 Trigger input 3 (TRIG-2A).
4 17 Trigger input 4 (TRIG-2B).
5 15 Trigger input 5 (TRIG-3A).
6 13 Trigger input 6 (TRIG-3B).
7 11 Trigger input 7 (TRIG-4A).
8 9 Trigger input 8 (TRIG-4B).

9 23 Trigger input 9 (TRIG-5A).
10 21 Trigger input 10 (TRIG-5B).
11 19 Trigger input 11 (TRIG-6A).
12 17 Trigger input 12 (TRIG-6B).
13 15 Trigger input 13 (TRIG-7A).
14 13 Trigger input 14 (TRIG-7B).
15 11 Trigger input 15 (TRIG-8A).
16 9 Trigger input 16 (TRIG-8B).
17 ---- Trigger input 17 (TRIG-M).

 * If the input is assigned the “trigger
interrupt” function with the INFNCi-H
command, it will capture the position of
the dedicated “n” axis identified in the
input’s name (TRIG-nA and TRIG-nB).
TRIG-M captures the position of the
master encoder, as well as all axes.

Output bit pattern for TOUT, [OUT] , OUT, OUTFNC,
OUTLVL, OUTEN, OUTALL, OUTPLC, OUTTW, POUT:

Bit # Pin # Function

1 7 Output 1.
2 5 Output 2.
3 3 Output 3.
4 1 Output 4.
5 7 Output 5.
6 5 Output 6.
7 3 Output 7.
8 1 Output 8.

“MASTER TRIG”

Sample response to TIN (trigger inputs status) command:
 *TIN0000_0010_1100_0000_0

Sample response to TOUT
(onboard outputs status) command:
 *TOUT0000_0000

8 6K Series Command Reference

Expansion I/O Bricks

The 6K product allows you to expand your system I/O by connecting up to 8 I/O bricks (see Installation
Guide for connections). Expansion I/O bricks may be ordered separately (referred to as the “EVM32”). Each
I/O brick can hold from 1 to 4 of these I/O SIM modules in any combination:

SIM Type Programming Status Report, Assignment

Digital Inputs SIM (8 inputs) INFNC, INLVL , INEN, ONIN, INPLC, INSTW TIN, IN

Digital Outputs SIM (8 outputs) OUT, OUTFNC, OUTLVL, OUTEN, OUTALL,
OUTPLC, OUTTW, POUT

TOUT, [OUT]

Analog Inputs SIM (8 inputs) • Enable/Disable: ANIEN.
• Joystick setup: JOYAXH, JOYAXL, JOYCDB,

JOYCTR, JOYEDB, JOYZ.
• Servo feedback: ANIFB, SFB
• Following master source: ANIMAS, FOLMAS

• Voltage: TANI , ANI
• Servo position: TPANI, PANI,

FB, TFB

Each I/O brick has a unique “brick address”, denoted with the “” symbol in the command syntax. The
I/O bricks are connected in series to the “EXPANSION I/O” connector on the 6K. The 1st I/O brick has
address #1, the next brick has address #2, and so on. (NOTE: If you leave out the brick address in the
command, the 6K product will assume you are addressing the command to the onboard I/O.) Each I/O brick
has 32 I/O addresses, referenced as absolute I/O point locations:

• SIM slot 1 = I/O points 1-8
• SIM slot 2 = I/O points 9-16
• SIM slot 3 = I/O points 17-24
• SIM slot 4 = I/O points 25-32

Example:

Slot #1 (I/O points 1-8)

Slot #2 (I/O points 9-16)

Slot #3 (I/O points 17-24)

Slot #4 (I/O points 25-32)

Slot #1 (I/O points 1-8)

Digital Inputs SIM

I/O Brick #16K
Controller

Slot #2 (I/O points 9-16)

Digital Inputs SIM

Slot #3 (I/O points 17-24)

Digital Inputs SIM

Slot #4 (I/O points 25-32)

Analog Inputs SIM

Digital Outputs SIM

I/O Brick #2

Digital Inputs SIM

No SIMM installed

Digital Outputs SIM

Sample response to 1TIN (digital inputs status) command:
*1TIN0000_0010_1100_0000_0100_0001_XXXX_XXXX

The TIO command identifies the connected I/O bricks (and installed SIMs), including the status of each I/O point:

*BRICK 1: SIM Type Status Function
 1-8: DIGITAL INPUTS 0000_0000 AAAA_AAAA
 9-16: DIGITAL INPUTS 0000_0000 AAAA_AAAA
 17-24: DIGITAL INPUTS 0000_0000 AAAA_AAAA
 25-32: ANALOG INPUTS 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000

*BRICK 2: SIM Type Status Function
 1-8: DIGITAL OUTPUTS 0000_0000 AAAA_AAAA -- SINKING
 9-16: DIGITAL INPUTS 0000_0000 AAAA_AAAA
 17-24: NO SIM PRESENT
 25-32: DIGITAL OUTPUTS 0000_0000 AAAA_AAAA -- SOURCING

Sample response to 2TOUT (digital outputs status) command:
*2TOUT0000_0000_XXXX_XXXX_XXXX_XXXX_0000_0000

Introduction 9

Programming Error Messages

Depending on the error level setting (set with the ERRLVL command), when a programming error is created,
the 6K controller will respond with an error message and/or an error prompt. A list of all possible error
messages is provided in a table below. The default error prompt is a question mark (?), but you can change it
with the ERRBAD command if you wish.

At error level 4 (ERRLVL4—the factory default setting) the 6K controller responds with both the error message
and the error prompt. At error level 3 (ERRLVL3), the 6K controller responds with only the error prompt.

Error Response Possible Cause

ACCESS DENIED Program security feature enabled, but the program access input (INFNCi-Q or
LIMFNCi-Q) is not activated.

ALREADY DEFINED FOR THUMBWHEELSAttempting to assign an I/O function to an I/O that is already defined as a
thumbwheel I/O.

ALTERNATIVE TASK NOT ALLOWED Attempting to execute a LOCK command directed to another task.

AXES NOT READY Compiled Profile path compilation error.

COMMAND NOT IMPLEMENTED Command is not applicable to the 6K Series product.

COMMAND NOT ALLOWED IN PROGRAM Command is not allowed inside a program definition (between DEF and END).

COMMAND/DRIVE MISMATCH The command (or ≥ one field in the command) is not appropriate to the
AXSDEF configuration (e.g., attempting to execute a servo tuning command on
a stepper axis)

ERROR: MOTION ENDS IN NON-ZERO
VELOCITY - AXIS N

Compiled Motion: The last GOBUF segment within a PLOOP/PLN loop does not
end at zero velocity, or there is no final GOBUF segment placed outside the loop.

EXCESSIVE PATH RADIUS
DIFFERENCE

Contouring path compilation error.

FOLMAS NOT SPECIFIED No FOLMAS for the axis is currently specified. It will occur if FMCNEW, FSHFC,
or FSHFD commands are executed and no FOLMASØ command was executed,
or FOLMAS0 was executed.

INCORRECT AXIS Axis specified is incorrect.

INCORRECT BRICK NUMBER Attempted to execute a command that addresses an I/O brick that is not
connected to your 6K controller.

INCORRECT DATA Incorrect command syntax.

Following: Velocity (V), acceleration (A) or deceleration (AD) command is zero
(used by FSHFC & FSHFD).

INPUT(S) NOT DEFINED AS
JOYSTICK INPUT

Attempted to execute JOYCDB, JOYCTR, JOYEDB, or JOYZ before executing
JOYAXH or JOYAXL to assign the analog input to an axis.

INSUFFICIENT MEMORY Not enough memory for the user program or compiled profile segments. This
may be remedied by reallocating memory (see MEMORY command description).

INVALID COMMAND Command is invalid because of existing conditions

10 6K Series Command Reference

Programming Error Messages (continued)

Error Response Possible Cause

INVALID CONDITIONS FOR COMMAND System not ready for command (e.g., LN command issued before the L
command).

Following (these conditions can cause an error during Following):

• The FOLMD value is too small to achieve the preset distance and still
remain within the FOLRN/FOLRD ratio.

• A phase shift cannot be performed:

FSHFD.... Error if already shifting or performing other time based move.
FSHFC.... Error if currently executing a FSHFD move, or if currently

executing another FSHFC move in the opposite direction.

• The FOLEN1 command was given while a profile was suspended by a
GOWHEN.

INVALID CONDITIONS FOR
S_CURVE ACCELERATION—FIELD n

Average (AA) acceleration or deceleration command (e.g., AA, ADA, HOMAA,
HOMADA, etc.) with a range that violates the equation ½A ≤ AA ≤ A (A is the
max. accel or decel command—e.g., A, AD, HOMA, HOMAD, etc.)

INVALID DATA Data for a command is out of range.

Following (these conditions can cause an error during Following):

• The parameter supplied with the command is valid.

FFILT Error if: smooth number is not 0-4
FMCLEN.. Error if: master steps > 999999999 or negative
FMCP...... Error if: master steps > 999999999 or < -999999999
FOLMD.... Error if: master steps > 999999999 or negative
FOLRD.... Error if: master steps > 999999999 or negative
FOLRN.... Error if: follower steps > 999999999 or negative
FSHFC.... Error if: number is not 0-3
FSHFD.... Error if: follower steps > 999999999 or < -999999999
GOWHEN.. Error if: position > 999999999 or < -999999999
WAIT...... Error if: position > 999999999 or < -999999999

• Error if a GO command is given in the preset positioning mode (MCØ) and:

FOLRN = zero
FOLMD = zero, or too small

(see Following chapter in the Programmer's Guide)

INVALID FOLMAS SPECIFIED Following: An illegal master was specified in FOLMAS. A follower may never
use its own commanded position or feedback source as its master.

INVALID RATIO Following: Error if the FOLRN:FOLRD ratio after scaling is > 127 when a GO is
executed

INVALID TASK IDENTIFIER Attempting to launch a PEXE or EXE command into the supervisor task (task 0).

LABEL ALREADY DEFINED Defining a program or label with an existing program name or label name

MAXIMUM COMMAND LENGTH EXCEEDED Command exceeds the maximum number of characters

MAXIMUM COUNTS PER SECOND
EXCEEDED

Velocity value is greater than 1,600,000 counts/sec

MOTION IN PROGRESS Attempting to execute a command not allowed during motion (see Restricted
Commands During Motion section in the Programmer's Guide.)

Following: The FOLEN1 command was given while that follower was moving in
a non-Following mode.

Introduction 11

Programming Error Messages (continued)

Error Response Possible Cause

NEST LEVEL TOO DEEP IFs , REPEATs, WHILEs, or GOSUBs nested greater than 16 levels (for each type)

NO MOTION IN PROGRESS Attempting to execute a command that requires motion, but motion is not in
progress

NO PATH SEGMENTS DEFINED Compiled Profile compilation error

NO PROGRAM BEING DEFINED END command issued before a DEF command

NOT ALLOWED IF SFBØ Changes to tuning commands (SGILIM , SGAF, SGI, SGP, SGV, and SGVF) and
SMPER are not allowed if SFBØ is selected

NOT ALLOWED IN PATH Compiled Profile path compilation error

NOT DEFINING A PATH Executing a compiled profile or contouring path command while not in a path

NOT VALID DURING FOLLOWING
MOTION

A GO command was given while moving in the Following mode (FOLEN1) and
while in the preset positioning mode (MCØ).

NOT VALID DURING RAMP A GO command was given while moving in a Following ramp and while in the
continuous positioning mode (MC1). Following status (FS) bit #3 will be set to 1.

A FOLEN command was given during one of these conditions:
• During a shift (FSHFC or FSHFD)
• During a change in ratio (FOLRN/FOLRD)
• During deceleration to a stop

PATH ALREADY MOVING Compiled Profile path compilation error

PATH NOT COMPILED Attempting to execute a individual axis profile or a multiple axis contouring path
that has not been compiled

PATH RADIUS TOO SMALL Contouring path compilation error

PATH RADIUS ZERO Contouring path compilation error

PATH VELOCITY ZERO Contouring path compilation error

STRING ALREADY DEFINED A string (program name or label) with the specified name already exists

STRING IS A COMMAND Defining a program or label that is a command or a variant of a command

UNDEFINED LABEL Command issued to product is not a command or program name

WARNING: POINTER HAS WRAPPED
AROUND TO DATA POINT 1

During the process of writing data (DATTCH) or recalling data (DAT), the pointer
reached the last data element in the program and automatically wrapped
around to the first datum in the program

WARNING: ENABLE INPUT INACTIVE ENABLE input is no longer connected to ground (GND)

WARNING: DEFINED WITH ANOTHER
TW/PLC

Duplicate I/O in multiple thumbwheel definitions

12 6K Series Command Reference

Identifying Bad Commands

To facilitate program debugging, the Transfer Command Error (TCMDER) command allows you to transfer
the first command that the controller detects as an error. This is especially useful if you receive an error
message when running or downloading a program, because it catches and remembers the command that
caused the error.

Using Motion Planner:
If you are typing the command in a live terminal emulator session, the controller will detect the bad
command and respond with an error message, followed by the ERRBAD error prompt (?). If the bad
command was detected on download, the bad command is reported automatically (see example below).

NOTE: If you are not using Motion Planner, you'll have to type in the TCMDER command at the error
prompt to display the bad command.

Once a command error has occurred, the command and its fields are stored and system status bit #11
(reported in the TSSF, TSS and SS commands) is set to 1. The status bit remains set until the TCMDER
command is issued.

Example Error Scenario:

1. In Motion Planner's program editor, create and save a program with a programming error:
DEL badprg ; Delete a program before defining and downloading
DEF badprg ; Begin definition of program called badprg
MA11 ; Select the absolute preset positioning mode
A25,40 ; Set acceleration
AD11,26 ; Set deceleration
V5,8 ; Set velocity
VAR1=0 ; Set variable #1 equal to zero
GO11 ; Initiate move on both axes
IF(VAR1<)16 ; MISTYPED IF STATEMENT - should be typed as "IF(VAR1<16)"
VAR1=VAR1+1 ; If variable #1 is less than 16, increment the counter by 1
NIF ; End IF statement
END ; End programming of program called badprg

2. Using Motion Planner's terminal emulator, download the program to the 6K Series product. Notice that
an error response identifies the bad command as an “INCORRECT DATA” item and displays it:
> *NO ERRORS
*INCORRECT DATA
> *IF(VAR1<)16
>

Introduction 13

S-Curve Acceleration/Deceleration Profiling

6K controllers allow you to perform S-curve move profiles, in addition to the usual trapezoidal profiles.
S-curve profiling provides smoother motion control by reducing the jerk (rate of change) in acceleration and
deceleration portions of the move profile (see drawing below). Because S-curve profiling reduces jerk, it
improves position tracking performance, especially in linear interpolation applications (not contouring).

D
ec

el
A

cc
el

Time

D
ec

el
V

el
oc

ity

Time

Trapezoidal

A
cc

el

Time

V
el

oc
ity

Time

S-Curve

Maximum Jerk Less Jerk

S-Curve Programming Requirements

To program an S-curve profile, you must use the average accel/decel commands provided in the 6K Series
programming language. For every maximum accel/decel command (e.g., A, AD, HOMA, HOMAD, JOGA,
JOGAD, etc.) there is an average command for S-curve profiling (see table below).

Maximum Accel/Decel Commands:
Command Function

Average (“S-Curve”) Accel/Decel Commands:
Command Function

A Acceleration AA Average Acceleration

AD Deceleration ADA Average Deceleration

HOMA Home Acceleration HOMAA Average Home Acceleration

HOMAD Home Deceleration HOMADA Average Home Deceleration

JOGA Jog Acceleration JOGAA Average Jog Acceleration

JOGAD Jog Deceleration JOGADA Average Jog Deceleration

JOYA Joystick Acceleration JOYAA Average Joystick Acceleration

JOYAD Joystick Deceleration JOYADA Average Joystick Deceleration

LHAD Hard Limit Deceleration LHADA Average Hard Limit Deceleration

LSAD Soft Limit Deceleration LSADA Average Soft Limit Deceleration

PA Path Acceleration PAA Average Path Acceleration

PAD Path Deceleration PADA Average Path Deceleration

14 6K Series Command Reference

Determining the S-Curve Characteristics

The command values for average accel/decel (AA, ADA, etc.) and maximum accel/decel (A, AD, etc.) determine
the characteristics of the S-curve. To smooth the accel/decel ramps, you must enter average accel/decel
command values that satisfy the equation ½ A ≤ AA < A, where A represents maximum accel/decel and
AA represents average accel/decel. Given this requirement, the following conditions are possible:

Acceleration Setting Profiling Condition

AA > ½ A, but AA < A S-curve profile with a variable period of constant acceleration. Increasing the AA value above
the pure S-curve level (AA > ½ A), the time required to reach the target velocity and the target
distance is decreased. However, increasing AA also increases jerk.

AA = ½ A Pure S-curve (no period of constant acceleration—smoothest motion).

AA = A Trapezoidal profile (but can be changed to an S-curve by specifying a new AA value less than A).

AA < ½ A; or AA > A When you issue the GO command, the move will not be executed and an error message,
*INVALID CONDITIONS FOR S_CURVE ACCELERATION—FIELD n, will be displayed.

AA = zero S-curve profiling is disabled. Trapezoidal profiling is enabled. AA tracks A. (Track means the
command's value will match the other command's value and will continue to match whatever
the other command's value is set to.)

AA ≠ zero and AA ≠ A S-curve profiling is enabled only for standard moves (e.g., not for contouring, which requires
the PADA and/or PAA commands). All subsequent standard moves for that axis must comply
with this equation: ½ A ≤ AA < A.

AA > ½ A Average accel/decel is raised above the pure S-curve level; this decreases the time required
to reach the target velocity and distance. However, increasing AA also increases jerk. After
increasing AA, you can reduce jerk by increasing A, but be aware that increasing A requires a
greater torque to achieve the commanded velocity at the mid-point of the acceleration profile.

No AA value ever entered Profile will default to trapezoidal. AA tracks A.

If you never change the A or AA deceleration commands, AA deceleration will track AA acceleration.
However, once you change A deceleration, AA deceleration will no longer track changes in AA acceleration.

The calculation for determining S-curve average accel and decel move times is as follows (calculation
method identical for S-curve and trapezoidal moves):

Time = Velocity
A

or Time = 2 Distance

Aavg avg

∗

Scaling affects the AA average acceleration (AA, ADA, etc.) the same as it does for the A maximum
acceleration (A, AD, etc.). See page 16 for details on scaling.

NOTE: Equations for calculating jerk are provided on page 15.

Programming Example (see move profile drawings below)

; In this example, axis 1 executes a pure S-curve and takes 1 second
; to reach a velocity of 5 rps; axis 2 executes a trapezoidal profile
; and takes 0.5 seconds to reach a velocity of 5 rps.
SCALE0 ; Disable scaling
DEF SCURV ; Begin definition of program SCURV
@MA0 ; Select incremental positioning mode
@D40000 ; Set distances to 40,000 positive-

; direction steps
A10,10 ; Set max. accel to 10 rev/sec/sec

; on axes 1 and 2
AA5,10 ; Set avg. accel to 5 rev/sec/sec on

; axis 1, & 10 rev/sec/sec on axis 2
AD10,10 ; Set max. decel to 10 rev/sec/sec

; on axes 1 and 2
ADA5,10 ; Set avg. decel to 5 rev/sec/sec on

; axis 1, & 10 rev/sec/sec on axis 2
V5,5 ; Set velocity to 5 rps on axes 1 & 2
GO11 ; Execute motion on axes 1 and 2
END ; End definition of program

T

Axis 2

0 1 2 3

T

Axis 1

0 1 2 3

V

V

Move profiles

Introduction 15

Calculating Jerk

V2

A
(Programmed Accel)

V
(Programmed Velocity)

V1

t1 t2 t3

Zero Velocity

Zero Acceleration

Ø
(zero)

A B C

Rules of Motion:

Jerk
dt
da=

a
dt
dv=

v
dt
dx= (x = distance)

Assuming the accel profile starts when
the load is at zero velocity and the
ramp to the programmed velocity is
not compromised:

A2 * AA

V (A-AA)
Jerk = JA =

A = programmed acceleration
(A, AD, HOMAD, etc.)

AA = average acceleration
(AA, ADA, HOMAA, etc.)

V = programmed velocity
(V, HOMV, etc.)

A

JA
t1 =

V

AA
-t2 =

A

JA

V

AA
t3 =

NOTE: t3 - t2 = t1

2

JA * t1
2

V1 =
2 * JA

A2

=

V2 = V -
2 * JA

A2

A t1 ≥ t ≥ Ø a (t) = JA * t

2

JA * t
2

v (t) =

6

JA * t
3

d (t) =

B t2 ≥ t > t1 a (t) = A

2JA

A2

v (t) = + A * (t - t1)

6

JA * t1
3

d (t) = + + V 1 * (t - t1)
2

A * (t - t1)2

C t3 ≥ t > t2 a (t) = A - (JA * (t - t2))

v (t) = V -
2

JA * (t3 - t)2

2AA

V2

d (t) = + - V * (t3 - t)
6

JA (t3 - t)3

Starting at a Non-Zero Velocity: If starting the acceleration profile with a non-zero initial velocity, the move
comprises two components: a constant velocity component, and an s-curve component. Typically, the change
of velocity should be used in the S-curve calculations. Thus, in the calculations above, you would substitute
“ (VF - VO)” for “ V” (VF = final velocity, VO = initial velocity). For example, the jerk equation would be:

A2 * AA

(VF - VO) (A-AA)
Jerk = JA =

a (t) = acceleration at time t
v (t) = velocity at time t
d (t) = distance at time t

16 6K Series Command Reference

Units of Measure and Scaling

Units of Measure without Scaling
Scaling is disabled (SCALEØ) as the factory default condition:

• Stepper axes: All distance values entered are in commanded counts (sometimes referred to as motor
steps), and all acceleration, deceleration and velocity values entered are internally multiplied by the
DRES command value.

• Servo axes: Units of Measure (per feedback source)
Motion Attribute Encoder Analog Input
Accel/Decel Revs/sec/sec * volts/sec/sec
Velocity Revs/sec * volts/sec
Distance Counts ** Counts **

* All accel/decel & velocity values are internally multiplied by the ERES command value.
** Distance is measured in the counts received from the feedback device.

Contouring & Linear Interpolated Motion: Path acceleration, velocity, and distance are based on the
resolution (DRES for steppers, ERES for servos) of axis 1. If multi-tasking is used, path motion units are
based on the resolution of the first (lowest number) axis associated with the task (TSKAX).

What is Scaling?
Scaling allows you to program acceleration, deceleration, velocity, and position values in units of measure
that are appropriate for your application. The SCALE command is used to enable or disable scaling
(SCALE1 to enable, SCALEØ to disable). The motion type(s) you are using in your application determines
which scale factor commands you need to configure:

Type of Motion Accel/Decel Scaling Velocity Scaling Distance Scaling

Standard Point-to-Point Motion SCLA SCLV SCLD

Contouring,
Linear Interpolation

SCLD SCLD SCLD

Following SCLA SCLV SCLD for follower distances
SCLMAS for master distances

When Should I Define Scaling Factors?
Scaling calculations are performed when a program is defined or downloaded. Consequently, you must
enable scaling (SCALE1) and define the scaling factors (SCLD, SCLA, SCLV, SCLMAS) prior to defining
(DEF), uploading (TPROG), or running (RUN) the program.

RECOMMENDATION: Place the scaling commands at the beginning of your program file, before the
location of any defined programs. This ensures that the motion parameters in subsequent programs in your
program file are scaled correctly. When you use Motion Planner’s Setup Generator wizard, the scaling
commands are automatically placed in the appropriate location in your program file.

ALTERNATIVE: Scaling factors could be defined via a terminal emulator just before defining or
downloading a program. Because scaling command values are saved in battery-backed RAM (remembered
until you issue a RESET command), all subsequent program definitions and downloads will be scaled
correctly.

NOTES
• Scaling commands are not allowed in a program. If there are scaling commands in a program, the controller

will report an error message (“COMMAND NOT ALLOWED IN PROGRAM“) when the program is downloaded.

• If you intend to upload a program with scaled motion parameters, be sure to use Motion Planner. Motion
Planner automatically uploads the scaling parameters and places them at the beginning of the program file
containing the uploaded program from the controller. This ensures correct scaling when the program file is
later downloaded.

Introduction 17

Servo Axes
Scaling can be used with encoder or analog input feedback sources. When the scaling commands
(SCLA, SCLD, etc.) are executed, they are specific only to the current feedback source selected
with the last SFB command.

If your application requires switching between feedback sources for the same axis, then for each
feedback source, you must select the feedback source with the appropriate SFB command and
issue the scaling factors specific to operating with that feedback source.

For example, if you have two axes and will be switching between encoder and ANI feedback, you
should include code similar to the following in your setup program:

SFB1,1 ; Select encoder feedback (subsequent scaling
; parameters are specific to encoder feedback)

SCLA4000,4000 ; Program accel/decel in revs/sec/sec
SCLV4000,4000 ; Program velocity in revs/sec
SCLD4000,4000 ; Program distances in revs
SFB2,2 ; Select ANI feedback (subsequent scaling

; parameters are specific to ANI feedback)
SCLA205,205 ; Program accel/decel in volts/sec/sec
SCLV205,205 ; Program velocity in volts/sec
SCLD205,205 ; Program distances in volts

Acceleration & Deceleration Scaling (SCLA)
Stepper Axes: If scaling is enabled (SCALE1), all accel/decel values entered are internally multiplied by

the acceleration scaling factor to convert user units/sec/sec to commanded counts/sec/sec.
The scaled values are always in reference in commanded counts, regardless of the existence
of an encoder.

Servo Axes: If scaling is enabled (SCALE1), all accel/decel values entered are internally multiplied by
the acceleration scaling factor to convert user units/sec/sec to encoder or analog input
counts/sec/sec.

All accel/decel commands (e.g., A, AA, AD, HOMA, HOMAD, JOGA, etc.) are multiplied by the SCLA
command value. NOTE: Path accel/decel commands (PA, PAD, etc.) are multiplied by the SCLD value.

As the accel/decel scaling factor (SCLA) changes,
the resolution of the accel and decel values and
the number of positions to the right of the
decimal point also change (see table at right). An
accel/decel value with greater resolution than
allowed will be truncated (e.g., if scaling is set to
SCLA1Ø, the A9.9999 command would be
truncated to A9.9).

SCLA value (counts/unit/unit) Decimal Places

1 - 9 ... 0
10 - 99 1
100 - 999 2
1000 - 9999 3
10000 - 99999............................ 4
100000 - 999999........................ 5

The following equations can help you determine the range of acceleration and deceleration values.

Axis Type Min. Accel or Decel (resolution) Max. Accel or Decel

Stepper 0.001 ∗ DRES

SCLA

999.9999 ∗ DRES

SCLA

Servo
Encoder Feedback:

0.001 ∗ ERES

SCLA

ANI Feedback: *
0.205

SCLA

Encoder Feedback:
999.9999 ∗ ERES

SCLA

ANI Feedback: *
204799.9795

SCLA

* This calculation assumes the analog input range (ANIRNG value) is left in its default setting (range is -10V to +10V).

18 6K Series Command Reference

Velocity Scaling (SCLV)
Stepper Axes: If scaling is enabled (SCALE1), all velocity values entered are internally multiplied by the

velocity scaling factor to convert user units/sec to commanded counts/sec. The scaled values
are always in reference to commanded counts (sometimes referred to as “motor steps”).

Servo Axes: If scaling is enabled (SCALE1), all velocity values entered are internally multiplied by the
velocity scaling factor to convert user units/sec to encoder or analog input counts/sec.

All velocity commands (e.g., V, HOMV, HOMVF, JOGVH, JOGVL, etc.) are multiplied by the SCLV
command value. NOTE: Path velocity (PV) is multiplied by the SCLD value.

As the velocity scaling factor (SCLV) changes, the velocity command's range and its decimal places also
change (see table below). A velocity value with greater resolution than allowed will be truncated. For
example, if scaling is set to SCLV10, the V9.9999 command would be truncated to V9.9 .

SCLV Value
(counts/unit)

Velocity Resolution
(units/sec)

Decimal Places

1 - 9
10 - 99
100 - 999
1000 - 9999
10000 - 99999
100000 - 999999

1
0.1
0.01
0.001
0.0001
0.00001

0
1
2
3
4
5

Use the following equations to determine the maximum velocity range for your product type.

Max. Velocity for Stepper Axes
Max. Velocity for Servo Axes

(determined by feedback source selected for axis #1)

n

SCLV

n = maximum velocity is determined
by the PULSE command setting. Encoder Feedback:

6,500,000

SCLV

ANI Feedback: *
1000 205∗

SCLV

* This calculation assumes the analog input range (ANIRNG value) is left in its default setting (range is -10V to +10V).

Distance Scaling (SCLD and SCLMAS)
Stepper Axes: If scaling is enabled (SCALE1), all distance values entered are internally multiplied by the

distance scaling factor to convert user units to commanded counts (“motor steps”).

Servo Axes: If scaling is enabled (SCALE1), all distance values entered are internally multiplied by the
distance scaling factor to convert user units to encoder or analog input counts.

All distance commands (e.g., D, PSET, REG, SMPER) are multiplied by the SCLD command value. The
only exception is for master distance values (see table below)

Scaling for Following Motion: The SCLD command defines the follower axis distance scale factor, and the
SCLMAS command defines the master’s distance scale factor. The Following-related commands that are affected
by SCLD and SCLMAS are listed in the table below.

Commands Affected by Master Scaling (SCLMAS) Commands Affected by Follower Scaling (SCLD)

FMCLEN: Master Cycle Length
FMCP: Master Cycle Position Offset
FOLMD: Master Distance
FOLRD: Follower-to-Master Ratio (Denominator)
GOWHEN: Conditional GO (left-hand variable is PMAS)

TPMAS & [PMAS]: Position of Master Axis
TVMAS & [VMAS]: Velocity of Master Axis

FOLRN: Follower-to-Master Ratio (Numerator)
FGADV: Geared Advance
FSHFD: Preset Phase Shift

GOWHEN: Conditional GO (left-hand variable ≠ PMAS)

TPSHF & [PSHF]: Net Position Shift of Follower
TPSLV & [PSLV]: Position of Follower Axis

Introduction 19

As the SCLD or SCLMAS scaling factor changes, the distance command’s range and its decimal places also
change (see table below). A distance value with greater resolution than allowed will be truncated. For
example, if scaling is set to SCLD4000, the D105.2776 command would be truncated to D105.277 .

SCLD or SCLMAS Value
(counts/unit)

Distance Resolution
(units)

Distance Range *
(units)

Decimal
Places

1 - 9 1.0 0 - ±999999999 0
10 - 99 0.10 0.0 - ±99999999.9 1
100 - 999 0.010 0.00 - ±9999999.99 2
1000 - 9999 0.0010 0.000 - ±999999.999 3
10000 - 99999 0.00010 0.0000 - ±99999.9999 4
100000 - 999999 0.00001 0.00000 - ±9999.99999 5

NOTE FRACTIONAL STEP TRUNCATION NOTE

If you are operating in the incremental mode (MAØ), or specifying master distance values with
FOLMD, when the distance scaling factor (SCLD or SCLMAS) and the distance value are multiplied,
a fraction of one step may be left over. This fraction is truncated when the distance value is used
in the move algorithm. This truncation error can accumulate over a period of time, when
performing incremental moves continuously in the same direction. To eliminate this truncation
problem, set SCLD or SCLMAS to 1, or a multiple of 10.

Scaling Example — Stepper Axes
Axis #1 and axis #2 control 25,000 step/rev motor/drives attached to 5-pitch leadscrews. The user wants to
program motion parameters in inches; therefore the scale factor calculation is: 25,000 steps/rev x 5
revs/inch = 125,000 steps/inch. For instance, with a scale factor of 125,000, the operator could enter a move
distance value of 2.000 and the controller would send out 250,000 pulses, corresponding to two inches of
travel.
SCALE1 ; Enable scaling
DRES25000,25000 ; Set drive resolution to 25,000 steps/rev on both axes
SCLD125000,125000 ; Allow user to enter distance in inches (both axes)
SCLV125000,125000 ; Allow user to enter velocity in inches/sec (both axes)
SCLA125000,125000 ; Allow entering accel/decel in inches/sec/sec (both axes)

Scaling Example — Servo Axes
Axis #1 controls a 4,000 count/rev servo motor/drive system (using a 1000-line encoder) attached to a 5-
pitch leadscrew. The user wants to position in inches; therefore, the scale factor calculation is 4,000
counts/rev x 5 revs/inch = 20,000 counts/inch. Half way through the motion process, axis #1 must switch to
ANI feedback for the purpose of positioning to a voltage (scale factor is 205 counts/volt).

Axis #2 controls a 4,000 count/rev servo motor/drive system (using a 1000-line encoder) attached to a 10-
pitch leadscrew. The user wants to position in inches (scale factor calculation: 4,000 counts/rev x 10
revs/inch = 40,000 counts/inch).

SFB1,1 ; Select encoder feedback for both axes
ERES4000,4000 ; Set encoder res to 4000 steps/rev (post quadrature)
SCALE1 ; Enable scaling
SCLD20000,40000 ; Allow user to enter distance values in inches
SCLV20000,40000 ; Allow user to enter velocity values in inches/sec
SCLA20000,40000 ; Allow user to enter accel/decel values in inches/sec/sec
SFB2 ; Select ANI feedback for axis #1
SCALE1 ; Enable scaling
SCLD205 ; Allow user to enter distance values in volts
SCLV205 ; Allow user to enter velocity values in volts/sec
SCLA205 ; Allow user to enter accel/decel values in volts/sec/sec
SFB1,1 ; Select encoder feedback for both axes (prepare for motion)

20 6K Series Command Reference

Scaling Example — Following
Typically, the master and follower scale factors are programmed so that master and follower units are the
same, but this is not required. Consider the scenario below as an example.

The master is a 1000-line encoder (4000 counts/rev post-quadrature) mounted to a 50 teeth/rev pulley
attached to a 10 teeth/inch conveyor belt, resulting in 80 counts/tooth (4000 counts/50 teeth = 80
counts/tooth). To program in inches, you would set up the master scaling factor with the SCLMAS800
command (80 counts/tooth ∗ 10 teeth/inch = 800 counts/inch).

The follower axis is a servo motor with position feedback from a 1000-line encoder (4000 counts/rev). The
motor is mounted to a 4-pitch (4 revs/inch) leadscrew. Thus, to program in inches, you would set up the
follower scaling factor with the SCLD16000 command (4000 counts/rev ∗ 4 revs/inch = 16000
counts/inch).

SCALE1 ; Enable scaling
SCLMAS800 ; Master scaling (80 counts/tooth * 10 teeth/inch = 800 counts/inch)
SCLD16000 ; Follower scaling (4000 counts/rev * 4 revs/inch = 16000 counts/inch)

Scaling Example — Contouring & Linear Interpolation
This simple example uses 2 servo axes (axes 1 and 2) for contouring. Both axes use encoder feedback with
a resolution (ERES) of 4000 counts/rev, axis 1 uses a 10-pitch (10 revs per inch) leadscrew and axis 2 uses
a 5-pitch (5 revs per inch) lead screw, and you want to program in inches. For this application you would
use the SCLD40000,20000 command to establish path motion units in inches: distance is inches,
acceleration is inches/sec/sec, and velocity is inches/sec. Note that all path motion attributes are scaled by
the SCLD value.

SCALE1 ; Enable scaling
SCLD40000,20000 ; Set scaling to program in inches:

; Axis 1: 4000 counts/rev * 10 revs/inch = 40000 counts/inch
; Axis 2: 4000 counts/rev * 5 revs/inch = 20000 counts/inch

PV5 ; Set path velocity to 5 inches/sec
PA50 ; Set path acceleration to 50 inches/sec/sec
PAD100 ; Set path deceleration to 100 inches/sec/sec
DEF prog1 ; Begin definition of path named prog1
PAXES1,2 ; Set axes 1 and 2 as the X and Y contouring axes
PAB0 ; Set to incremental coordinates
PLIN1,1 ; Specify X-Y endpoint position to create a 45 degree

; angle line segment
END ; End definition of path prog1
PCOMP prog1 ; Compile path prog1
PRUN prog1 ; Execute path prog1

Command Descriptions 21

% Task Identifier
Type Multi-Tasking
Syntax i%<command>
Units i = task number
Range 1-10
Default 1
Response n/a

See Also LOCK, [SWAP], [TASK], TSKAX, TSKTRN, TSWAP, TTASK

Product Rev

6K 5.0

Use the Task Identifier (%)
prefix to specify that the
associated command will affect
the indicated task number. For
most simple multi-tasking
applications, the % prefix is used
to start a program running in a
specific task. For example, the
drawing on the right illustrates
how the 1%move1 command
starts the program called
“move1” in task 1 (specified
with the 1% prefix).

Program MemoryTask Management

Supervisor

Task 1

6K Controller

1%move1 Assign Task 1 to
execute the

"move1" program

Execute the
"move1" program.

Program: move1
DEF move1

END

Because the % prefix specifies the task number that the
associated command will affect, new tasks can be
started from within other tasks, as shown in the
drawing on the right.

Within a program in a task, it is not necessary to use
the % prefix unless trying to initiate a program or
command in a different task. For example, if the fill
program running in task 3 executes a COMEXC1
command, only task 3 is placed into COMEXC1 mode.
If the fill program running in task 3 also executes a
2%PS command, task 3 executes the command, but the
program being executed in task 2 is paused, not task 3.

DEF main

1%move1

END

Program MemoryTask Management

Supervisor

Task 1

6K Controller

Running "main"

Execute "move1"

Program: main

DEF move1

3%fill

END

Task 3

Execute "fill"

Program: move1

How the Task Supervisor Works: The “Task Supervisor” (also referred to as Task Ø) is the main program
execution environment. It contains the command buffer and parser. Immediate commands and commands
executed from the communications buffer are implicitly directed to affect the supervisor unless explicitly
directed to a task with the % prefix. Only the supervisor executes buffered commands from the
communications buffer. If the supervisor is executing a program, incoming commands will be buffered, not
executed. If the supervisor is not executing a program, it will execute commands from the input command
buffer, even if the other tasks are executing programs. If a command in the command buffer has a task
prefix, it is still executed by the supervisor, but affects the task specified by the prefix.

22 6K Series Command Reference

[!] Immediate Command Identifier
Type Operator (Other)
Syntax !<command>
Units n/a
Range n/a
Default n/a
Response n/a

See Also COMEXC

Product Rev

6K 5.0

The Immediate Command Identifier (!) changes a buffered command into an immediate command. All
immediate commands are processed immediately, even before previously entered buffered commands.

All 6K Series commands are buffered.

The commands that use the ! identifier are identified in the Syntax portion of the command description.

NOTE
A command with the ! prefix cannot be stored in a program.

[@] Global Command Identifier
Type Operator (Other)
Syntax @<command><field1>
Units n/a
Range n/a
Default n/a
Response n/a

See Also INDAX

Product Rev

6K 5.0

The Global Command Identifier (@) is used to set the value of all fields to the value entered only in the first
field. For example, @A1 assigns the value 1 to all axes. All commands with multiple fields are able to use
the Global Command Identifier. If you have any doubts about which commands can use the @ symbol, refer
to the Syntax portion of the command description.

; Begin Comment
Type Operator (Other)
Syntax ;<this is a comment>
Units n/a
Range n/a
Default n/a
Response n/a

See Also None

Product Rev

6K 5.0

The Begin Comment (;) command is used to comment application programs. The comment begins with a
semicolon (;) and is terminated by a command delimiter. The comment is not stored in a program. An
example of using the comment delimiter is as follows:

DEF pick ; Begin definition of program pick<cr>

Command Descriptions 23

$ Label Declaration
Type Operator (Other)
Syntax <!>$<t>
Units t = text name
Range Text name of 6 characters or less
Default n/a
Response n/a

See Also DEF, DEL, END, GOSUB, GOTO, JUMP, RUN, TLABEL

Product Rev

6K 5.0

The Label Declaration ($) command defines the current location as the label specified. A label consists of 6
or fewer alpha-numeric characters and must start with an alpha-character, not a number. Labels can only be
defined within a program or subroutine. The GOTO, GOSUB or JUMP commands can be used to branch to a
label. The RUN command can also be used to start executing statements at a label. The label cannot be
deleted by a DEL command. However, when the program that contains the label is deleted, all labels
contained within the program will be deleted.

NOTE: The maximum number of labels possible is 600.

A label declaration cannot consist of any of the following characters:
! , _, #, $, %, ̂ , &, * , (,) , +, - , { , } , \ , | , " , : , ; , ' , <, >, , , . , ?, / , =

NOTE: A label cannot have the same name as a 6K Series command. For example, $A and $A123 are
illegal labels.

Example
DEF pick ; Begin definition of program called pick
GO1100 ; Initiate motion on axes 1 and 2
IF(VAR1=5) ; If variable 1 = 5 then do commands between IF and ELSE,

; otherwise commands between ELSE and NIF
GOTO pick1 ; Goto label pick1
ELSE ; Else part of IF command
GOTO pick2 ; Goto label pick2
NIF ; End IF command
$pick1 ; Label declaration for pick1
GO0011 ; Initiate motion on axes 3 and 4
BREAK ; Break out of current subroutine or program
$pick2 ; Label declaration for pick2
GO1001 ; Initiate motion on axes 1 and 4
END ; End program definition
RUN pick ; Execute program named pick

24 6K Series Command Reference

[#] Step Through a Program
Type Operator (Other)
Syntax !#<i>
Units i = number of commands to execute from the buffer
Range i = 1 - 200
Default 1
Response n/a

See Also DEF, HELP, STEP, TRACE, TRANS

Product Rev

6K 5.0

This command controls the execution of a program or sequence when the single step mode is enabled
(STEP1). Each time you enter the !#<i> command followed by a delimiter, i commands in the sequence
buffer will be executed. A !# followed by a delimiter will cause one command to be executed.

Single step mode can be advantageous when trying to debug a program.

Example:
DEF tst ; Begin definition of program named tst
@V1 ; Set velocity to 1 unit/sec on all axes
@A10 ; Set acceleration to 10 units/sec/sec on all axes
D1,2,3,4 ; Set distance to 1 unit on axis 1, 2 units on axis 2,

; 3 units on axis 3, and 4 units on axis 4
GO1101 ; Initiate motion on axes 1, 2, and 4
OUT11X1 ; Turn on on-board programmable outputs 1, 2, and 4,

; leave 3 unchanged
END ; End program definition
STEP1 ; Enable single step mode
RUN tst ; Execute program named tst

NOTE: After entering the command RUN no action will occur because single step mode has been enabled.
Single step operation is as follows:

!#2 ; First 2 commands in the program tst are executed,
; commands to be executed are @V1 and @A10.

!# ; Execute 1 command from program; command to execute is D1,2,3,4
!#1 ; Execute 1 command from program; command to be executed is GO1101
!#2 ; Execute 2 commands from program; commands to be executed are

; OUT11X1 and END

' Enter Interactive Data
Type Operator (Other)
Syntax !'<numeric data>
Units Numeric data is command-dependent
Range Numeric data is command-dependent
Default n/a
Response n/a

See Also [READ], VARI, VARS

Product Rev

6K 5.0

To enter data interactively, two operations must occur. First, numeric information must be requested.
Requesting the numeric information is accomplished with the VARx=READy command. The x specifies the
numeric variable to place the data into, and the y specifies the string variable to transmit before the data is
entered. Numeric information can also be requested by placing the READ command in place of a command
argument (e.g., A(READ1),12.52,(READ2),5.62). After the data has been requested, a numeric response
must be provided. The numeric response must be preceded by the interactive data specifier (!') and
followed by a delimiter (<cr> or <lf>).

Command processing will pause while waiting for data.

Example:
VARS1="Enter the count > " ; Set string variable 1 equal to the message
VAR5=READ1 ; Transmit string variable 1, and wait for numeric data in the

; form of !'<data>. Once numeric data has been received, place
; it in numeric variable 5

!'65.12 ; Variable 5 will receive the value 65.12

Command Descriptions 25

[.] Bit Select
Type Operator (Other)
Syntax <command>.i
Units i = bit number
Range Command-dependent
Default None
Response n/a

See Also [AS], [ER], ERROR, [IN], INEN, INLVL, [INO], INTHW, LHLVL,
[LIM], [MOV], ONIN, ONUS, OUT, OUTEN, OUTLVL, POUT, [SS], TAS,
TER, TIN, TINO, TINT, TLIM, TOUT, TSS, TUS, [US]

Product Rev

6K 5.0

The Bit Select (.) operator specifies which bit to select. The primary purpose of this command is to let the
user specify a specific bit (or range), instead of having to type in an entire bit string.

When using the bit operator in a comparison, the bit operator must always come to the left of the
comparison. For example, the command IF(1AS.12=b1) is legal, but IF(b1=1AS.12) is illegal.

Command Shortcut Examples (affect only one binary bit location):

• Activate outputs at I/O location Brick 3, I/O point 9: 3OUT.9=1

• Enable analog input at I/O location Brick 2, I/O point 2:2ANIEN.2=E

• Enable error-checking bit 6 for task 3: 3%ERROR.6=1

Example:
VARB2=ER.12 ; Error status bit 12 assigned to binary variable 2
VARB2 ; Response (if bit 12 is set to 1):

; *VARB2=XXXX_XXXX_XXX1_XXXX_XXXX_XXXX_XXXX_XXXX
2OUT.5=1 ; Activate the output at location Brick 2, I/O point 5

["] Begin and End String
Type Operator (Other)
Syntax "<message>" (see below for possibilities)
Units n/a
Range n/a
Default n/a
Response n/a

See Also DWRITE, VARS, WRITE, WRVARS

Product Rev

6K 5.0

There are three commands that deal with string variables, or messages. The first of these commands is the
VARS command. This command sets a string variable equal to a specific message (e.g., VARS1="Enter

part count"). The message must be placed in quotes for it to be recognized. The same can be said for the
WRITE and DWRITE commands. Their messages must also be placed in quotes (e.g., WRITE"Today is the

first day of the rest of your life").

Syntax possibilities: VARSn="<message>" where n equals the string variable number
WRITE"<message>"
DWRITE"<message>"

There are three ASCII characters that cannot be used within the quotes (: , " , and ;). These characters can
be specified in the string by using the backslash character (\) in combination with the ASCII decimal value
for the character. For example, if you wanted to display the message "WHY ASK WHY" in quotes, you would
use the following syntax: WRITE"\34WHY ASK WHY\34" .

An ASCII table is provided in Appendix B. Common characters and their ASCII equivalent value:

Character Description ASCII Decimal Value
<lf> Line Feed 10
<cr> Carriage Return 13

" Quote 34
: Colon 58
; Semi-colon 59
\ Backslash 92 (cannot be used with DWRITE)

26 6K Series Command Reference

[\] ASCII Character Designator
Type Operator (Other)
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also VARS, WRITE, WRVARS

Product Rev

6K 5.0

The ASCII Character Designator (\) operator is used to place a character in a string that is normally not
represented by a keyboard character. The (\) operator can be used within the VARS or the WRITE
commands. The syntax for the (\) operator is as follows:

WRITE"\<i>" , Where <i> is the ASCII decimal equivalent of the character to be placed in the string.

VARS1="\<i>" , Where <i> is the ASCII decimal equivalent of the character to be placed in the string.

There are three ASCII characters that cannot be used within the quotes (: , ; , and "). These characters must
be specified in the string by using the backslash character (\) in combination with the ASCII decimal value
for the character.

An ASCII table is provided in Appendix B. Common characters and their ASCII equivalent value:

Character Description ASCII Decimal Value

<lf> Line Feed 10

<cr> Carriage Return 13

" Quote 34

: Colon 58

; Semi-colon 59

\ Backslash 92

Example:
WRITE"cd\92AT6400\13\10" ;Displays: cd\AT6400<cr><lf>

[=] Assignment or Equivalence
Type Operator (Mathematical or Relational)
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [>], [>=], [<], [<=], [<>], [AND], IF, [OR],
UNTIL, VAR, VARB, VARI, VARS, WAIT, WHILE

Product Rev

6K 5.0

The assignment or equivalence operator (=) is used to either assign a value to a variable, or compare two
values and/or variables. The (=) operator is limited to 1 assignment operation per line. It is acceptable to
state VAR1=25, but it is unacceptable to state VAR1=25=VAR2.

More than 1 equivalence operator can be used in a command; however, the total number of relational
operators used in a line is limited by the command length limitation (80 characters), not the number of
relational operators (e.g., the command IF(VAR1=1 AND VAR2=4 AND VAR3=4) is a legal command).

When (=) is used as an assignment operator, it can be used with these commands: VAR, VARI, VARB, VARS.
When (=) is used as an equivalence operator, it can be used with these commands: IF , WHILE, UNTIL ,
WAIT.

Command Descriptions 27

 [>] Greater Than
Type Operator (Relational)
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [=], [>=], [<], [<=], [<>], [AND], IF, [OR], UNTIL, WAIT,
WHILE

Product Rev

6K 5.0

The greater than (>) operator is used to compare two values. If the value on the left of the operator is
greater than the value on the right of the operator, then the expression is TRUE. If the value on the left is
less than or equal to the value on the right of the operator, then the expression is FALSE. The greater than
operator (>) can only be used to compare two values.

More than one (>) operator can be used within a single command; however, the total command length is
limited to 80 characters.

The (>) operator can be used in conjunction with the IF , WHILE, UNTIL , and WAIT commands.

Examples of valid commands are IF(VAR1>1) and WHILE(VAR1>1 AND VAR2>3) . An example of an
invalid command is IF(5>VAR1>1) .

[>=] Greater Than or Equal
Type Operator (Relational)
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [=], [>], [<], [<=], [<>], [AND], IF, [OR], UNTIL, WAIT,
WHILE

Product Rev

6K 5.0

The greater than or equal (>=) operator is used to compare two values. If the value on the left of the
operator is greater than or equal to the value on the right of the operator, then the expression is TRUE. If the
value on the left is less than the value on the right of the operator, then the expression is FALSE. The
greater than or equal operator (>=) can only be used to compare two values.

More than one (>=) operator can be used within a single command; however, the total command length is
limited to 80 characters.

The (>=) operator can be used in conjunction with the IF , WHILE, UNTIL , and WAIT commands.

Examples of valid commands are IF(VAR1>=1) and WHILE(VAR1>=1 AND VAR2>=3) . An example of an
invalid command is IF(5>VAR1>=1) .

[<] Less Than
Type Operator (Relational)
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [=], [>], [>=], [<=], [<>], [AND], IF, [OR], UNTIL, WAIT,
WHILE

Product Rev

6K 5.0

The less than (<) operator is used to compare two values. If the value on the left of the operator is less than
the value on the right of the operator, then the expression is TRUE. If the value on the left is greater than or
equal to the value on the right of the operator, then the expression is FALSE. The less than operator (<) can
only be used to compare two values.

28 6K Series Command Reference

More than one (<) operator can be used within a single command; however, the total command length is
limited to 80 characters.

The (<) operator can be used in conjunction with the IF , WHILE, UNTIL , and WAIT commands.

Examples of valid commands are IF(VAR1<1) and WHILE(VAR1<1 AND VAR2<3) . An example of an
invalid command is IF(1<VAR1<54) .

[<=] Less Than or Equal
Type Operator (Relational)
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [=], [>], [<], [>=], [<>], [AND], IF, [OR], UNTIL, WAIT,
WHILE

Product Rev

6K 5.0

The less than or equal (<=) operator is used to compare two values. If the value on the left of the operator is
less than or equal to the value on the right of the operator, then the expression is TRUE. If the value on the
left is greater than the value on the right of the operator, then the expression is FALSE. The less than or
equal operator (<=) can only be used to compare two values.

More than one (<=) operator can be used within a single command; however, the total command length is
limited to 80 characters.

The (<=) operator can be used in conjunction with the IF , WHILE, UNTIL , and WAIT commands.

Examples of valid commands are IF(VAR1<=1) and WHILE(VAR1<=1 AND VAR2<=3) . An example of an
invalid command is IF(1<VAR1<=54) .

[<>] Not Equal
Type Operator (Relational)
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [=], [>=], [<], [<=], [AND], IF, [OR], UNTIL, WAIT, WHILE

Product Rev

6K 5.0

The not equal (<>) operator is used to compare two values. If the value on the left of the operator is not
equal to the value on the right of the operator, then the expression is TRUE. If the value on the left is equal
to the value on the right of the operator, then the expression is FALSE. The not equal operator (<>) can only
be used to compare two values.

More than one (<>) operator can be used within a single command; however, the total command length is
limited to 80 characters.

The (<>) operator can be used in conjunction with the IF , WHILE, UNTIL , and WAIT commands.

Examples of valid commands are IF(VAR1<>1) and WHILE(VAR1<>1 AND VAR2<=3) . An example of an
invalid command is IF(1<VAR1<>54) .

Command Descriptions 29

[()] Operation Priority Level
Type Operator (Mathematical)
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [=], [-], [*], [/], [SQRT], VAR, VARI

Product Rev

6K 5.0

The Operation Priority Level operators determines which operation to do first in a mathematical expression.
For example, if you want to add 5 to 6 times 3, you can specify VAR1=6*3+5 or VAR1=5 + (6*3) .

More than one set of parentheses can be used in a mathematical expression; however, they cannot be nested
(e.g. VAR1=(VAR2 * 3) * (3 + VAR4)).

[+] Addition
Type Operator (Mathematical)
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [=], [()], [-], [*], [/], [SQRT], VAR, VARI, VARB

Product Rev

6K 5.0

The addition (+) operator adds the value to the left of the operator with the value to the right of the operator.
The addition operator can only be used in conjunction with the VAR, VARI and VARB commands.

The total command length must be less than 80 characters. The order of precedence is left to right . The
Operation Priority Level (()) operators can be used; however, they cannot be nested.

Examples of valid commands:VAR1=1+2+3+4+5+6+7+8+9
VAR2=VAR1+1+(5*3)
VARB1=b1101 + b11001

[–] Subtraction
Type Operator (Mathematical)
Syntax See Below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [=], [()], [+], [*], [/], [SQRT], VAR, VARI, VARB

Product Rev

6K 5.0

The subtraction (-) operator subtracts the value to the right of the operator from the value to the left of the
operator. The subtraction operator can only be used in conjunction with the VAR, VARI and VARB
commands.

The total command length must be less than 80 characters. The order of precedence is left to right . The
Operation Priority Level (()) operators can be used; however, they cannot be nested.

Examples of valid command s:VAR1=1-2-3-4-5-6-7-8-9
VAR2=VAR1-1+(5*3)
VARB1=b111101 - b11001

30 6K Series Command Reference

[*] Multiplication
Type Operator (Mathematical)
Syntax See Below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [=], [()], [+], [-], [/], [SQRT], VAR, VARI, VARB

Product Rev

6K 5.0

The multiplication (*) operator multiplies the value to the right of the operator with the value to the left of
the operator. The multiplication operator can only be used in conjunction with the VAR, VARI and VARB
commands (VARI integer values are truncated).

The total command length must be less than 80 characters. The order of precedence is left to right . The
Operation Priority Level (()) operators can be used; however, they cannot be nested.

Examples of valid commands:VAR1=1*2*3*4*5*6*7*8*9
VAR2=VAR1-1+(5*3)
VARB1=b111101 * b11001

[/] Division
Type Operator (Mathematical)
Syntax See Below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [=], [()], [+], [-], [*], [SQRT], VAR, VARI, VARB

Product Rev

6K 5.0

The division (/) operator divides the value to the left of the operator by the value on the right of the operator.
The result of the division is specified to five decimal places (VARI integer variables are truncated). The
division operator can only be used in conjunction with the VAR and VARB commands.

The total command length must be less than 80 characters. The order of precedence is left to right . The
Operation Priority Level (()) operators can be used; however, they cannot be nested.

Examples of valid commands:VAR1=1/2/3/4/5/6/7/8/9
VAR2=VAR1-1/(5*3)
VARB1=b111101 / b11001 DIVISION BY ZERO IS NOT ALLOWED.

[&] Boolean And
Type Operator (Bitwise)
Syntax See Below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [=], [|], [~], [^], [<<],[>>], VAR, VARI, VARB

Product Rev

6K 5.0

The Boolean And (&) operator performs a logical AND on the two values to the left and right of the
operator when used with the VAR or VARI command. The Boolean And (&) performs a bitwise AND on the
two values to the left and right of the operator when used with the VARB command.

For a logical AND (using VAR or VARI), the possible combinations are as follows:

positive number & positive number = 1
positive number & zero or a negative number =0
zero or negative number & positive number = 0
zero or negative number & zero or negative number =0
Example: VAR1=5 & -1
Result: VAR1=0

Command Descriptions 31

For a bitwise AND (using VARB), the value on the left side of the & operator has each of its bits ANDed
with the corresponding bit of the value on the right side of the operator. Each bit comparison will be
composed of 9 possible combinations:

1 & 1 = 1 1 & X = X
1 & 0 = 0 X & 1 = X
0 & 1 = 0 0 & X = 0
0 & 0 = 0 X & 0 = 0
X & X = X

Example: VARB1=b0000 1000 & b1000 1011 1
Response to VARB1 is *VARB1=0000_1000_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX

Example: VARB1=h32FD & h23
Response to VARB1 is *VARB1=0100_0100_0000_0000_0000_0000_0000_0000

Example: VARB1=h23 & b1101
Response to VARB1 is *VARB1=0100_XX00_0000_0000_0000_0000_0000_0000

The total command length must be less than 80 characters. The order of precedence is left to right . The
Operation Priority Level (()) operators can be used; however, they cannot be nested.

[|] Boolean Inclusive Or
Type Operator (Bitwise)
Syntax See Below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [=], [&], [~], [^], [<<], [>>], VAR, VARI, VARB

Product Rev

6K 5.0

The Boolean Inclusive Or (|) operator performs a logical OR on the two values to the left and right of the
operator when used with the VAR or VARI command. The Boolean Inclusive Or (|) performs a bitwise OR
on the two values to the left and right of the operator when used with the VARB command.

For a logical OR (using VAR or VARI), the possible combinations are as follows:

positive number | positive number = 1
positive number | zero or a negative number =1
zero or negative number | positive number = 1
zero or negative number | zero or negative number =0

Example: VAR1=5 | -1
Result: VAR1=1

For a bitwise OR (using VARB), the value on the left side of the | operator has each of its bits ORed with the
corresponding bit of the value on the right side of the operator. Each bit comparison will be composed of 9
possible combinations:

1 | 1 = 1 1 | X = 1
1 | 0 = 1 X | 1 = 1
0 | 1 = 1 0 | X = X
0 | 0 = 0 X | 0 = X
X | X = X

Example: VARB1=b1001 01X1 XX11 | b1000 1011 10
Response to VARB1 is *VARB1=1001_1111_1X11_XXXX_XXXX_XXXX_XXXX_XXXX

Example: VARB1=h1234 | hFAD31
Response to VARB1 is *VARB1=1111_0101_1111_1110_1000_0000_0000_0000

Example: VARB1=h23 | b1101 001X 001X 1X11
Response to VARB1 is *VARB1=1101_111X_001X_1X11_XXXX_XXXX_XXXX_XXXX

The total command length must be less than 80 characters. The order of precedence is left to right . The
Operation Priority Level (()) operators can be used; however, they cannot be nested.

32 6K Series Command Reference

[^] Boolean Exclusive Or
Type Operator (Bitwise)
Syntax See Below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [=], [&], [~], [|], [<<], [>>], VAR, VARI, VARB

Product Rev

6K 5.0

The Boolean Exclusive Or (^) operator performs a logical exclusive OR on the two values to the left and right
of the operator when used with the VAR or VARI command. The Boolean Exclusive Or (^) performs a bitwise
exclusive OR on the two values to the left and right of the operator when used with the VARB command.

For a logical exclusive OR (using VAR or VARI), the possible combinations are as follows:

positive number ̂ positive number =0
positive number ̂ zero or a negative number =1
zero or negative number ^ positive number =1
zero or negative number ^ zero or negative number =0

Example: VAR1=5 ^ -1
Result: VAR1=1

For a bitwise exclusive OR (using VARB), the value on the left side of the ^ operator has each of its bits
exclusive ORed with the corresponding bit of the value on the right side of the operator. Each bit
comparison will be composed of 9 possible combinations:

1 ^ 1 = 0 1 ^ X = X
1 ^ 0 = 1 X ^ 1 = X
0 ^ 1 = 1 0 ^ X = X
0 ^ 0 = 0 X ^ 0 = X
X ^ X = X

Example: VARB1=b0000 1111 XXX1 ^ b10XX 10XX 10XX
Response to VARB1 is *VARB1=10XX_01XX_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX

Example: VARB1=h32FD ^ h6A
Response to VARB1 is *VARB1=1010_0001_1111_1011_0000_0000_0000_0000

Example: VARB1=h7FFF ^ b1101 1111 0000 1101
Response to VARB1 is *VARB1=0011_0000_1111_0010_XXXX_XXXX_XXXX_XXXX

The total command length must be less than 80 characters. The order of precedence is left to right . The
Operation Priority Level (()) operators can be used; however, they cannot be nested.

[~()] Boolean Not
Type Operator (Bitwise)
Syntax See Below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [=], [&], [^], [|], [<<], [>>], VAR, VARI, VARB

Product Rev

6K 5.0

The Boolean Not (~) operator performs a logical NOT on the value immediately to its right when used with
the VAR or VARI command. The Boolean NOT (~) performs a bitwise NOT on the value immediately to its
right when used with the VARB command. Parentheses (()) are required.

For a logical NOT (using VAR or VARI), the possible combinations are as follows:

~ (positive number) = 0

~ (zero or a negative number) = 1

Example: VAR1=~(5) ; Result: VAR1=0
Example: VAR1=~(-1) ; Result: VAR1=1

Command Descriptions 33

For a bitwise NOT (using VARB), each bit is NOTed.

Example: VARB1=~(b0000 1000 1XX1)
Response to VARB1 is *VARB1=1111_0111_0XX0_XXXX_XXXX_XXXX_XXXX_XXXX

Example: VARB1=~(h32FD)
Response to VARB1 is *VARB1=0011_1011_0000_0100_1111_1111_1111_1111

The total command length must be less than 80 characters. The order of precedence is left to right .

The Boolean Not (~) operator also has one additional use. It can be used to change the sign of the distance
(D) command. (e.g., if the distance has the values *D+25000,+25000,+12000,-123000).

By issuing D~,~,~,~ the new values for distance would be *D-25000,-25000,-12000,+123000 .

[<<] Shift from R to L (Bit 32 to Bit 1)
Type Operator (Bitwise
Syntax See Below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [=], [&], [^], [|], [~], [>>], VAR, VARI, VARB

Product Rev

6K 5.0

The Shift R to L (<<) operator shifts a binary value from right to left (reducing its value) the number of bits
specified. Zeros are shifted into the most significant bit locations. The number of bits to shift by is specified
with the value immediately to the right of the (<<) operator, 32 maximum. The number of places to shift
must be specified in either binary or hexadecimal format. (The bits in the binary variable are displayed
from 1 to 32, left to right, and shifting from right to left causes bits to be shifted from 32 to 1.)

Example: VARB1=b0000 1000 1XX1 << b01
Response to VARB1 is *VARB1=0010_001X_X1XX_XXXX_XXXX_XXXX_XXX_XX00

Example: VARB1=b1111 0000 1111 << b001
Response to VARB1 is *VARB1=0000_1111_XXXX_XXXX_XXXX_XXXX_XXXX_0000

Example: VARB1= h0000 E3 << hA
Response to VARB1 is *VARB1=0000_0001_1111_0000_0000_0000_0000_0000

The total command length must be less than 80 characters. The order of precedence is left to right .

 [>>] Shift from L to R (Bit 1 to Bit 32)
Type Operator (Bitwise)
Syntax See Below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [=], [&], [^], [|], [~], [<<], VAR, VARI, VARB

Product Rev

6K 5.0

The Shift L to R (>>) operator shifts a binary value from left to right (increasing its value) the number of
bits specified. Zeros are shifted into the least significant bit locations. The number of bits to shift by is
specified with the value immediately to the right of the (>>) operator, 32 maximum. The number of places
to shift must be specified in either binary or hexadecimal format. (The bits in the binary variable are
displayed from 1 to 32, left to right, and shifting from left to right causes bits to be shifted from 1 to 32.)

Example: VARB1=b0000 1000 1XX1 >> b01
Response to VARB1 is *VARB1=0000_0010_001X_X1XX_XXXX_XXXX_XXXX_XXXX

Example: VARB1=b1111 0000 1111 >> b001
Response to VARB1 is *VARB1=0000_1111_0000_1111_XXXX_XXXX_XXXX_XXXX

Example: VARB1= h45FA2 >> h4
Response to VARB1 is *VARB1=0000_0010_1010_1111_0101_0100_0000_0000

The total command length must be less than 80 characters. The order of precedence is left to right .

34 6K Series Command Reference

[Send Response to Both Communication Ports
Type Communication Interface
Syntax <!> [<command><field1>
Units n/a
Range n/a
Default n/a
Response n/a

See Also BOT, PORT,], ECHO, EOL, EOT, LOCK

Product Rev

6K 5.0

The Send Response to All Ports ([) command is used to send the response from the command which
follows it to all communication ports. If a syntax error occurs, an error message will be sent to both
communication ports.

NOTE: COM1 refers to the “RS-232” or “ETHERNET” connector, and COM2 refers to the “RS-232/485”
connector.

Example
[TER ;Transfer TER Status to both serial ports

] Send Response to Alternate Communication Port
Type Communication Interface
Syntax <!>] <command><field1>
Units n/a
Range n/a
Default n/a
Response n/a

See Also BOT, PORT, [, ECHO, EOL, EOT, LOCK

Product Rev

6K 5.0

The Send Response to Alternate Port (]) command is used to send the response from the command which
follows it to the alternate port from the one selected. If a report back is requested from port COM1, the
response will be sent out port COM2, and vice-versa. If a command is in a stored program, the report will
be sent out the alternate port from the one selected by the PORT command. If a syntax error occurs an error
message will be sent to the alternate port from the one selected.

NOTE: COM1 refers to the “RS-232” or “ETHERNET” connector, and COM2 refers to the “RS-232/485”
connector.

Example
; **
; In this example, we place the "]TAS" statement in a program so that
; we can select the port (in this case, "PORT1" selects COM1) as a
; reference. Otherwise, executing "]TAS" outside of a program merely
; sends the response to whatever port you are not communicating through.
; **
DEF COM ; Begin definition of program called "COM"
PORT1 ; Select COM1
TER ; Transfer TER Status to port COM1
]TAS ; Transfer TAS Status to port COM2
END ; End program definition

Command Descriptions 35

A Acceleration
Type Motion
Syntax <!><@><a>A<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec/sec
Range 0.00001 - 39,999,998 (depending on the SCLA scaling factor)
Default 10.0000
Response A: *A10.0000,10.0000,10.0000,10.0000 ...

1A: *A10.0000

See Also [A], AA, AD, ADA, DRES, ERES, GO, MC, SCALE, SCLA, TSTAT

Product Rev

6K 5.0

The Acceleration (A) command specifies the acceleration rate to be used upon executing the next go (GO)
command.

UNITS OF MEASURE and SCALING : refer to page 16.

The acceleration remains set until you change it with a subsequent acceleration command. Accelerations
outside the valid range are flagged as an error, with a message *INVALID DATA-FIELD x , where x is the
field number. When an invalid acceleration is entered the previous acceleration value is retained.

If the Deceleration (AD) command has not been entered, the acceleration (A) command will set the
deceleration rate. Once the deceleration (AD) command has been entered, the acceleration (A) command no
longer affects deceleration.

ON-THE-FLY CHANGES : You can change acceleration on the fly (while motion is in progress) in two
ways. One way is to send an immediate acceleration command (!A) followed by an immediate go command
(!GO). The other way is to enable the continuous command execution mode (COMEXC1) and execute a
buffered acceleration command (A) followed by a buffered go command (GO).

Example:
SCALE1 ; Enable scaling
SCLA25000,25000,1,1 ; Set the acceleration scaling factor for axes 1 & 2 to

; 25000 steps/unit, axes 3 & 4 to 1 step/unit
SCLV25000,25000,1,1 ; Set the velocity scaling factor for axes 1 & 2 to

; 25000 steps/unit, axes 3 & 4 to 1 step/unit
@SCLD1 ; Set the distance scaling factor for all axes to

; 1 step/unit
DEL proga ; Delete program called proga
DEF proga ; Begin definition of program called proga
MA0000 ; Incremental index mode for all axes
MC0000 ; Preset index mode for all axes
A10,12,1,2 ; Set the acceleration to 10, 12, 1, & 2 units/sec/sec

; for axes 1, 2, 3 & 4
V1,1,1,2 ; Set the velocity to 1, 1, 1, & 2 units/sec for

; axes 1, 2, 3 & 4, respectively
D100000,1000,10,100 ; Set the distance to 100000, 1000, 10, & 100 units for

; axes 1, 2, 3 & 4
GO1100 ; Initiate motion on axes 1 and 2, 3 and 4 do not move
END ; End definition of program called proga

36 6K Series Command Reference

[A] Acceleration Assignment
Type Assignment or Comparison
Syntax See below
Units units/sec/sec
Range 0.00001 - 39,999,998 (depending on the scaling factor)
Default n/a
Response n/a

See Also A, AA, AD, ADA, DRES, ERES, GO, SCALE, SCLA

Product Rev

6K 5.0

The acceleration assignment command is used to compare the programmed acceleration value to another
value or variable, or to assign the current programmed acceleration to a variable.

Syntax: VARn=aA, where n is the variable number, and a is the axis number, or A can be used in an
expression such as IF(1A<25ØØØ) . When assigning the acceleration value to a variable, an
axis specifier must always precede the assignment (A) command or it defaults to axis 1 (e.g.,
VAR1=1A). When making a comparison to the programmed acceleration, an axis specifier must
also be used (e.g., IF(1A<2ØØØØ)). The (A) value used in any comparison, or in any
assignment statement is the programmed (A) value.

UNITS OF MEASURE and SCALING : refer to page 16.

Example:
IF(2A<25000) ; If the acceleration on axis 2 is less than 25000 units/sec/sec,

; then do the statements between the IF and NIF
VAR1=2A*2 ; Variable 1 = acceleration of axis 2 times 2
A,(VAR1) ; Set the acceleration on axis 2 to the value of variable 1
NIF ; End the IF statement

AA Average Acceleration
Type Motion (S-Curve)
Syntax <!><@><a>AA<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec/sec
Range 0.00001 - 39,999,998 (depending on the scaling factor)
Default 10.00 (trapezoidal profiling is default, where AA tracks A)
Response AA: *AA10.0000,10.0000,10.0000,10.0000

1AA: *1AA10.0000

See Also A, AD, ADA, SCALE, SCLA

Product Rev

6K 5.0

The Average Acceleration (AA) command allows you to specify the average acceleration for an S-curve
motion profile. S-curve profiling provides smoother motion control by reducing the rate of change in
acceleration and deceleration; this accel/decel rate of change is known as jerk. Refer to page 13 for details on
S-curve profiling.

Scaling affects the average acceleration (AA) the same as it does for the maximum acceleration (A). Refer to
page 16 for details on scaling.

ON-THE-FLY CHANGES : You can change acceleration on the fly (while motion is in progress) in two
ways. One way is to send an immediate acceleration command (!AA) followed by an immediate go
command (!GO). The other way is to enable the continuous command execution mode (COMEXC1) and
execute a buffered acceleration command (AA) followed by a buffered go command (GO).

Example:
; In this example, axis 1 executes a pure S-curve and takes 1 second
; to reach a velocity of 5 rps; axis 2 executes a trapezoidal profile
; and takes 0.5 seconds to reach a velocity of 5 rps.
SCALE0 ; Disable scaling
DEL proga ; Delete program called proga
DEF proga ; Begin definition of program called proga
@MA0 ; Select incremental positioning mode
@D40000 ; Set distances to 40,000 positive-direction steps
A10,10 ; Set max. accel to 10 rev/sec/sec (axes 1 and 2)

Command Descriptions 37

AA5,10 ; Set avg. accel to 5 rev/sec/sec on axis 1,
; and 10 rev/sec/sec on axis 2

AD10,10 ; Set max. decel to 10 rev/sec/sec (axes 1 and 2)
ADA5,10 ; Set avg. decel to 5 rev/sec/sec on axis 1,

; and 10 rev/sec/sec on axis 2
V5,5 ; Set velocity to 5 rps on axes 1 and 2
GO11 ; Execute motion on axes 1 and 2
END ; End definition of program called proga

AD Deceleration
Type Motion
Syntax <!><@><a>AD<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec/sec
Range 0.00001 - 39,999,998 (depending on the scaling factor)
Default 10.0000 (AD tracks A)
Response AD: *AD10.0000,10.0000,10.0000,10.0000 ...

1AD: *AD10.0000

See Also [A], A, AA, ADA, DRES, ERES, GO, MC, SCALE, SCLA, TSTAT

Product Rev

6K 5.0

The Deceleration (AD) command specifies the deceleration rate to be used upon executing the next go (GO)
command.

UNITS OF MEASURE and SCALING : refer to page 16.

The deceleration remains set until you change it with a subsequent deceleration command. Decelerations
outside the valid range are flagged as an error, with a message *INVALID DATA-FIELD x , where x is the
field number. When an invalid deceleration is entered the previous deceleration value is retained.

If the deceleration (AD) command has not been entered, the acceleration (A) command will set the
deceleration rate. Once the deceleration (AD) command has been entered, the acceleration (A) command no
longer affects deceleration. If the AD command is set to zero (ADØ), then the deceleration will once again
track whatever the A command is set to.

ON-THE-FLY CHANGES : You can change deceleration on the fly (while motion is in progress) in two
ways. One way is to send an immediate deceleration command (!AD) followed by an immediate go
command (!GO). The other way is to enable the continuous command execution mode (COMEXC1) and
execute a buffered deceleration command (AD) followed by a buffered go command (GO).

Example:
SCALE1 ; Enable scaling
SCLA25000,25000,1,1 ; Set the acceleration scaling factor for axes 1 and 2 to

; 25000 steps/unit, axes 3 and 4 to 1 step/unit
SCLV25000,25000,1,1 ; Set the velocity scaling factor for axes 1 and 2 to

; 25000 steps/unit, axes 3 and 4 to 1 step/unit
@SCLD1 ; Set the distance scaling factor for all axes to 1 step/unit
DEL proga ; Delete program called proga
DEF proga ; Begin definition of program called proga
MA0000 ; Incremental index mode for all axes
MC0000 ; Preset index mode for all axes
A10,12,1,2 ; Set the acceleration to 10, 12, 1, and 2 units/sec/sec

; for axes 1, 2, 3 and 4, respectively
AD1,1,1,2 ; Set the deceleration to 1, 1, 1, and 2 units/sec/sec for

; axes 1, 2, 3 and 4, respectively
V1,1,1,2 ; Set the velocity to 1, 1, 1, and 2 units/sec for axes

; 1, 2, 3 and 4, respectively
D100000,1000,10,100 ; Set the distance to 100000, 1000, 10, and 100 units for

; axes 1, 2, 3 and 4, respectively
GO1100 ; Initiate motion on axes 1 and 2, 3 and 4 do not move
END ; End definition of program called proga

38 6K Series Command Reference

[AD] Deceleration Assignment
Type Assignment or Comparison
Syntax See below
Units units/sec/sec
Range 0.00001 - 39,999,998 (depending on the scaling factor)
Default n/a
Response n/a

See Also [A], A, AA, AD, ADA, DRES, ERES, GO, SCALE, SCLA

Product Rev

6K 5.0

The deceleration assignment command is used to compare the programmed deceleration value to another
value or variable, or to assign the current programmed deceleration to a variable.

Syntax: VARn=aAD where n is the variable number, and a is the axis number, or [AD] can be used in an
expression such as IF(1AD<25ØØØ) . When assigning the deceleration value to a variable, an
axis specifier must always precede the assignment (AD)command or it defaults to axis 1 (e.g.,
VAR1=1AD). When making a comparison to the programmed deceleration, an axis specifier
must also be used (e.g., IF(1AD<2ØØØØ)). The (AD) value used in any comparison, or in any
assignment statement is the programmed (AD) value.

UNITS OF MEASURE and SCALING : refer to page 16.

Example:
IF(2AD<25000) ; If the deceleration on axis 2 is less than 25000 units/sec/sec,

; then do the statements between the IF and NIF
VAR1=2AD*2 ; Variable 1 = deceleration of axis 2 times 2
AD,(VAR1) ; Set the deceleration on axis 2 to the value of variable 1
NIF ; End the IF statement

ADA Average Deceleration
Type Motion (S-Curve)
Syntax <!><@><a>ADA<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec/sec
Range 0.00001 - 39,999,998 (depending on the scaling factor)
Default 10.00 (ADA tracks AA)
Response ADA: *ADA10.0000,10.0000,10.0000,10.0000 ...

1ADA: *1ADA10.0000

See Also A, AA, AD, SCALE, SCLA

Product Rev

6K 5.0

The Average Deceleration (ADA) command allows you to specify the average deceleration for an S-curve
motion profile. S-curve profiling provides smoother motion control by reducing the rate of change in
acceleration and deceleration; this accel/decel rate of change is known as jerk. Refer to page 13 for details on
S-curve profiling.

Scaling affects the average acceleration (AA) the same as it does for the maximum acceleration (A). Refer to
page 16 for details on scaling.

ON-THE-FLY CHANGES : You can change deceleration on the fly (while motion is in progress) in two
ways. One way is to send an immediate deceleration command (!ADA) followed by an immediate go
command (!GO). The other way is to enable the continuous command execution mode (COMEXC1) and
execute a buffered deceleration command (ADA) followed by a buffered go command (GO).

In the example below, axis 1 executes a pure S-curve and takes 1 second to return to zero velocity; axis 2
executes a trapezoidal profile and takes 0.5 seconds to return to zero velocity.

Example:
SCALE0 ; Disable scaling
DEL proga ; Delete program called proga
DEF proga ; Begin definition of program called proga
@MA0 ; Select incremental positioning mode
@D40000 ; Set distances to 40,000 positive-direction steps

Command Descriptions 39

A10,10 ; Set max. accel to 10 rev/sec/sec (axes 1 and 2)
AA5,10 ; Set avg. accel to 5 rev/sec/sec on axis 1,

; and 10 rev/sec/sec on axis 2
AD10,10 ; Set max. decel to 10 rev/sec/sec (axes 1 and 2)
ADA5,10 ; Set avg. decel to 5 rev/sec/sec on axis 1,

; and 10 rev/sec/sec on axis 2
V5,5 ; Set velocity to 5 rps on axes 1 and 2
GO11 ; Execute motion on axes 1 and 2
END ; End definition of program

ADDR Multiple Unit Auto-Address
Type Controller Configuration
Syntax <!>ADDR<i>
Units i = axis number
Range 0 to 99
Default 0
Response ADDR: *ADDR0

See Also BAUD, E, PORT

Product Rev

6K 5.0

The ADDR command automatically configures unit addresses for a daisy-chain or multi-drop. This command
allows up to 99 units on a chain to be uniquely addressed.

The ADDR value is stored in non-volatile memory.

RS-232C Daisy Chain:
Sending ADDRi to the first unit in the chain sets its address to be (i) . The first unit in turn transmits
ADDR(i + 1) to the next unit to set its address to (i + 1) . This continues down the daisy chain until
the last unit of (n) daisy-chained units has its address set to (i + n) .

RS-485 Multi-Drop:
To use the ADDR command, you must address each unit individually before it is connected on the multi
drop. For example, given that each product is shipped configured with address zero, you could set up
a 4-unit multi-drop with the commands below, and then connect them in a multi drop:

1. Connect the unit that is to be unit #1 and transmit the Ø_ADDR1 command to it.
2. Connect the unit that is to be unit #2 and transmit the Ø_ADDR2 command to it.
3. Connect the unit that is to be unit #3 and transmit the Ø_ADDR3 command to it.
4. Connect the unit that is to be unit #4 and transmit the Ø_ADDR4 command to it.

If you need to replace a unit in the multi drop, send the Ø_ADDRi command to it, where "i " is the
address you wish the new unit to have.

To send a 6K command from the master unit to a specific unit in the multi-drop, prefix the command
with the unit address and an underscore (e.g., 3_OUTØ turns off output #1 on unit #3). The master unit
(if it is not a 6K product) may receive data from a multi-drop unit.

For more information on controlling multiple 6K Series controllers in an RS-232 daisy-chain or RS-485
multi-drop, refer to the Programmer's Guide.

Example:
ADDR1 ; Set the address of the first unit in the daisy-chain to 1

40 6K Series Command Reference

[AND] And
Type Operator (logical)
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also IF, [NOT], [OR], REPEAT, UNTIL, WAIT, WHILE

Product Rev

6K 5.0

The AND command is used in conjunction with the program flow control commands (IF , REPEAT, UNTIL ,
WHILE, WAIT). The AND command logically links two events. If each of the two events are true, and are
linked with an AND command, then the whole statement is true. This fact is best illustrated by example.

Example 1: IF(VAR1>Ø AND VAR2<3) : TPM : NIF

If variable 1 = 1 and variable 2 = 1, then the expression within the IF statement is true, and
the commands between the IF and the NIF will be executed.

Example 2: WHILE(VAR1=1 AND VAR2=2) : TPM : NWHILE

If variable 1 = 1 and variable 2 = 1, then the expression within the WHILE statement is false,
and the commands between the WHILE and the NWHILE will not be executed.

To evaluate an expression (Expression 1 AND Expression 2 = Result) to determine if the whole expression is
true, use the following rules:

TRUE AND TRUE = TRUE
TRUE AND FALSE = FALSE
FALSE AND TRUE = FALSE
FALSE AND FALSE = FALSE

[ANI] Analog Input Value
Type Assignment or comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also ANIRNG, [FB], [PANI], SFB, TANI, TFB, TPANI

Product Rev

6K 5.0

Use the ANI operator to assign the voltage level present at one of the analog inputs (ANI) to a variable, or to
make a comparison against another value. The ANI value is measured in volts and does not reflect the effects of
distance scaling (SCLD), position offset (PSET), or commanded direction polarity (CMDDIR). To assign/compare
the ANI input value, as affected by SCLD, PSET, and CMDDIR, use the PANI command or the FB command.

The ANI value is derived from the voltage applied to the corresponding analog input and ground. The analog
value is determined from a 12-bit analog-to-digital converter. Under the default ANI voltage range, set with
ANIRNG, the range of the ANI operator is -10.000VDC to +10.000VDC (see ANIRNG command for optional
voltage ranges).

Syntax: VARn=ANI.i where “n” is the variable number, “” is the number of the I/O brick, and
“ i ” is I/O brick address where the analog input resides; or ANI can be used in an expression such
as IF(1ANI.2=2.3) . If no brick identifier () is provided, it defaults to 1. To understand the
I/O brick addressing convention, refer to page 6.

Example:
VAR2=3ANI.2 ; Voltage value at analog input 2 on I/O brick 3 is assigned

; to variable 2
IF(1ANI.1<8.2) ; If voltage value at analog input 1 on brick 1 < 8.2V, do the

; commands between the IF statement and the NIF statement.
TREV ; Transfer revision level
NIF ; End if statement

Command Descriptions 41

ANIEN Analog Input Enable
Type Inputs
Syntax To enable only: <!>ANIEN<.i>=<E>

To override only: <!>ANIEN<.i>=<r>
Units B = I/O brick number

i = input location on I/O brick “B”
E = Enable
r = volts

Range B = 1-8
i = 1-32 (dependent on I/O brick configuration)
r = -10.000 to +10.000 (voltage override value)

Default E (enabled)
Response 2ANIEN: *2ANIENx,x,x,x,x,x,x,x (SIM slot 1)

 x,x,x,x,x,x,x,x (SIM slot 2)
 E,E,E,E,E,E,E,E (SIM slot 3)
 x,x,x,x,x,x,x,x (SIM slot 4)

See Also [ANI], ANIFB, ANIMAS, ANIRNG, FOLMAS, TANI, TIO

Product Rev

6K 5.0

The Analog Input Enable (ANIEN) command enables or disables specific analog inputs. The default state
for each input is the enabled condition. ANIEN can also be used to set analog inputs to specific override
voltage levels. To disable an analog input, set an override voltage of 0.

Performance: The rate at which the controller samples each analog input depends on how many are
enabled on the SIM; each enabled analog input adds 2 ms to the sample rate for all analog inputs on the
SIM. For example, if 4 of the 8 analog inputs on a SIM are enabled, the sample rate for any specific input
on the same SIM is 8 ms (4 inputs x 2 ms). Disabling input channels increases the performance of the
remaining channels; this is important if an input channel is to be used as a servo feedback source (ANIFB
and SFB selection) or Following source (ANIMAS and FOLMAS selection).

Example:
1ANIEN.9=E,E ; Enable the 1st & 2nd analog input in SIM slot 2 (I/O

; locations 9 & 10) on I/O brick 1.
1ANIEN.11=E,2.5 ; Override the 3rd analog input in SIM slot 2 (I/O location 11)

; on I/O brick 1 with a voltage of 2.4 volts.
2ANIEN ; Check status of analog inputs on I/O brick 2. As an example,

; a response of *2ANIENx,x,x,x,x,x,x,x
 x,x,x,x,x,x,x,x
 E,E,E,E,E,E,E,E
 x,x,x,x,x,x,x,x
; indicates that an analog input SIM is installed in slot 3 of
; I/O brick 2 and all eight channels are enabled ("E").

ANIFB Assign Analog Inputs as Axis Feedback
Type Controller Configuration
Syntax <!>ANIFB<B-i>,<B-i>,<B-i>,<B-i>,<B-i>,<B-i>,<B-i>,<B-i>
Units B = I/O brick number

i = input location on I/O brick “B”
Range B = 1-8

i = 1-32 (dependent on I/O brick configuration)
Default 0-0 (No assignment)
Response ANIFB: *ANIFB1-1,1-9,0,0,0,0,0,0

See Also [ANI], ANIEN, ANIRNG, SFB, TANI, TIO

Product Rev

6K 5.0

The ANIFB command determines which analog (ANI) inputs to use as feedback sources for specific axes
when ANI feedback is selected by the SFB command. The ANIFB command only has an effect if ANI
feedback is selected by a subsequent SFB command (ANIFB command must be issued before the SFB
command).

Example
ANIFB,,,,,4-17 ; Select the 1st analog input channel in SIM slot 3

; (I/O location 17) of I/O brick 4 to be used as
; feedback for axis 6

SFB,,,,,2 ; Select analog input feedback for axis 6

42 6K Series Command Reference

ANIMAS Assign Analog Inputs to Axes
Type Following
Syntax <!>ANIMAS<B-i>,<B-i>,<B-i>,<B-i>,<B-i>,<B-i>,<B-i>,<B-i>
Units B = I/O brick number

i = input location on I/O brick “B”
Range B = 1-8

i = 1-32 (dependent on I/O brick configuration)
Default 0-0 (No assignment)
Response ANIMAS: *ANIMAS1-1,1-9,0,0,0,0,0,0

See Also ANIEN, FOLMAS

Product Rev

6K 5.0

The ANIMAS command assigns an analog input channel to a specific Following master axis for use when an
ANI master is selected with the FOLMAS command. The ANIMAS command only has an effect if an analog
input Following master is selected with a subsequent FOLMAS command (ANIMAS command must be issued
before the FOLMAS command).

Example
ANIMAS,,,,,4-17 ; Select the first analog input channel in SIM slot 3

; (I/O location 17) of I/O brick 4 to be used for
; master axis 6

FOLMAS62,62 ; Define axes 1 and 2 to be followers of the analog input
; selected for master axis 6

ANIRNG Analog Input Voltage Range
Type Controller Configuration
Syntax <!>ANIRNG<.i><=i>
Units B = I/O brick number

1st i = input location on I/O brick “B”
2nd i = voltage range selector number

Range B = 1-8
1st i = 1-32 (dependent on I/O brick configuration)
2nd i = 1 (0 to +5VDC),
 2 (-5 to +5VDC),
 3 (0 to +10VDC), or
 4 (-10 to +10VDC)

Default 4 (range is set to -10 to +10VDC)
Response 2ANIRNG: *2ANIRNGx,x,x,x,x,x,x,x

 4,4,4,4,4,4,4,4
 x,x,x,x,x,x,x,x
 x,x,x,x,x,x,x,x

2ANIRNG.9: *4

See Also [ANI], ANIEN, ANIFB, JOYCDB, JOYCTR, JOYEDB, [PANI],
SCLA, SCLV, SFB, TANI, TIO, TPANI

Product Rev

6K 5.0

Use the ANIRNG command to select voltage ranges for specific analog inputs on the expansion I/O brick
connected to your 6K product. The default range for all analog inputs -10VDC to +10VDC.

Be aware that changing the analog input voltage range affects these settings:

ANIRNG
Setting

Voltage
Range

Counts/volt resolution
(see PANI & TPANI)

Calculation for
minimum accel **

Calculation for
maximum accel **

Calculation for
maximum velocity **

1 0 to +5VDC 819 0.819

SCLA

819,000

SCLA

819,000

SCLA

2 -5 to +5VDC 410 0.410

SCLA

410,000

SCLA

410,000

SCLA

3 0 to +10VDC 410 0.410

SCLA

410,000

SCLA

410,000

SCLA

4 -10 to +10VDC 205 0.205

SCLA

205,000

SCLA

205,000

SCLA

** These calculations are for servo axes using an analog input as it’s position feedback source (see ANIFB and SFB).

Example
2ANIRNG.9=3 ; For the 1st analog input on SIM2 of I/O brick 2,

; select a voltage range of 0 to +10VDC

Command Descriptions 43

 [AS] Axis Status
Type Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [ASX], GOWHEN, INDUST, SMPER, TAS, TASF, TRGFN, TSTAT, VARB

Product Rev

6K 5.0

Use the AS operator to assign the axis status bits for a specific axis to a binary variable, or to make a
comparison against a binary or hexadecimal value.

To make a comparison against a binary value, the letter b (b or B) must be placed in front of the value that
the axis status is being compared against. The binary value itself must only contain ones, zeros, or Xs (1, Ø,
X, x). To make a comparison against a hexadecimal value, the letter h (h or H) must be placed in front of the
value that the axis status is being compared against. The hexadecimal value itself must only contain the letters
A through F, and the numbers Ø through 9. When using AS, an axis specifier must always proceed it, or else
it will default to axis 1. Valid axis specifiers are 1, 2, 3, or 4 (1AS, 2AS, 3AS, or 4AS). The function of each
axis status bit is shown below. An "x" identifies products to which the function is applicable.

Bit #
(left to right) Function (1/Ø)

 1 Moving/Not Moving. This bit is set only when motion is commanded on the axis. The motor may still be
“moving” (e.g., due to end-of-move settling).

 2 Negative/positive-direction

 3 Accelerating/Not Accelerating. This bit does not indicate deceleration (bit is set to 0 during decel); to
check if the axis is decelerating, the state of AS bits 1, 3 and 4 should be: AS1x00 .

 4 At Velocity/Not at Velocity

 5 Home Successful (HOM) (YES/NO)

 6 Absolute/Incremental (MA1/MA0)

 7 Continuous/Preset (MC1/MC0)

 8 Jog Mode/Not Jog Mode (JOG)

 9 Joystick Mode/Not Joystick Mode (JOY1/JOY0)

10 RESERVED

11 RESERVED

12 Stall Detected (YES/NO). This bit is not usable until Stall Detect is enabled with ESTALL1 command.

13 Drive Shut Down (YES/NO)

14 Drive Fault occurred (YES/NO). A drive fault cannot be detected (this bit is always 0) until the drive fault
input check is enabled with DRFEN1. Note: ASX bit 4 reports the hardware state of the drive fault input,
regardless of DRFEN or DRIVE.

15 Positive-direction Hardware Limit Hit (YES/NO)

16 Negative-direction Hardware Limit Hit (YES/NO)

17 Positive-direction Software Limit Hit (YES/NO)

18 Negative-direction Software Limit Hit (YES/NO)

19 RESERVED

20 RESERVED

21 RESERVED

22 RESERVED

23 Position Error Exceeded (SMPER) (YES/NO). Servo axes only.

24 In Target Zone (defined with STRGTD & STRGTV) (YES/NO). Servo axes only. This bit is set only after
the successful completion of a move (if STRGTD and STRGTV criteria have been satisfied). This bit is
usable even if the Target Zone mode is not enabled (STRGTE0).

44 6K Series Command Reference

Bit #
(left to right) Function (1/Ø)

25 Target Zone Timeout occurred (STRGTT) (YES/NO). Servo axes only.

26 Change in motion is suspended pending GOWHEN (YES/NO). This bit is cleared if the GOWHEN condition
is true, or if STOP (!S) or KILL (!K or ^K) is executed.

27 RESERVED

28 Registration move initiated by trigger since last GO command. This bit is cleared with the next GO
command.

29 RESERVED

30 Pre-emptive (OTF) GO or Registration profile not possible

31 RESERVED

32 RESERVED

Syntax: VARBn=aAS where n is the binary variable number and a is the axis identifier, or AS can be used in
an expression such as IF(1AS=b11Ø1) , or IF(1AS=h7F) . If it is desired to assign only one bit of
the axis status value to a binary variable, instead of all 32, the bit select (.) operator can be used.
The bit select, in conjunction with the bit number, is used to specify a specific axis status bit (e.g.,
VARB1=1AS.12 assigns axis 1 status bit 12 to binary variable 1).

Example:
VARB1=1AS ; Axis status for axis 1 assigned to binary variable 1
VARB2=1AS.12 ; Axis 1 status bit 12 assigned to binary variable 2
VARB2 ; Response, if bit 12 is set to 1, is

; "*VARB2=XXXX_XXXX_XXX1_XXXX_XXXX_XXXX_XXXX_XXXX"
IF(4AS=b111011X11) ; If the axis status for axis 4 contains 1's for

; inputs 1,2,3,5,6,8,and 9, and a 0 for bit location 4,
; do the IF statement

TREV ; Transfer revision level
NIF ; End if statement
IF(2AS=h7F00) ; If the axis status for axis 2 contains 1's for

; inputs 1,2,3,5,6,7,and 8, and 0's for every other bit
; location, do the IF statement

TREV ; Transfer revision level
NIF ; End if statement

Command Descriptions 45

[ASX] Extended Axis Status
Type Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also EFAIL, TASX, TASXF, [AS], TAS, TASF, VARB

Product Rev

6K 5.0

The Extended Axis Status (ASX) command is used to assign the axis status bits for a specific axis to a binary
variable, or to make a comparison against a binary or hexadecimal value.

To make a comparison against a binary value, the letter b (b or B) must be placed in front of the value that
the axis status is being compared against. The binary value itself must only contain ones, zeros, or Xs (1, Ø,
X, x). To make a comparison against a hexadecimal value, the letter h (h or H) must be placed in front of the
value that the axis status is being compared against. The hexadecimal value itself must only contain the letters
A through F, and the numbers Ø through 9. An "x" identifies products to which the function is applicable.

Bit Assignment
(left to right) Function (1 = yes, Ø = no)

1-3 RESERVED
4 * Drive Fault Input Active
5 ** Encoder Failure
6 Z-channel state (1 = active, Ø = inactive)

7-32 RESERVED

* Bit #4 indicates the current hardware state of the drive fault input, even in the factory default power-up state —the drive is
disabled (see DRIVE command) and the drive fault input is disabled (see DRFEN command).

** Bit #5 requires the Encoder Failure detection be enabled for the particular axis (see EFAIL command); this bit is cleared
with the EFAILØ command.

Syntax: VARBn=ASX where n is the binary variable number, or ASX can be used in an expression such as
IF(ASX=b11ØØ) , or IF(ASX=h7Ø) . If it is desired to assign only one bit of the axis status value to
a binary variable, instead of all 32, the bit select (.) operator can be used. The bit select, in
conjunction with the bit number, is used to specify a specific axis status bit (e.g., VARB1=ASX.3
assigns axis 1 status bit 3 to binary variable 1).

Example:
VARB1=ASX ; Extended Axis status for axis 1 assigned to

; binary variable 1
VARB2=ASX.3 ; Extended Axis 1 status bit 3 assigned to

; binary variable 2
VARB2 ; Response if bit 3 is set to 1:

; "*VARB2=XX1X_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX"
IF(ASX=b101XXXXX) ; If the extended axis status for axis 1 contains 1's

; for bits 1 and 3, and a 0 for bit location 2, do the
; IF statement

TREV ; Transfer revision level
NIF ; End if statement

46 6K Series Command Reference

[ATAN()] Arc Tangent
Type Operator (Trigonometric)
Syntax VARi=ATAN(r)
Units r = real number
Range 0.00000 to ±999,999,999
Default none
Response n/a

See Also [=], [COS], [PI], RADIAN, [SIN], [TAN], VAR

Product Rev

6K 5.0

This Arc Tangent (ATAN) operator is used to
calculate the inverse tangent of a real number. If
“a” and “b” are coordinates of a point on a
circle of radius “r”, then the angle of measure
“θ” can be defined by the equation:

θ = arctan
a

b
.

The result of the ATAN command will either be
in degrees or radians, depending on the RADIAN
command.

To convert radians to degrees, use the formula:
360° = 2π radians.

y

x

r

b

aθ

sin θ = a
r

cos θ = b
r

tan θ = a
b

Syntax: VARi=ATAN(r) where i is the variable number and r is a real number value. Parentheses (())
must be used with the ATAN command. The result will be specified to 2 decimal places in either
radians or degrees.

Example:
RADIAN1 ; Enable radian mode
VAR1=ATAN(0.75) ; Set variable 1 equal to the inverse tangent of 0.75 radians

AXSDEF Axis Definition
Type Controller Configuration
Syntax <!><@>AXSDEF
Units n/a
Range b = 0 (stepper), 1 (servo), or X (don’t change)
Default 1 (servo)
Response AXSDEF: *11111111

See Also DRIVE

Product Rev

6K 5.0

The Axis Definition (AXSDEF) command identifies the type of drive (servo or stepper) to which the controller
axis is connected. The drive must be disabled (DRIVE0) for the AXSDEF command to function properly. Stepper
drives receive their positioning information via step and direction signals. Servo drives receive their positioning
commands via a ±10 volt signal. The AXSDEF setting is automatically saved in battery backed RAM.

The value of AXSDEF disables command fields that are not appropriate for that type of drive. For example,
an axis configured as a stepper cannot be affected by a Servo Proportional Gain (SGP) command. The
report back of non-applicable commands contains “- ” in the field for that axis.

AXSDEF0 — Stepper Only Commands:
DRES FMAXA
ENCCNT FMAXV
ESDB PULSE
ESK
ESTALL

AXSDEF1 — Servo Only Commands:
ANIFB KDRIVE PER SFB
SGP SGI SGV SGVF
SGAF SGILIM SOFFS SMPER
SGSET SGENB STRGTD STRGTE
STRGTT STRGTV TFB TGAIN
TPER TSGSET TSTLT

NOTE: If you change the axis definition, be sure to verify or set all motion settings and scaling values to
achieve the expected performance.

Command Descriptions 47

BAUD Baud Rate
Type Communication Interface
Syntax BAUD<i>
Units i = Baud rate
Range i = 1200, 2400, 4800, 9600, 19200, 38400, or 115200
Default 9600
Response BAUD *BAUD9600

See Also ADDR, E, PORT

Product Rev

6K 5.0

BAUD establishes the baud rate for the “RS-232” (COM1) or the “RS-232/485” (COM2) serial port, as
selected by the last PORT command. The default is 9600 baud (BAUD9600). The BAUD setting is
automatically saved in battery backed RAM. NOTE: Changing the baud rate for the currently used port
will result in a loss of communication until the baud rate of the terminal is changed accordingly.

Example:
PORT2 ; Select COM2 ("RS-232/485") port
BAUD38400 ; Set the baud rate for COM2 to 38400 baud

BOT Beginning of Transmission Characters
Type Communication Interface
Syntax <!>BOT<i>,<i>,<i>
Units n/a
Range i = 0 - 256
Default 0,0,0
Response BOT: *BOT0,0,0

See Also EOT, ERROK, ERRBAD, PORT, DRPCHK,EOL,], [

Product Rev

6K 5.0

The Beginning of Transmission Characters (BOT) command designates the characters to be placed at the
beginning of every response. Up to 3 characters can be placed before the first line of a multi-line response,
or before all single-line responses. The characters are designated with their ASCII equivalent. For example,
a carriage return is ASCII 13, a line feed is ASCII 10, a Ctrl-Z is ASCII 26, and no terminating character is
designated with a zero. Note that ASCII 256 means ØØ is transmitted.

For a more complete list of ASCII Equivalents, refer to the ASCII Table in Appendix B.

Example:
BOT13,10,26 ; Place a carriage return, line feed, and Ctrl-Z before

; the first line of a multi-line response, and before
; all single line responses

BP Set a Program Break Point
Type Program Flow Control or Program Debug Tool
Syntax <!>BP<i>
Units i = break point number
Range 1 - 32
Default n/a
Response n/a

See Also BREAK, C, HALT, K, S, [SS], TSS

Product Rev

6K 5.0

The Break Point (BP) command allows the programmer to set a place in the program where command
processing will halt and a message will be transmitted to the PC. There are 32 break points available, BP1 to
BP32, all transmitting the message *BREAKPOINT NUMBER x<cr> where x is the break point number.

After halting at a break point, command processing can be resumed by issuing a continue (!C) command.

The break point command is useful for stopping a program at specific locations in order to test status for
debugging or other purposes.

48 6K Series Command Reference

Example:
DEF prog1 ; Begin definition of program named prog1
D50000,1000 ; Set distance to 50000 units on axis 1, and 1000 units on axis 2
MA1100 ; Absolute mode for axes 1 and 2
GO1100 ; Initiate motion on axes 1 and 2
IF(1PC>40000) ; Compare axis 1 commanded position to 40000
BP1 ; If the motor position is > 40000 units, set break point #1
NIF ; End IF statement
D80000,2000 ; Set distance to 80000 units on axis 1, and 2000 units on axis 2
GO1100 ; Initiate motion on axes 1 and 2
BP2 ; Set break point #2
END ; End program definition
RUN prog1 ; Execute program prog1

If the IF statement evaluates true, the message *BREAKPOINT NUMBER 1 will be transferred out. A !C
command must be issued before processing will continue. Once processing has continued, the second break
point command will be encountered, again the message *BREAKPOINT NUMBER 2 will be transferred out,
and processing of commands will pause until a second !C command is received.

BREAK Terminate Program Execution
Type Program Flow Control
Syntax <!>BREAK
Units n/a
Range n/a
Default n/a
Response n/a

See Also BP, C, GOSUB, HALT, K, S

Product Rev

6K 5.0

The BREAK command terminates program execution when processed. This command allows the user to
terminate a program based upon a condition, or at any other particular point in the program where it is
necessary to end the program. If the program terminated was called from another program, control will be
passed to the calling program. This command is useful when debugging a program.

To terminate all program processing, use the HALT command.

Example:
DEF prog1 ; Define a program called prog1
GO1000 ; Initiate motion on axis 1
GOSUB prog2 ; Gosub to subroutine named prog2
GO0100 ; Initiate motion on axis 2
END ; End program definition
DEF prog2 ; Define a program called prog2
GO1110 ; Initiate motion on axes 1, 2, and 3
IF(IN=b1X0) ; IF condition is: status of trigger input 1 is

; active (1) and trigger input 3 is inactive (0)
BREAK ; If condition is true break out of program
ELSE ; Else part of if condition
TPE ; If condition does not come true, transfer position of

; all encoders
NIF ; End If statement
END ; End program definition
RUN prog1 ; Execute program prog1
;
; Upon completion of motion on axis 1, subroutine prog2 is called. If inputs 1
; and 3 are in the correct state when the subroutine is entered, the subroutine
; will be terminated and returned to prog1, where motion on axis 2 will be
; initiated.

Command Descriptions 49

C Continue Command Execution
Type Program Flow Control
Syntax !C
Units n/a
Range n/a
Default n/a
Response n/a

See Also BP, COMEXR, COMEXS, INFNC, PS, S

Product Rev

6K 5.0

The Continue (!C) command ends a pause state (PS), a break point (BP) condition, or a stopped (S)
condition. When the controller is in a paused state or at a break point, no commands from the command
buffer are executed. All immediate commands, however, are still processed. By sending a !C command,
command processing will resume, starting with the first command after the PS command or the BP
command. If a stop (S) command has been issued, motion and command processing can be resumed by
issuing a !C command, only if COMEXS has been enabled.

Example:
PS ; Stop execution of command buffer until !C command
MA0XXX ; Incremental mode for axis 1
D10000 ; Set distance to 10000 units on axis 1
GO1000 ; Initiate motion on axis 1
D,20000 ; Set distance to 20000 units on axis 2
GO0100 ; Initiate motion on axis 2

No buffered commands after the PS command will be executed until a !C command is received.
!C ; Restart execution of command buffer
DEF prog1 ; Begin definition of program named prog1
D50000,1000 ; Set distance to 50000 units on axis 1, & 1000 units on axis 2
MA00 ; Set axes 1 and 2 to the incremental mode
GO11 ; Initiate motion on axes 1 and 2
IF(VAR1>6) ; Compare VAR1>6
BP1 ; If the motor position is > 50000 units, set break point #1
NIF ; End IF statement
GO11 ; Initiate motion on axes 1 and 2
BP2 ; Set break point #2
END ; End program definition
RUN prog1 ; Execute program prog1

If the IF statement evaluates true, the message BREAKPOINT NUMBER 1 will be transferred out. A !C
command must be issued before processing will continue. Once processing has continued, the second break
point command will be encountered, again the message BREAKPOINT NUMBER 2 will be transferred out, and
processing of commands will pause until a second !C command is received.

COMEXS1 ; Enable command processing on stop
D50000,1000 ; Set distance to 50000 units on axis 1, & 1000 units on axis 2
GO1100 ; Initiate motion on axes 1 and 2
!S ; Stop motion on all axes

When the 6K Series product processes the !S command, motion on all axes will be stopped. If the desired
distance has not been reached, motion can be resumed by issuing the !C command. If motion and command
processing are to stop, a Kill (!K) command can be issued.

50 6K Series Command Reference

CMDDIR Commanded Direction Polarity
Type Controller Configuration
Syntax <@><a>CMDDIR
Units b = polarity bit
Range 0 (normal polarity), 1 (reverse polarity) or X (don't change)
Default 0
Response CMDDIR *CMDDIR0000_0000

1CMDDIR *1CMDDIR0

See Also [AS], DRIVE, ENCPOL, [FB], [PANI], [PCE], [PE],
[PER], PSET, SFB, TAS, TFB, TPANI, TPCE, TPE, TPER

Product Rev

6K 5.0

The CMDDIR command allows you to reverse the direction that the controller considers to be the “positive”
direction; this also reverses the polarity of the counts from the feedback devices. Thus, using the CMDDIR
command, you can reverse the referenced direction of motion without the need to (a) change the
connections to the drive and the feedback device, or (b) change the sign of all the motion-related commands
in your program.

NOTES

• SERVO AXES: Before changing the commanded direction polarity, make sure there is
a direct correlation between the commanded direction and the direction of the
feedback source counts (i.e., a positive commanded direction from the controller must
result in positive counts from the feedback device). Refer to the ENCPOL command
description for information on changing encoder polarity.

• Once you change the commanded direction polarity, you should swap the end-of-
travel limit connections to maintain a positive correlation with the commanded
direction.

The CMDDIR command is automatically saved in non-volatile memory.

The CMDDIR command cannot be executed while motion is in progress or while the drive/valve is
enabled. For example, you could wait for motion to be complete (indicated when AS bit #1 is a zero) and then
use the DRIVE command to disable the appropriate axis before executing the CMDDIR command.

COMEXC Continuous Command Processing Mode
Type Command Buffer Control
Syntax <!>COMEXC
Units b = 0, 1 or X
Range 0 = Disable, 1 = Enable, X = don't change
Default 0
Response COMEXC: *COMEXC0

See Also [!], A, AA, AD, ADA, COMEXL, COMEXS, D, ERRORP, FOLRD,
FOLRN, GO, GOWHEN, MA, MC, V

Product Rev

6K 5.0

This command enables (COMEXC1) or disables (COMEXCØ) Continuous Command Execution Mode.
Normally, when a motion command is received, command processing is temporarily paused until the motion
is complete. In continuous command execution mode, however, command processing continues while
motion is taking place. NOTE: Command processing will be slower and some motion parameters cannot
be changed while motion is in progress; for a complete list of motion parameters that cannot be changed
while motion is in progress, refer to the Restricted Commands During Motion section in Chapter 1 of the
Programmer's Guide.

Command Descriptions 51

The Continuous Command Processing Mode is useful in the following situations:

• When trying to check the status of inputs while the 6K Series product is commanding motion.

• Performing calculations ahead of time, possibly decreasing cycle time.

• Executing buffered on-the-fly acceleration (A, AA), and deceleration (AD, ADA), distance (D), positioning
mode (MA & MC), Following ratio (FOLRD & FOLRN), and velocity (V) changes. (The buffered A, AA, AD,
ADA, D, FOLRD, FOLRN, MA, MC, or V change can be executed only with a buffered Go (GO) command.)
For more information about on-the-fly motion changes, refer to the Programmer's Guide.

• Pre-processing the next move while the current move is in progress (see CAUTION note below). This
reduces the processing time for the subsequent move to only a few microseconds.

CAUTION: Avoid Executing Moves Prematurely

With continuous command execution enabled (COMEXC1), if you wish motion to stop before
executing the subsequent move, place a WAIT(AS.1=bØ) statement before the subsequent
GO command. If you wish to ensure the load settles adequately before the next move, use the
WAIT(AS.24=b1) command instead (this requires you to define end-of-move settling criteria
— see STRGTE command or Programmer's Guide for details).

Example:
VAR1=2000 ; Set variable 1 = 2000
VAR2=0 ; Set variable 2 = 0
COMEXC1 ; Enable continuous command execution mode
L50 ; Loop 50 times
D50000,(VAR1) ; Set distance to 50000 units for axis 1, VAR1 value for axis 2
GO1100 ; Initiate motion on axes 1 and 2
; Normally at this point, the 6K controller would wait for the motion on axes
; 1 & 2 to complete before processing the next command. However, with continuous
; command execution enabled (COMEXC1), processing will continue with the
; statements that follow.
REPEAT ; Beginning of REPEAT..UNTIL() expression
IF(IN.1=b1) ; Check for onboard input #1 (trigger A for axis 1)

; becoming active
VAR1=VAR1+10 ; If it does, increase variable 1 by 10
VAR2=1 ; Variable 2 is used as a flag
NIF ; End IF statement
UNTIL(MOV=b0 OR VAR2=5) ; Exit REPEAT loop if variable 2 equals 5 or if

; motion is complete on axis 1
VAR2=0 ; Reset flag value, variable 2 = 0
LN ; End loop
COMEXC0 ; Disable continuous command mode

On-the-fly Velocity, Acceleration and Deceleration Change Example:
DEF vsteps ; Begin definition of program vsteps
COMEXC1 ; Enable continuous command execution mode
MC1 ; Set axis 1 mode to continuous
A10 ; Set axis 1 acceleration to 10 rev/sec/sec
V1 ; Set axis 1 velocity to 1 rps
GO1 ; Initiate axis 1 move (Go)
WAIT(1VEL=1) ; Wait for motor to reach continuous velocity
T3 ; Time delay of 3 seconds
A50 ; Set axis 1 acceleration to 50 rev/sec/sec
V10 ; Set axis 1 velocity to 10 rps
GO1 ; Initiate axis 1 move (Go)
T5 ; Time delay of 5 seconds
S1 ; Initiate stop of axis 1 move
WAIT(MOV=b0) ; Wait for motion to completely stop on axis 1
COMEXC0 ; Disable continuous command execution mode
END ; End definition of program vsteps

52 6K Series Command Reference

COMEXL Continue Execution on Limit
Type Command Buffer Control
Syntax <!><@><a>COMEXL
Units b = 0, 1 or X
Range 0 = Disable, 1 = Enable, X = don't change
Default 0
Response COMEXL: *COMEXL0000_0000

1COMEXL: *1COMEXL0

See Also COMEXC, COMEXS, ERROR, LH, LHLVL, LS

Product Rev

6K 5.0

This command determines whether the command buffer will be saved upon hitting a hardware end-of-travel
limit (LH), or a soft limit (LS). If save command buffer on limit is enabled (COMEXL1), then all commands
following the command currently being executed will remain in the command buffer when a limit is hit. If
save command buffer on limit is disabled (COMEXLØ), then every command in the buffer will be discarded,
and program execution will be terminated.

Example:
COMEXL0010 ; Save the command buffer only if the limit on axis 3 is hit.

; Hitting a limit on any other axis will dump the command buffer.

COMEXR Continue Motion on Pause/Continue Input
Type Command Buffer Control
Syntax <!>COMEXR
Units b = 0, 1 or X
Range 0 = disable, 1 = enable, X = don't change
Default 0
Response COMEXR: *COMEXR0

See Also C, COMEXS, INFNC, LIMFNC

Product Rev

6K 5.0

The Continue Motion on Pause/Continue (COMEXR) command determines the functionality of programmable
inputs defined as pause/continue inputs with the INFNCi-E or LIMFNCi-E command. In both cases, when the
input is activated (exception: an axis-specific step input will not dump the buffer), the current command being
processed will be allowed to finish executing.

COMEXRØ: Upon receiving a pause input, only program execution is paused; any motion in progress will
continue to its predetermined destination. Releasing the pause input or issuing a !C command
will resume program execution.

COMEXR1: Upon receiving a pause input, both motion and program execution will be paused; the motion
stop function is used to halt motion. After motion stops, you can release the pause input or issue
a !C command to resume motion and program execution.

Example:
COMEXR1 ; Allow both motion and program execution to be paused upon

; receiving a pause input
2INFNC1-E ; Define input 1 on I/O brick 2 as a pause/continue input

Command Descriptions 53

COMEXS Continue Execution on Stop
Type Command Buffer Control
Syntax <!>COMEXS<i>
Units i = function identifier
Range 0, 1, or 2
Default 0
Response COMEXS: *COMEXS0

See Also COMEXC, COMEXL, COMEXR, INFNC, LIMFNC, S

Product Rev

6K 5.0

The Continue Execution on Stop (COMEXS) command determines whether the command buffer will be
saved upon receiving a Stop command (!S or !S1111) or an external stop input (INFNCi-D or
LIMFNCi-D).

COMEXSØ: Upon receiving a stop input or Stop command, motion will decelerate at the preset AD/ADA
value, every command in the buffer will be discarded (exception: an axis-specific stop input
will not dump the buffer), and program execution will be terminated.

COMEXS1: Upon receiving a stop input or Stop (!S or !S1111) command, motion will decelerate at the
preset AD/ADA value, command execution will be paused, and all commands following the
command currently being executed will remain in the command buffer.

Resuming program execution (only after motion is stopped):

• Whether stopping as a result of a stop input or Stop (!S or !S1111) command, you can
resume program execution by issuing an immediate Continue (!C) command or by activating
a pause/resume input (a programmable input configured with the INFNCi-E or LIMFNCi-E
command).

• If you are resuming after a stop input or !S1111 command, the move in progress will not be saved.
• If you are resuming after a !S command, you will resume the move in progress at the point

in which the !S command was received by the processor.

COMEXS2: Upon receiving a stop input or Stop command, motion will decelerate at the preset AD/ADA
value, every command in the buffer will be discarded, and program execution will be
terminated, but the INSELP value is retained. This allows external program selection, via inputs
defined with the INFNCi-B (or LIMFNCi-B) or INFNCi-iP (or LIMFNCi-iP) commands, to
continue.

Example:
COMEXS1 ; Save the command buffer upon a stop input or stop command

54 6K Series Command Reference

[COS()] Cosine
Type Operator (Trigonometric)
Syntax COS(r) (see below)
Units r = radians or degrees (depending on RADIAN command)
Range r = 0.00000 - ±17500
Default n/a
Response n/a

See Also [ATAN], [PI], RADIAN, [SIN], [TAN], VAR

Product Rev

6K 5.0

Use this operator to calculate the
cosine of a number given in radians or
degrees (see RADIAN command). If “a”
and “b” are coordinates of a point on a
circle of radius “r”, then the angle of
measure “θ” can be defined by the
equation:

cos
b

r
θ = (see illustration at right)

If a value is given in radians and a
conversion is needed to degrees, or
vice-versa, use the formula:

360° = 2π radians.

y

x

r

b

aθ

sin θ = a
r

cos θ = b
r

tan θ = a
b

The graph to the right
shows the amplitude of
y on the unit circle for
different values of x.

y = Cos x

1

0 . 7 0 7

0

- 1

-0 . 7 07

4 4

3π π 5π
4

7π
4

2π3π
22 R a d i a n s

A m p l i t u d e
(y a x i s)

(x a x i s)

2π R a d i an s = 3 6 0 D e g r e e s

π π

Syntax: VARi=COS(r) where i is the variable number and r is a value in either radians or degrees
depending on the RADIAN command. Parentheses (()) must be placed around the COS operand.
The result will be specified to 5 decimal places.

Example:
VAR1=5 * COS(PI/4) ; Set variable 1 equal to 5 times the cosine of

; π divided by 4

Command Descriptions 55

D Distance
Type Motion
Syntax <!><@><a>D<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = distance units (scalable by SCLD)
Range ±999,999,999.99999
Default 4000
Response D: *D+4000,+4000,+4000,+4000 ...

1D: *1D+4000

See Also [D], GO, MA, MC, PSET, SCLD, TSTAT

Product Rev

6K 5.0

The Distance (D) command defines either the number of units the motor will move or the absolute position
it will seek after a GO command. In the incremental mode (MAØ), the distance value represents the total
number of units you wish the motor to move. In the absolute mode (MA1) the distance value represents the
absolute position the motor will end up at; the actual distance traveled will vary depending on the absolute
position of the motor before the move is initiated.

In the incremental mode (MAØ), you can specify a negative distance by placing a dash or hyphen (-) in front
of the distance value (e.g., D-10000). Otherwise, the direction is considered positive. You can change
direction without changing the distance value by using the +, - , or ~ operators (e.g. D+,+,+ , or D-,-,- , or
D~,~,~); the tilde (~) is a means of toggling the direction.

The distance remains set until you change it with a subsequent distance command. Distances outside the valid
range are flagged as an error, returning the message *INVALID DATA-FIELD x , where x is the field number.

UNITS OF MEASURE and SCALING : refer to page 16.

ON-THE-FLY CHANGES : You can change distance on the fly (while motion is in progress) in two ways.
One way is to send an immediate distance command (!D) followed by an immediate go command (!GO).
The other way is to enable the continuous command execution mode (COMEXC1) and execute a buffered
distance command (D) followed by a buffered go command (GO).

Example:
DEL proga ; Delete program called proga
DEF proga ; Begin definition of program called proga
MA0000 ; Incremental index mode for all axes
MC0000 ; Preset index mode for all axes
A10,12,1,2 ; Set the acceleration to 10, 12, 1, and 2 units/sec/sec for

; axes 1, 2, 3 and 4, respectively
AD1,1,1,2 ; Set the deceleration to 1, 1, 1, and 2 units/sec/sec for

; axes 1, 2, 3 and 4, respectively
V1,1,1,2 ; Set the velocity to 1, 1, 1, and 2 units/sec for

; axes 1, 2, 3 and 4, respectively
D100000,1000,10,100 ; Set the distance to 100000, 1000, 10, and 100 units

; for axes 1, 2, 3 and 4, respectively
GO1100 ; Initiate motion on axes 1 and 2, 3 and 4 do not move
END ; End definition of program called proga

56 6K Series Command Reference

[D] Distance Assignment
Type Assignment or Comparison
Syntax See below
Units distance units (scalable by SCLD)
Range ±999,999,999.99999
Default n/a
Response n/a

See Also D, GO, MA, MC, PSET, SCLD

Product Rev

6K 5.0

The distance assignment (D) command is used to compare the programmed distance value to another value
or variable, or to assign the current programmed distance to a variable.

Syntax: VARn=aD where n is the variable number, and a is the axis number, or [D] can be used in an
expression such as IF(1D<25ØØØ) . When assigning the distance value to a variable, an axis
specifier must always precede the D command (e.g., VAR1=1D) or it will default to axis 1. When
making a comparison to the programmed distance, an axis specifier must also be used (e.g.,
IF(1D<2ØØØØ)). The D value used in any comparison, or in any assignment statement is the
programmed D value. If the actual position information is required, refer to the PC command for
steppers, or the PE or ANI commands for servos.

UNITS OF MEASURE and SCALING : refer to page 16.

Example:
IF(2D<25000) ; If the programmed distance on axis 2 is less than 25000 units,

; then do the statements between the IF and NIF
VAR1=2D*2 ; Variable 1 = programmed distance of axis 2 times 2
D,(VAR1) ; Set the distance on axis 2 to the value of variable 1
NIF ; End the IF statement

[DAC] Value of DAC Output
Type Assignment or Comparison
Syntax See below
Units Volts
Range -10.000 to +10.000
Default n/a
Response n/a

See Also DACLIM, SOFFS, TDAC

Product Rev

6K 5.0

Use the DAC command to compare the value of the DAC (commanded analog control signal output) to
another value or variable, or to assign the value of the DAC to a variable.

Syntax: VARn=aDAC where “n” is the variable number, and “a” is the axis number, or DAC can be used in
an expression such as IF(1DAC<6) . An axis specifier must precede the DAC command, or it will
default to axis 1 (e.g., VAR1=1DAC, IF(1DAC<2) , etc.).

Example:
VAR6=2DAC ; Set variable #6 equal to the DAC voltage output to axis #2
IF(2DAC>5.0) ; If the DAC voltage to axis #2 is > 5V, do the IF statement.
TDAC ; Transfer the current DAC values
NIF ; End IF statement

Command Descriptions 57

DACLIM Digital-to-Analog Converter (DAC) Limit
Type Servo; Controller Setup
Syntax <!><@><a>DACLIM<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = volts
Range 0.000 to 10.000
Default 10.000
Response DACLIM: *DACLIM10.000,10.000,10.000,10.000 ...

1DACLIM: *1DACLIM10.00

See Also [DAC], SOFFS, TDAC

Product Rev

6K 5.0

This command sets the maximum absolute value the commanded analog control signal output can achieve.
For example, setting the DAC limit to 8.000V (DACLIM8.ØØØ) will clamp the DAC output range from
-8.000 to +8.000. Use the TDAC command to verify the voltage being commanded at the servo controller's
analog output.

Example:
DACLIM7.000,9.000 ; Axis #1 DAC output is limited to -7.000 to +7.000 volts;

; Axis #2 DAC output is limited to -9.000 to +9.000 volts

 [DAT] Data Assignment
Type Data Storage
Syntax DATi
Units i = data program #
Range 1-50
Default n/a
Response n/a

See Also DATA, [DATP], DATPTR, DATRST, DATTCH

Product Rev

6K 5.0

The Data Assignment (DAT) command recalls data from the data program (DATP). The data is loaded into a
command field, or into a variable (VAR). As the data is loaded, the internal data pointer to the DATP data
increments and points to the next datum for the next DAT command.

Syntax: VARn=DATi where “n” is the variable number, and “i ” is the data program number,
or DAT can be used as a command argument such as A(DAT1),5,4,1Ø

If the data is to be loaded into a command field, the DAT command must be placed within parentheses (e.g.,
AD(DAT2),3,4,5). If the data is loaded into a variable, parentheses are not required. (e.g., VAR1=DAT2).
Rule of Thumb for command value substitutions: If the command syntax shows that the command field
requires a real number (denoted by <r>) or and integer value (denoted by <i>), you can use the DAT
substitution (e.g., HOMV2,1,(DAT1)).

The DAT command cannot be used in an expression, such as IF(DAT2 < 5) or VAR1=1 + DAT3.

Example : Refer to the Reset Data Pointer (DATRST) command example.

DATA Data Statement
Type Data Storage
Syntax <!>DATA=<r>,<r>,<r>,<r>
Units r = data value
Range ±999,999,999.99999999
Default n/a
Response n/a

See Also [DAT], [DATP], DATPTR, DATRST, DATTCH, MEMORY

Product Rev

6K 5.0

The Data Statement (DATA) command is used only in the data programs (DATP) to identify the data
statements. The DATA command is followed by an equal sign (=), and a maximum of four data values. The
maximum number of data statements is limited only by the amount of memory available.

Example : Refer to the Reset Data Pointer (DATRST) command example.

58 6K Series Command Reference

[DATP] Data Program
Type Data Storage
Syntax DATPi
Units i = data program #
Range 1-50
Default n/a
Response n/a

See Also [DAT], DATA, DATPTR, DATRST, DATSIZ, DATTCH, MEMORY

Product Rev

6K 5.0

DATP is not a command, but is the name of the program that is the default for storing data. Fifty such data
programs can be created, DATP1 - DATP5Ø. The program is defined with the DEF command, just as any other
program would be, but only the DATA and END commands are allowed within the program definition. DATPi
will contain the array of data to be recalled by the DATi command. Upon completion of the definition, the
internal data pointer is pointing to the first datum in the data program.

Example:
DEF DATP5 ; Define data program 5
DATA=1,2,3,4 ; Enter data
DATA=5.62,6.52,7.12,8.47 ; Enter data
END ; End program definition
A(DAT5) ; Load data from data program 5 and store in axis 1 acceleration.

; Axis 1 acceleration = 1
V(DAT5) ; Load data from data program 5 and store in axis 1 velocity.

; Axis 1 velocity = 2
D(DAT5) ; Load data from data program 5 and store in axis 1 distance.

; Axis 1 distance = 3
A,(DAT5) ; Load data from data program 5 and store in axis 2 acceleration.

; Axis 2 acceleration = 4
A,,(DAT5) ; Load data from data program 5 and store in axis 3 acceleration.

; Axis 3 acceleration = 5.62

DATPTR Set Data Pointer
Type Data Storage
Syntax <!>DATPTRi,i,i
Units n/a
Range 1st i = program # 1 to 50

2nd i = data element # 1 to 6500
3rd i = increment setting of 1 to 100

Default 1,1,1
Response n/a

See Also [DAT], DATA, [DATP], DATSIZ, DATTCH, [DPTR], TDPTR

Product Rev

6K 5.0

The Set Data Pointer (DATPTR) command moves the internal data pointer to a specific data element in the
specified data program (DATPi). This command also establishes the number of data elements by which the
pointer increments after writing each data element from a DATTCH command, or after recalling a data
element with the DAT command.

The data program selected with the first integer in the DATPTR command becomes the active data program.
Subsequent DATTCH, TDPTR, and DPTR commands will reference the active data program. You can use the
TDPTR command to ascertain the current active data program, as well as the current location of the data
pointer and the increment setting (see TDPTR command description for details).

The DPTR command can be used to compare the current pointer location (the number of the data element to
which the data pointer is pointing) against another value or variable, or to assign the pointer location
number to a variable.

As an example, suppose data program #1 (DATP1) is configured to hold 15 data elements (DATSIZ1,15),
the data pointer is configured to start at the first data element and increment 1 data element after every
DATTCH value is stored (DATPTR1,1,1), and the values of numeric variables #1 through #4 are already
assigned (VAR1=2, VAR2=4, VAR3=8, VAR4=64). If you then enter the DATTCH1,2,3,4 command, the
values of VAR1 through VAR4 will be assigned respectively to the first four data elements in the data
program and the pointer will stop at data element #5. The response to the TPROG DATP1 command would be

Command Descriptions 59

as depicted below (the text is highlighted to illustrate the location of the data pointer after the
DATTCH1,2,3,4 command is executed). The response to the TDPTR command would be *TDPTR1,5,1.

*DATA=2.0,4.0,8.0,64.0
*DATA=0.0,0.0,0.0,0.0
*DATA=0.0,0.0,0.0,0.0
*DATA=0.0,0.0,0.0

Once you have stored (taught) the variables to the data program, you can use the DATPTR command to point
to the data elements and then use the DAT data assignment command to read the stored variables to your
motion program.

During the process of writing data (DATTCH) or recalling data (DAT), if the pointer reaches the last data
element in the program, it automatically wraps around to the first datum in the program and a warning
message is displayed (*WARNING: POINTER HAS WRAPPED AROUND TO DATA POINT 1). This warning will
not interrupt command execution.

Example: (See Also: DATSIZ command)
DEL DATP5 ; Delete data program #5 (DATP5)
DEF DATP5 ; Define data program #5 (DATP5)
DATA=1,2,3,4 ; Enter data
DATA=5.62,6.52,7.12,8.47 ; Enter data
END ; End program definition
A(DAT5) ; Load data from DATP5 and store in axis 1 acceleration.

; Axis 1 acceleration = 1
V(DAT5) ; Load data from DATP5 and store in axis 1 velocity.

; Axis 1 velocity = 2
D(DAT5) ; Load data from DATP5 and store in axis 1 distance.

; Axis 1 distance = 3
DATPTR5,1,1 ; Set the data pointer to datum 1 in DATP5; increment the

; pointer by one after each DAT command
A,(DAT5) ; Load data from DATP5 and store in axis 2 acceleration.

; Axis 2 acceleration = 1
A,,(DAT5) ; Load data from DATP5 and store in axis 3 acceleration.

; Axis 3 acceleration = 2

DATRST Reset Data Pointer
Type Data Storage
Syntax <!>DATRST<i>,<i>
Units n/a
Range 1st i = program # 1 to 50, 2nd i = data element # 1 to 6500
Default n/a
Response n/a

See Also [DAT], DATA, [DATP]

Product Rev

6K 5.0

The Reset Data Pointer (DATRST) command sets the internal data pointer to a specific data element in a data
program (DATP<i>). As data is recalled from a data program with the DAT command, the pointer
automatically increments to the next data element. If the pointer reaches the end of the program, it
automatically wraps around to the first data element in the program. DATRST allows the pointer to be set to
any location within the data program (DATP).

Example :
DEF DATP5 ; Define data program 5
DATA=1,2,3,4 ; Enter data
DATA=5.62,6.52,7.12,8.47 ; Enter data
END ; End program definition
A(DAT5) ; Load data from data program 5 and store in axis 1 acceleration.

; Axis 1 acceleration = 1
V(DAT5) ; Load data from data program 5 and store in axis 1 velocity.

; Axis 1 velocity = 2
D(DAT5) ; Load data from data program 5 and store in axis 1 distance.

; Axis 1 distance = 3
DATRST5,1 ; Set the data pointer to datum 1 in data program 5
A,(DAT5) ; Load data from data program 5 and store in axis 2 acceleration.

; Axis 2 acceleration = 1
A,,(DAT5) ; Load data from data program 5 and store in axis 3 acceleration.

; Axis 3 acceleration = 2

60 6K Series Command Reference

DATSIZ Data Program Size
Type Data Storage
Syntax <!>DATSIZi<,i>
Units n/a
Range 1st i = program # 0 - 50 (0 = disable)

2nd i = data element # 1 - 6500
Default 0,1
Response n/a

See Also [DAT], DATPTR, [DATP], DATTCH

Product Rev

6K 5.0

The Data Program Size (DATSIZ) command creates a new data program (DATP) and establishes the number
of data elements the data program contains.

The DATSIZ command syntax is DATSIZi<,i> . The first integer (i) represents the number of the data
program (1 - 50). You can create up to 50 separate data programs. The data program is automatically given
a specific program name (DATPi). If the program number Ø is selected, then the DATTCH command is
disabled. Before creating a new data program, be sure to delete the existing data program that has the same
name. For example, if you wish to create data program #5 with the DATSIZ5,1,144 command and DATP5
already exists, first delete DATP5 with the DEL DATP5 command and then issue the DATSIZ5,1,144
command.

The second integer represents the total number of data elements (up to 6,500) you want in the data program.
Upon issuing the DATSIZ command, the data program is created with all the data elements initialized with a
value of zero. (The DATSIZ command is equivalent to creating a DATP program and filling it with
DATA=Ø.Ø,Ø.Ø,Ø.Ø,Ø.Ø commands up to the size indicated in the second integer.)

Each data statement, which contains four data elements, uses 43 bytes of memory. This amount of memory
is subtracted from the memory allocated for user programs (see MEMORY command). Use the TDIR
command to determine the amount of remaining memory for user program storage.

The data program has a tabular structure, where the data elements are stored 4 to a line. Each line of data
elements is called a data statement. Each element is numbered in sequential order from left to right (1 - 4)
and top to bottom (1 - 4, 5 - 8, 9 - 12, etc.). You can use the TPROG DATPi command ("i " represents the
number of the data program) to display all the data elements of the data program. For example, if you issue
the DATSIZ1,13 command, data program #1 (called DATP1) is created with 13 data elements initialized to
zero. The response to the TPROG DATP1 command is depicted below. Each line (data statement) begins with
DATA=, and each data element is separated with a comma.

*DATA=Ø.Ø,Ø.Ø,Ø.Ø,Ø.Ø
*DATA=Ø.Ø,Ø.Ø,Ø.Ø,Ø.Ø
*DATA=Ø.Ø,Ø.Ø,Ø.Ø,Ø.Ø
*DATA=Ø.Ø

The DATSIZ, DATTCH, and DAT commands will typically be used as a teach mode in this manner:

1. Issue the DATSIZ command to create (or recall) the data program.

2. Store variable data (e.g., position, acceleration, velocity, etc.) to numeric variables (VAR).

3. Use DATTCH commands to store the data from the numeric variables into the data program. You can use
the data pointer (DATPTR) command to select any data element in the data program, and to determine
the number by which the pointer increments after each value from the DATTCH command is stored.
NOTE: If the DATTCH command is issued without having issued the DATSIZ command, an error will
result.

4. Use the DAT commands to read the stored data from the data program into the variable parameters of
your motion program. You can use the DATPTR command to select any data element in the data
program, and to determine the number by which the pointer increments after each DAT command.

Any use of the DATTCH and DAT commands will reference the current active data program (DATP) specified
by the first integer of the last DATSIZ or DATPTR command. If you want to use the DATSIZ command to
recall a data program, and not create one, specify only the first integer and not the second integer. For
example, DATSIZ7 recalls data program #7 (DATP7) as the active data program.

Command Descriptions 61

Example (for 4 axes):
DEL DATP5 ; Delete existing data program #5 (DATP5)
DATSIZ5,200 ; Create data program #5 (DATP5) with 200 data elements
DEF TEACH ; Begin definition of program called TEACH
COMEXC0 ; Disable continuous command execution mode
MA1111 ; Enable the absolute positioning mode for all axes
HOM1111 ; Home all axes (absolute position counter set to zero after homing)
DATPTR5,1,1 ; Set data pointer to data element #1 in DATP5, and increment the

; pointer by one element after every DATTCH value or DAT command
REPEAT ; Set up a loop for teaching the positions
JOY1111 ; Enable joystick mode on all axes so that you can start moving the

; axes into position with the joystick. Command processing stops
; here until you activate trigger input TRG-A1 (IN.2) to disable the
; joystick mode and execute the rest of the commands in the
; repeat/until loop (assign the motor positions to the variables and
; then store the positions from the variables to the data program).

VAR1=1PM ; Store the current position of axis #1 in variable #1
VAR2=2PM ; Store the current position of axis #2 in variable #2
VAR3=3PM ; Store the current position of axis #3 in variable #3
VAR4=4PM ; Store the current position of axis #4 in variable #4
DATTCH1,2,3,4 ; Store variables #1 - #4 into consecutive data elements
WAIT(IN.2=b0) ; Wait for the "joystick release" input (TRG-A1) to be de-activated
UNTIL(DPTR=1) ; Repeat loop until the data pointer wraps around to data element #1
HOM1111 ; Home all axes (absolute position counter set to zero after homing)
DATPTR5,1,1 ; Set data pointer to data element #1, read one data element at a time
REPEAT ; Set up a repeat/until loop to read all data elements
D(DAT5),(DAT5),(DAT5),(DAT5) ; Read position data from the data program to the

; distance command
GO1111 ; Make the move to the positions that were taught
T.2 ; Wait 0.2 seconds
UNTIL(DPTR=1) ; Repeat loop until the data pointer wraps around to data element #1
END ; End definition of program called TEACH

DATTCH Data Teach
Type Data Storage
Syntax <!>DATTCHi<,i,i,i>
Units i = number of a numeric variable
Range i = 1 - maximum number of numeric variables
Default n/a
Response n/a

See Also [DAT], [DATP],DATPTR, DATSIZ, DATTCH, VAR

Product Rev

6K 5.0

The Data Teach (DATTCH) command stores the values from the specified numeric variables (VAR) into the
currently active data program (i.e., the data program specified with the last DATSIZ or DATPTR
command). The value that is in the specified variable at the time the DATTCH command is executed is the
value that is stored in the data program.

If the DATTCH command is issued without having first issued the DATSIZ command, an error will result. If a
zero is entered in the first integer of the DATSIZ command (e.g., DATSIZØ), the DATTCH command is
disabled.

As indicated by the number of integers in the syntax, the maximum number of variables that can be stored in
the data program per DATTCH command is 4. The variables are stored in the data program, starting at the
current location of the data pointer. The data pointer's position can be moved to any data element in any
data program by use of the DATPTR command. After each successive DATTCH value is stored, the data
pointer will increment by the number specified in the third integer of the DATPTR command. Any data
element in the data program can be edited by setting the data pointer to that element and then issuing the
DATTCH command.

As an example, suppose data program #1 (DATP1) is configured to hold 15 data elements (DATSIZ1,15),
the data pointer is configured to start at the first data element and increment 1 data element after every
DATTCH value is stored (DATPTR1,1,1), and the values of numeric variables #1 through #4 are already
assigned (VAR1=2, VAR2=4, VAR3=8, VAR4=64). If you then enter the DATTCH1,2,3,4 command, the
values of VAR1 through VAR4 will be assigned respectively to the first four data elements in the data

62 6K Series Command Reference

program and the pointer will stop at data element #5. The response to the TPROG DATP1 command would be
as follows (the text is highlighted to illustrate the location of the data pointer after the DATTCH1,2,3,4
command is executed).

*DATA=2.Ø,4.Ø,8.Ø,64.Ø
*DATA=Ø.Ø,Ø.Ø,Ø.Ø,Ø.Ø
*DATA=Ø.Ø,Ø.Ø,Ø.Ø,Ø.Ø
*DATA=Ø.Ø,Ø.Ø,Ø.Ø

Example: Refer to the DATSIZ command.

DCLEAR Clear Display
Type Display (RP240) Interface
Syntax <!>DCLEARi
Units n/a
Range i = 0 (clear all lines), 1 (clear line 1), or 2 (clear line 2)
Default n/a
Response n/a

See Also DLED, DPASS, DPCUR, DSTP, DVAR, DVARB, DVARI, DWRITE

Product Rev

6K 5.0

The Clear Display (DCLEAR) command clears lines (as specified with i) of the RP240 display. After clearing a
line, the cursor will be reset to the beginning of that line (or to the beginning of line 1 if all lines are cleared).

DEF Begin Program/Subroutine/Path Definition
Type Program or Subroutine Definition
Syntax <!>DEF<t>
Units t = alpha text string (name of a program)
Range text string of 6 characters or less
Default n/a
Response n/a

See Also $, DEL, END, ERASE, GOBUF, GOSUB, GOTO, MEMORY, PCOMP, PLCP,
PRUN, RUN, [SS], TDIR, TMEM, TPROG, TSS, TSTAT

Product Rev

6K 5.0

The Define a Program/Subroutine (DEF) command is the beginning of a program, path contour, or subroutine
definition. The syntax for the command is DEF followed by 6 or fewer alpha-numeric characters. The first
character may not be a number. Refer to the MEMORY command description for information on program size
restriction and total number of programs possible per product.

All programs are stored in a binary fashion within the 6K Series products. A program transferred back out
(TPROG) after it has been defined (DEF), may not look identical to the program defined. However, the
program is functionally identical.

NOTE

When defining a program and the memory limitation is exceeded, an error message will
be generated, and bit 11 of the system status register will be set (SS or TSS). The
program will be stored up to the point where the memory limitation was exceeded.

There is no actual difference in the definition of, or execution of a program versus the definition, or
execution of a subroutine. Both a program and a subroutine are defined as the set of commands between a
DEF<t> and an END command. If an invalid program/subroutine name is entered, an error message will be
generated. An invalid program/subroutine name is any name that is also a current command (An example of
an invalid name would be DEFhomx, because it is impossible for the operating system to distinguish the
homx subroutine call from the HOMx111 go home command.). A subroutine/program definition cannot be
assigned the name “CLR” and cannot contain any of the following characters:
! , —, #, $, %, ̂ , &, * , (,) , +, - , _, =, { , } , \ , | , " , : , ; , ' , <, >, , , . , ?, / .

The RUN command can be used to start executing a program/subroutine. The program name by itself can
also be used to start executing a program/subroutine. A compiled profile (contour or compiled motion
profile) must be compiled with the PCOMP command before it can be executed with the PRUN command; and
a compiled PLC (PLCP) program must be compiled with PCOMP before is can be executed with the SCANP
or PRUN command.

Command Descriptions 63

The GOTO and GOSUB commands can be used within a program/subroutine to go to another
program/subroutine.

NOTE: Program, compiled profile, or subroutine names must be deleted (DEL) before they can be
redefined.

Example:
DEL pick ; Delete program named pick
DEF pick ; Begin definition of program named pick
GO1100 ; Initiate motion on axes 1 and 2, not on axes 3 and 4
END ; End program definition
RUN pick ; Execute program pick

DEL Delete a Program/Subroutine/Path
Type Program or Subroutine Definition
Syntax <!>DEL<t>
Units t = alpha text string (name of a program)
Range text string of 6 characters or less
Default n/a
Response n/a

See Also $, DEF, END, ERASE, GOSUB, GOTO, RUN

Product Rev

6K 5.0

The Delete a Program/Subroutine (DEL) command removes a program, path contour, or subroutine definition.
The syntax for the command is DEL followed by 6 or fewer alpha-numeric characters. To delete all programs
refer to the ERASE command. The DEL command can be placed inside a program (e.g., to delete a DATP
program).

To edit an existing program, you must first delete it. The DEL command will not delete a label ($).

Example:
DEF pick ; Begin definition of program named pick
GO1100 ; Initiate motion on axes 1 and 2
END ; End program definition
RUN pick ; Execute program pick
DEL pick ; Deletes program named pick

DJOG Enable RP240 Jog Mode
Type Display (RP240) Interface
Syntax <!>DJOG
Units b = 0 or 1
Range 0 = disable, 1 = enable
Default 0
Response DJOG: *DJOG0

See Also JOG, JOGA, JOGAA, JOGAD, JOGADA, JOGVH, JOGVL

Product Rev

6K 5.0

The DJOG command allows you to branch into the RP240 front panel jog mode from within your user-
defined program, adjust the position of the axes, and then return to program execution.

The DJOG1 command enables the RP240 jog mode on all axes. Once the RP240 jog mode is enabled, you
can use the RP240 arrow keys to jog individual axes. Unlike the JOG command, command processing is
suspended after the DJOG1 command is issued. Jogging acceleration and deceleration are performed with
the parameters set with the Jog Acceleration (JOGA) and Jog Deceleration (JOGAD) commands. Jogging
velocities are set with the Jog Velocity High (JOGVH) and the Jog Velocity Low (JOGVL) commands. Once
in the RP240 Jog Mode, you can switch between low and high jog velocities for any axis, and you can also
modify the two jog velocities using the RP240's EDIT key.

To disable the RP240 jog mode, press the MENU RECALL key or issue the immediate !DJOGØ command.
Upon exiting the RP240 jog mode, the RP240's display is cleared.

To have the jog mode continually enabled during program execution, you must use jog inputs and the JOG
command.

64 6K Series Command Reference

[DKEY] Value of RP240 Key
Type Display (RP240) Interface; Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also DCLEAR, DPCUR, [DREAD], DREADF, DREADI, DVAR, DWRITE

Product Rev

6K 5.0

The DKEY operator allows you to read the current state of the RP240 key-pad and use it in comparison
commands (e.g., IF , WHILE, etc.) or variable assignments. NOTE: If two or more keys are pressed
simultaneously, DKEY will report -1.

Syntax: VARn=DKEY where “n” is the variable number,
or DKEY can be used in an expression such as IF(DKEY=-1)

The value reported by the DKEY command is defined by the following table:

Value of DKEY Key currently active
-1 None or multiple keys
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 .
11 +/-
12 C/E
13 ENTER
14 Menu Recall
15 STOP
16 PAUSE
17 CONTINUE

21 F1
22 F2
23 F3
24 F4
25 F5
26 F6

Command Descriptions 65

DLED Turn RP240 Display LEDs On/Off
Type Display (RP240) Interface
Syntax <!>DLED
Units n/a
Range b = 0 (off) or 1 (on)
Default n/a
Response DLED: *DLED1101_0001

See Also DCLEAR, DPASS, DPCUR, DSTP, DVAR, DVARB, DVARI, DWRITE

Product Rev

6K 5.0

The DLED command controls the state of the 8 programmable LEDs on the RP240. It is legal to substitute a
binary variable (VARB) for the DLED command.

Example:
DLED11XXXX01 ; Turn on LEDs 1, 2, and 8; turn off LED 7; leave LEDs 3,4,5,

; and 6 unchanged
VARB1=b10101010 ; Set bits 1, 3, 5 & 7 low, and bits 2, 4, 6, & 8 high
DLED(VARB1) ; Turn on LEDs 1, 3, 5 & 7; turn off LEDs 2, 4, 6, & 8

DPASS Change RP240 Password
Type Display (RP240) Interface
Syntax <!>DPASS<i>
Units i = integer of up to 9 characters
Range 1 - 9999
Default For the 6K: DPASS6850
Response DPASS: *DPASS6850

See Also DCLEAR, DLED, DPCUR, DSTP, DVAR, DVARB, DVARI, DWRITE

Product Rev

6K 5.0

The DPASS command changes the RP240 password. If the default password is not changed by the user, then
there will be no password protection.

Example:
DPASS2001 ; New password = 2001

DPCUR Position Cursor
Type Display (RP240) Interface
Syntax <!>DPCURi,i
Units 1st i = line number, 2nd i = column
Range line number = 1 or 2, column = 0 - 39
Default n/a
Response n/a

See Also DCLEAR, DLED, DPASS, DREADI, DSTP, DVAR, DVARI, DVARB, DWRITE

Product Rev

6K 5.0

The Position Cursor (DPCUR) command changes the location of the cursor on the RP240 display. The RP240
lines are numbered from top to bottom, 1 to 2. The columns are numbered left to right, 0 to 39.

F2 F3 F4 F5 F6F1

1 2 3 4 5 6 7 8 9 10 1112 1314 1516 1718 1920 2122 2324 2526 2728 2930 3132 3334 3536 3738 390

1 2 3 4 5 6 7 8 9 10 1112 1314 1516 1718 1920 2122 2324 2526 2728 2930 3132 3334 3536 3738 390

Example:
DPCUR2,15 ; Position cursor on line 2, column 15

66 6K Series Command Reference

[DPTR] Data Pointer Location
Type Data Storage; Assignment or Comparison
Syntax see below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [DAT], DATA, [DATP], DATPTR, DATSIZ, TDPTR

Product Rev

6K 5.0

The DPTR command can be used to compare the current pointer location (the number of the data element to
which the data pointer is pointing) against another value or numeric variable, or to assign the pointer location
number to a variable. The current data pointer location is referenced to the current active data program
specified in the first integer of the last DATSIZ or DATPTR command.

Syntax: VARn=DPTR where “n” is the variable number,
or DPTR can be used in an expression such as IF(DPTR=1)

Example :
DATSIZ4,200 ; Create data program called DATP4 with 200 data elements
DATPTR4,20,2 ; Set the data pointer to data element #20 in DATP4 and set the

; increment to 2 (DATP4 becomes the current active data program)
VAR1=DPTR ; Assign the number of the pointer location in DATP4 to numeric

; variable #1
VAR1 ; Response is *VAR1=20. Indicates that the data pointer is

; pointing to data element #20.

[DREAD] Read RP240 Data
Type Display (RP240) Interface
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [DREADF], DREADI, DVAR, DWRITE, [SS], TSS, VAR

Product Rev

6K 5.0

The Read RP240 Data (DREAD) command allows you to store numeric data entered in from the RP240's
keypad into a variable. As the user presses RP240 numeric keys, the data will be displayed on the RP240
starting at the location equal to the current cursor location + 1 (for a sign bit):

VAR1=DREAD Wait for RP240 numeric entry (terminated with the ENTER key), then set
VAR1 equal to that value.

Additionally the DREAD command can be used as a variable assignment within another command that is
expecting numeric data (Rule of Thumb: If the command syntax shows that the command field requires a
real number (denoted by <r>) or and integer value (denoted by <i>), you can use the DREAD substitution.):

A(DREAD),5.0 Wait for RP240 numeric entry (terminated with the ENTER key), then set axis
#1 acceleration to that value and set axis #2 acceleration to 5.0.

The DREAD command cannot be used in an expression such as VAR5=4+DREAD or IF(DREAD=1) .

Command Descriptions 67

[DREADF] Read RP240 Function Key
Type Display (RP240) Interface
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [DREAD], DREADI, DVAR, DWRITE, [SS], TSS, VAR, VARI

Product Rev

6K 5.0

The Read RP240 Function Key (DREADF) command allows you to store numeric data entered in from a
RP240 function key into a variable. Function key 1 (F1) = 1, F2 = 2, etc., and MENU RECALL (F0) = 0.

Rule of Thumb for command value substitutions: If the command syntax shows that the command field
requires a real number (denoted by <r>) or and integer value (denoted by <i>), you can use the DREADF
substitution (e.g., V2,(DREADF)).

Example:
VAR1=DREADF ; Wait for RP240 function key entry, then set VAR1 equal to that

; value
IF(VAR1=5) ; If function key 5 was hit then ...
GOx1 ; Start motion on axis #2
NIF ; End if statement

DREADI RP240 Data Read Immediate Mode
Type Display (RP240) Interface
Syntax <!>DREADI
Units n/a
Range 1 (enable) or 0 (disable)
Default 0
Response DREADI: *DREADI0

See Also DPCUR, [DREAD], [DREADF], VAR, VARI

Product Rev

6K 5.0

The DREADI1 command allows continual numeric or function key data entry from the RP240 (when used in
conjunction with the DREAD and/or DREADF commands). In this immediate mode, program execution is not
paused (waiting for data entry) when a DREAD or DREADF command is encountered.

NOTES

• While in the Data Read Immediate Mode (DREADI1), data is read into VAR and VARI variables only
(e.g., A(DREAD) or V(DREAD) substitutions are not valid).

• This feature is not designed to be used in conjunction with the RP240's standard menus (see
Programmer's Guide for menu structure); the RUN and JOG menus will disable the DREADI mode.

• After the RP240’s ENTER key is pressed (to enter numeric data), the value is displayed on the
RP240 display at the 1,30 location (showing 10 significant digits).

• Do not assign the same variable to read numeric data and function key data—pick only one.

Simple Numeric Data Entry (example):
VAR1=25000 ; Initialize variable #1
DCLEAR0 ; Clear entire RP240 display
DWRITE"ENTER VALUE > " ; Send message to RP240 display starting at location 1,0
DREADI1 ; Enable RP240 data read immediate mode
VAR1=DREAD ; Set variable #1 (VAR1) to receive data entered on the RP240.

; Current VAR1 data will be displayed at cursor location 1,30
; (fixed). New data will be displayed at current cursor location
; as defined by the previous DCLEAR, DWRITE and DPCUR commands—
; this is the home cursor location for subsequent data entries.

L77 ; Start loop of 77 repetitions
D(VAR1) ; Set distance equal to the current (last entered) RP240 data
GO1 ; Initiate move on axis one
LN ; End loop
DREADI0 ; Exit RP240 data read immediate mode

68 6K Series Command Reference

; As the loop is running, the user may enter in a new distance value
; (which must be terminated with the ENTER key) via the RP240 numeric keypad.
; The numeric keystrokes cause the digits to be displayed on the RP240
; starting at the home cursor location (see VAR1=DREAD description in the
; example above). When the ENTER key is pressed, the variable is updated;
; the most significant 10 digits (total, including sign & decimal point
; if appropriate) of this variable are displayed at cursor location 1,30;
; and then the data entry field (starting at home) is cleared.
; The 6K controller is ready to accept new data.

Numeric Data & Function Key Entry (example):
VAR1=25000 ; Initialize variable #1
VAR2=1 ; Initialize variable #2
DCLEAR0 ; Clear the RP240 display
DPCUR2,0 ; Place RP240 cursor on line 2, column 0 (bottom left corner of

; display)
DWRITE" SLOW FAST" ; Send message to RP240 display starting at location 2,0
DPCUR1,0 ; Place RP240 cursor on line 1, column 0 (top left corner)
DWRITE"ENTER VALUE > " ; Send message to RP240 display starting at location 1,0
DREADI1 ; Enable RP240 data read immediate mode
VAR1=DREAD ; Set variable #1 (VAR1) to receive numeric data entered on the

; RP240's keypad
VAR2=DREADF ; Set VAR2 to receive RP240 function key input
L ; Begin loop
IF(VAR2=1) ; If function key 1 was last pressed, do the IF statement

; (slow velocity)
V3.6 ; Set velocity to 3.6 units per second
NIF ; End IF statement
IF(VAR2=2) ; If function key 2 was last pressed, do the IF statement

; (fast velocity)
V6.4 ; Set velocity to 6.4 units per second
NIF ; End IF statement
D(VAR1) ; Set distance equal to the current (last entered) RP240 numeric

; data
GO1 ; Initiate the move on axis one
LN ; End loop
; As the loop is running, the user may enter in a new distance value and/or
; choose between two different preset velocities. The display does not change
; when a function key is pressed.

Multiple Numeric Data Entry (example):
VAR2=0 ; Initialize variable #2 (VAR2)
VAR3=99 ; Initialize variable #3 (VAR3)
VAR4=10 ; Initialize variable #4 (VAR4)
VAR5=25000 ; Initialize variable #5 (VAR5)
DCLEAR0 ; Clear the entire RP240 display
DPCUR2,0 ; Place RP240 cursor on line 2, column 0 (bottom left corner)
DWRITE" ACCEL VEL DIST" ; Send message to RP240 display starting at location 2,0
DREADI1 ; Enable RP240 data read immediate mode
VAR2=DREADF ; VAR2 will capture function key entries (0 - 6)
L ; Begin loop
IF(VAR2<>0) ; If a new function key is pressed, do the following code:
DCLEAR1 ; Clear line one of the RP240 display (top line)
IF(VAR2=1) ; If function key 1 is pressed, do the IF statement

; (input acceleration)
DWRITE"ENTER ACCEL VALUE> " ; Send message to RP240 display starting at location 1,0
VAR3=DREAD ; Set VAR3 equal to the numeric data entered on the RP240's keypad
NIF ; End IF statement
IF(VAR2=2) ; If function key 2 is pressed, do the IF statement (input velocity)
DWRITE"ENTER VEL VALUE> " ; Send message to RP240 display starting at location 1,0
VAR4=DREAD ; Set VAR4 equal to the numeric data entered on the RP240's keypad
NIF ; End IF statement
IF(VAR2=3) ; If function key 3 is pressed, do the IF statement (input distance)
DWRITE"ENTER DIST VALUE> " ; Send message to RP240 display starting at location 1,0
VAR5=DREAD ; Set VAR5 equal to the numeric data entered on the RP240's keypad
NIF ; End IF statement
VAR2=0 ; Prohibit repeated execution of this code
VAR2=DREADF ; Re-enable VAR2 to capture new function key entry
NIF ; End IF statement
A(VAR3) ; Set acceleration equal to the numeric value of VAR3

Command Descriptions 69

V(VAR4) ; Set velocity equal to the numeric value of VAR4
D(VAR5) ; Set distance equal to the numeric value of VAR5
GO1 ; Initiate the move on axis one
LN ; End loop
; As the loop is running, the user may select among the three variables he wants
; to enter data into. These three variables correspond with acceleration,
; velocity, and distance. Each time the function key variable changes from 0
; (to 1, 2 or 3), then a new message is displayed and the VARi=DREAD command
; will put the current value of that variable in location 1,30 (upper right hand
; corner of the display). For example, the user can choose VEL (F2) and then
; repeatedly change VAR4 by entering a value on the RP240 numeric keypad and
; pressing the ENTER key. Each time through the loop, the VAR4 data is loaded
; into the V command.

DRES Drive Resolution
Type Drive Configuration
Syntax <!><@><a>DRES<i>,<i>,<i>,<i>,<i>,<i>,<i>,<i>
Units i = steps/rev
Range 200-1024000
Default 4000
Response DRES: *DRES4000,4000,4000,4000 ...

1DRES: *1DRES4000

See Also DRFEN, DRFLVL, DRIVE, ERES, PULSE, SCALE, TSTAT

Product Rev

6K 5.0

(applicable only to
stepper axes)

The Drive Resolution (DRES) command is used to match the controller resolution to that of the motor/drive
to which it is attached. This command is necessary in order to accurately calculate motor drive accelerations
and velocities whether scaling is disabled (SCALEØ), or enabled (SCALE1).

Example:
DRES200,10000,25000,25000 ; Set drive res. for axis 1 to 200 steps/rev, axis 2
 ; to 10000 steps/rev, and axes 3 & 4 to 25000 steps/rev

DRFEN Enable/Disable Checking the Drive Fault Input
Type Drive Configuration
Syntax <!><@><a>DRFEN
Units b = enable bit
Range b = 1 (check the state of the drive fault input),

 0 (don’t check the state of the drive fault input), or
 x (don’t change)

Default 0 (disabled)
Response DRFEN: *DRFEN0000_0000

1DRFEN: *1DRFEN0

See Also DRFLVL, DRIVE, [AS], [ASX], [ER], ERROR, TAS, TASX, TER

Product Rev

6K 5.0

Use the DRFEN command to enable or disable checking the state of the drive fault input for each axis. The
default condition is that the drive fault input is not checked (DRFEN0); therefore, a drive fault would not be
detectable. Even with DRFEN enabled (DRFEN1), the controller will not respond to a drive fault cond
ition until the respective axis is enabled with the DRIVE1 command.

DRFEN1 is required before you can use these functions (remember that the default power-up state is DRFEN0):

• AS, TAS, and TASF (axis status) bit #14 reports if a drive fault occurred.
• ERROR bit #4 enables checking for the occurrence of a drive fault, and when is does, to branch to the

ERRORP program.
• ER, TER, and TERF (error status) bit #4 reports if a drive fault occurred (if ERROR bit #4 is enabled).
• An output assigned the “Fault Indicator” function (OUTFNCi-F) will turn on when a drive fault

occurs or a user fault input (INFNCi-F or LIMFNCi-F) is activated.

Regardless of the state of the DRFEN command, ASX, TASX, and TASXF (extended axis status) bit #4 will
accurately report the hardware state of the drive fault input.

The DRFEN command setting is not saved in the controller’s battery backed RAM.

70 6K Series Command Reference

DRFLVL Drive Fault Level
Type Drive Configuration
Syntax <!><@><a>DRFLVL
Units n/a
Range b = 0 (active low), 1 (active high), or X (don't change)
Default 1
Response DRFLVL *DRFLVL1111_1111

1DRFLVL *1DRFLVL1

See Also [AS], [ASX], DRIVE, DRES, DRFEN, [ER], TAS, TASX, TER

Product Rev

6K 5.0

The Drive Fault Level (DRFLVL) command is used to individually set the fault input level for each axis. To
enable the drive fault inputs for each axis, use the DRFEN command (default power-up state is disabled).
Use the following table for setting the drive fault level for Compumotor drives.

Compumotor Product Drive Fault Level

GEMINI, APEX, Dynaserv, LN, OEM Series, S, TQ, ZETA Active High (DRFLVL1)
SV, BLH, L, LE, PDS, PK130 Active Low (DRFLVLØ)

The drive fault input schematic is shown in your product’s Installation Guide.

Drive Fault Input Status:

Use bit #14 in the TAS, TASF, or AS commands to check the status of the drive fault input (if the drive is
enabled and the drive fault input is enabled). Bit #4 of the TASX, TASXF, and ASX commands reports the
status even if the drive and the drive fault input are disabled.

Drive Fault Level (DRFLVL) Status of device driving the Fault input AS bit #14 and ASX bit #4

DRFLVL1 (active high) OFF or not connected (not sinking current) 1 (drive fault has occurred)
ON (sinking current) Ø

DRFLVLØ (active low) OFF or not connected (not sinking current) Ø
ON (sinking current) 1 (drive fault has occurred)

When a drive fault occurs, motion will be stopped on all axes (stopped at the LHAD & LHADA deceleration
values) and program execution will be terminated.

Example:
DRFLVL0101 ; Set drive fault level to be active low on axes 1 & 3,

; active high on axes 2 & 4

DRIVE Drive Enable
Type Drive Configuration
Syntax <!><@><a>DRIVE
Units n/a
Range b = 0 (shutdown), 1 (enable), or X (don't change)
Default 0 (shutdown)
Response DRIVE *DRIVE1111_1111

1DRIVE *1DRIVE1

See Also [AS], [ASS], AXSDEF, DRFEN, DRFLVL, DRES, KDRIVE, TAS,
TASX, TER

Product Rev

6K 5.0

The Drive Enable command energizes (DRIVE1) or de-energizes (DRIVEØ) a Compumotor motor/drive
combination. The internal shutdown output circuit is illustrated in the product's Installation Guide.
NOTE: If the Disable Drive on Kill (KDRIVE) mode is enabled, the drive will be disabled in the event of a
kill command or kill input.

Command Descriptions 71

Steppers: DRIVE1 energizes the motor drive (Shutdown+ sinks current and Shutdown- sources current).
DRIVEØ de-energizes the motor drive (Shutdown+ sources current and Shutdown- sinks current).

Servos: DRIVE1 energizes the motor drive (the SHTNO relay output is connected to COM, and the SHTNC

relay output is disconnected from COM). DRIVEØ de-energizes the motor drive (the SHTNO relay
output is disconnected from COM, and the SHTNC relay output is connected to COM). DRIVE1
also sets the commanded position (TPC) equal to the actual position (TPE).

NOTE: The DRIVEØ command will not de-energize a motor drive during motion.

Example:
DRIVE1110 ; Energize drives 1 through 3, de-energize drive 4

DRPCHK RP240 Check
Type Communication Interface; Display (RP240) Interface
Syntax <!>DRPCHK<i>
Units n/a
Range 0-3
Default 0 for port COM1, 3 for port COM2 (PORT command setting

determines which COM port's DRPCHK setting is checked)
Response DRPCHK *DRPCHK3

See Also LOCK, PORT, XONXOFF

Product Rev

6K 5.0

The Remote COM Port Check (DRPCHK) command is used to indicate whether a port is to be used with an
RP240 or with 6K language commands. The DRPCHK command affects the COM port selected with the last
PORT command. The DRPCHK command value is automatically saved in battery-backed RAM.

NOTE: COM1 is the connector labeled “RS-232” and COM2 is the connector labeled “RS-232/485.”

DRPCHKØ......... The serial port will be used for 6K language commands. This is the default setting for
COM1, and if using RS-485 half duplex on COM2. Power-up messages appear on all ports
set to DRPCHKØ. If you ordered the FieldBus version of the 6K product, COM2 is factory-
set to DRPCHKØ.

DRPCHK1......... A check for the presence of an RP240 will be performed at power-up/reset. If an RP240 is
present, the 6K product will initialize the RP240. If an RP240 is not present, the port may
be used for 6K language commands. Note that RP240 commands will be sent at power-up
and reset.

DRPCHK2......... A status check for the presence of an RP240 will be periodically performed (every 5-6
seconds). If an RP240 is plugged in, the 6K product will initialize the RP240. Press F6 on
the RP240 periodically until the 6K product recognizes the RP240. (The RP240 indicates
that it has been recognized by beeping when F6 is pressed.)

DRPCHK3......... A status check for the presence of an RP240 will be performed at power-up/reset. If an
RP240 is present, the 6K product will initialize the RP240. If an RP240 is not present, no
commands except DWRITE will have any effect for that port and the COM port will ignore
received characters. This is the default setting for COM2, unless you are using RS-485
multi-drop communication (in which case the default changes to DRPCHKØ).

Each port has its own DRPCHK value, but only one may be set to DRPCHK2 or DRPCHK3 at any time.

RS-485 Communication: If you are using RS-485 communication in a multi-drop (requires you to change
an internal DIP switch to select half duplex), the default setting for COM2 is DRPCHKØ. If the internal DIP
switch setting is left at full duplex, the default setting for COM2 is DRPCHK3.

FieldBus Option: If you ordered the FieldBus version of the 6K product, COM2 is factory-set to DRPCHKØ.

Default values are used until DRPCHK is set for the first time. DRPCHK values are automatically saved in non-
volatile memory. They do not change until you set new values. It may be advisable to include the DRPCHK
command in your start-up program to ensure that it powers up in the correct setting for your current
application.

72 6K Series Command Reference

DSTP Enable/Disable RP240 Stop Key
Type Display (RP240) Interface
Syntax <!>DSTP
Units b = enable bit
Range b = 1 (enable) or 0 (disable)
Default 1 (enable)
Response DSTP *DSTP1

See Also DLED, [DREAD], [DREADF]

Product Rev

6K 5.0

Use the DSTP command to enable or disable the stop key on the RP240 panel.

DVAR Display Variable on RP240
Type Display (RP240) Interface
Syntax <!>DVARi,<i>,<i>,<i>
Units See below
Range n/a
Default See below
Response n/a

See Also [DREAD], [DREADF], DVARB, DVARI, DWRITE, VAR

Product Rev

6K 5.0

The Display Variable on RP240 (DVAR) command is used to display a numeric variable on the RP240's
LCD at the current cursor location:

1st i = Variable number [Range 1-225]
2nd i = Number of whole digits displayed (left of decimal point) [Range 0-9]
3rd i = Number of fractional digits displayed (right of decimal point) [Range 0-8]
4th i = Sign bit: 0 = no sign displayed, 1 = display + or -

Example :
VAR2=542.14 ; Assign the value 542.14 to variable #2
DVAR2,6,3,1 ; Display variable #2 as +000542.140
DVAR2,3,1,0 ; Display variable #2 as 542.1
DVAR2,3,,1 ; Display variable #2 as +542

Command Descriptions 73

DVARB Display Binary Variable on RP240
Type Display (RP240) Interface
Syntax <!>DVARBi,<i>
Units See below
Range n/a
Default See below
Response n/a

See Also DVAR, DVARI, DWRITE, VARB

Product Rev

6K 5.0

The Display Binary Variable on RP240 (DVARB) command is used to display a binary variable on the
RP240’s LCD at the current cursor location:

1st i = Variable number [Range 1-125]
2nd i = Number of bits displayed [Range 1-32]

Example
VARB2=b11001X11 ; Assign the value 11001X11 to binary variable #2
DVARB2,6 ; Display binary variable #2 as 1100_1X
DVARB2,3 ; Display binary variable #2 as 110
DVARB2,1 ; Display binary variable #2 as 1

DVARI Display Integer Variable on RP240
Type Display (RP240) Interface
Syntax <!>DVARIi,<i>,<i>
Units See below
Range n/a
Default See below
Response n/a

See Also DVAR, DVARB, DWRITE, VARI

Product Rev

6K 5.0

The Display Integer Variable on RP240 (DVARI) command is used to display an integer variable on the
RP240’s LCD at the current cursor location:

1st i = Variable number [Range 1-225]
2nd i = Number of whole digits displayed [Range 0-9]
3rd i = Sign bit: 0=no sign displayed, 1=display + or - sign

Example
VARI2=542 ; Assign the value 542 to integer variable #2
DVARI2,6,1 ; Display integer variable #2 as +000542
DVARI2,3,1 ; Display integer variable #2 as =+542

74 6K Series Command Reference

DWRITE Write Text on RP240
Type Display (RP240) Interface
Syntax <!>DWRITE"message"
Units n/a
Range Message can be ≤ 80 characters (may not use characters ", \, * or :)
Default See below
Response n/a

See Also DCLEAR, DLED, DPASS, DPCUR, DVAR, DVARB, DVARI, PORT

Product Rev

6K 5.0

The Write Text on RP240 (DWRITE) command displays a message on the RP240's LCD starting at the
current cursor location. A message is a character string of up to 80 characters in length. The characters
within the string may be any characters except quote ("), backslash (\), asterisk (*), and colon (:). Strings
that have lower-case letters will be converted to upper case prior to display (see example).

The following graphic shows the location of the RP240's two-line, 40-character display. It also shows the
characters in relation to the function keys.

F2 F3 F4 F5 F6F1

1 2 3 4 5 6 7 8 9 10 1112 1314 1516 1718 1920 2122 2324 2526 2728 2930 3132 3334 3536 3738 390

1 2 3 4 5 6 7 8 9 10 1112 1314 1516 1718 1920 2122 2324 2526 2728 2930 3132 3334 3536 3738 390

HINT: If you do not have an RP240 and wish to send (only) characters out the serial port to another serial
device, you may use this command. Place a backslash (\) before non-alphanumeric characters.
Example: DWRITE"HOMING SUCCESSFUL\13" = send message plus <CR>

Example :
DCLEAR0 ; Clear RP240 display
DPCUR1,12 ; Move cursor to line 1, column 12
DWRITE"Enter Number of Parts" ; RP240 will display: ENTER NUMBER OF PARTS
VAR1=DREAD ; RP240 waiting for data entry

Command Descriptions 75

E Enable Communication
Type Communication Interface
Syntax <i_><!>E
Units i = unit number set by the ADDR command
Range i = 0 - 99;

b = 0 (serial communication off) or 1 (serial communication on)
Default b = 1
Response 0_E: *E1

See Also ADDR, BAUD, DRPCHK, ECHO, LOCK, PORT, XONOFF

Product Rev

6K 5.0

The E command allows you to enable and disable serial ports on your 6K controller. To enable all units in
the RS-232 daisy-chain or RS-485 multi-drop at one time, you can use the E1 command. The PORT

command determines which COM port is affected by the E command.

Example:
PORT1 ; Next command affects the COM1 serial port on the 6K product
0_E1 ; Enable serial port for unit with device address 0

ECHO Communication Echo Enable
Type Communication Interface
Syntax <!>ECHO
Units n/a
Range b = 0 (disable), 1 (enable), 2 (echo through other COM port),

3 (echo through both COM ports), or X (don't change)
Default 1
Response ECHO: *ECHO0

See Also], [, BAUD, EOL, EOT, ERRLVL, PORT, [SS], TSS

Product Rev

6K 5.0

The Communication Echo Enable (ECHO) command enables command echo. Lower-case letters are
converted to upper case and then echoed. When echo is enabled, commands are echoed character by
character.

In a terminal emulator mode, you may not see the echoed characters on your display when issuing
commands that have a response, because the echoed characters may be overwritten by the response.

The PORT command determines which COM port is affected by the ECHO command.

The purpose of the ECHO2 and ECHO3 options is to accommodate an RS-485 multi-drop configuration in
which a host computer communicates to the “master” 6K controller over RS-232 (COM1 port) and the
master 6K controller communicates over RS-485 (COM2 port) to the rest of the units on the multi-drop. For
this configuration, the echo setup should be configured by sending to the master the following commands
executed in the order shown. In this example, it is assumed that the master's device address is set to 1.
Hence, each command is prefixed with “1_” to address only the master unit.

1_PORT2 Subsequent command affects COM2, the RS-485 port
1_ECHO2 Echo characters back through the other port, COM1
1_PORT1 Subsequent command affects COM1, the RS-232 port
1_ECHO3 Echo characters back through both ports, COM1 and COM2

76 6K Series Command Reference

EFAIL Encoder Failure Detect
Type Encoder Configuration
Syntax <!><@>EFAIL
Units n/a
Range b = 0 (disable), 1 (enable), or X (don’t change)
Default 0
Response EFAIL: *EFAIL0000_0000

1EFAIL: *1EFAIL0

See Also [ASX], [ER], ERROR, ERRORP, TASX, TER

Product Rev

6K 5.0

The Encoder Failure Detect (EFAIL) command enables (1) or disables (0) the monitoring of the encoder
signals to determine if the encoder is functioning properly. If there is no active signal on either Phase A or
Phase B of an axis encoder (i.e., encoder is fully disconnected), this will be detected and can elicit an
appropriate response by programming the unit to monitor and recognize the encoder failure.

If EFAIL is enabled for an axis, and an encoder error is detected, then bit 5 of the extended axis status
register (reported with TASX, TASXF and ASX) is set to 1. When ERROR bit 17 is set to 1, an encoder failure
occurring on any axis will initiate a jump to the error program (ERRORP).

ELSE Else Condition of IF Statement
Type Program Flow Control
Syntax <!>ELSE
Units n/a
Range n/a
Default n/a
Response n/a

See Also IF, NIF

Product Rev

6K 5.0

This command is used in conjunction with the IF and NIF commands to provide conditional branching. If
the expression contained within the parentheses of the IF command evaluates true, then the commands
between the IF and the ELSE are executed. The commands after the ELSE until the NIF are ignored. If the
expression evaluates false, the commands between the ELSE and the NIF are executed. The commands
between IF and ELSE are ignored. The ELSE command is optional and does not have to be included in the
IF statement. IF() ...ELSE...NIF commands can be nested up to 16 levels deep.

Programming order: IF(expression) ...commands... ELSE ...commands... NIF

Example:
IF(IN.1=b1) ; Specify condition: if onboard input #1 is on
T5 ; If condition evaluates true, wait 5 seconds
ELSE ; Else part of IF condition
TPE ; If condition does not evaluate true transfer position of

; all encoders
NIF ; End IF statement

Command Descriptions 77

ENCCNT Encoder Count Reference Enable
Type Encoder; Controller Configuration
Syntax <!><@><a>ENCCNT
Units b = enable bit
Range 0 (reference the commanded position),

1 (reference the encoder position) or X (don't change)
Default 0 (reference the commanded position)
Response ENCCNT *ENCCNT0000_0000

1ENCCNT *1ENCCNT0

See Also AXSDEF, INFNC, LIMFNC, OUTP, [PCC], [PCE], [PCME],
[PE], TPCC , TPCE, TPCME, TPE, TVELA, [VELA]

Product Rev

6K 5.0

(applicable only to
stepper axes)

Use ENCCNT to configure stepper axes to reference either the encoder position or the commanded position
when capturing the position (see INFNCi-H) and checking the encoder position (PE and TPE). When
checking the actual velocity (VELA and TVELA), ENCCNT determines whether the velocity, in units of
revs/sec, is derived with the encoder resolution (ERES) or the drive resolution (DRES). The default setting
(ENCCNT0) references the commanded position.

Example:
AXSDEF00 ; Axes 1 & 2 as steppers; axis 1 has encoder, but axis 2 does not.
INFNC1-H ; Configure trigger 1A as a position capture input for axis 1
INFNC3-H ; Configure trigger 2A as a position capture input for axis 2
ENCCNT10 ; Capture axis 1's encoder position when trigger 1A is activated,

; Capture axis 2's commanded position when trigger 2A is activated.

ENCPOL Encoder Polarity
Type Encoder; Controller Configuration
Syntax <!><@><a>ENCPOL
Units b = polarity bit
Range 0 (normal polarity), 1 (reverse polarity) or X (don't change)
Default 0
Response ENCPOL *ENCPOL00000000

1ENCPOL *1ENCPOL0

See Also CMDDIR, EFAIL, [FB], FOLMAS, MEPOL, [PCE], [PE], [PER],
PSET, SFB, TFB, TPE, TPCE, TPER

Product Rev

6K 5.0

Servo stability requires a direct correlation between the commanded direction and the direction of the
encoder counts (i.e., a positive commanded direction from the controller must result in positive counts from
the encoder).

If the encoder input is counting in the wrong direction, you may reverse the polarity with the ENCPOL

command (see programming example below). This allows you to reverse the counting direction without
having to change the actual wiring to the encoder input. For example, if the encoder on axis 2 counted in the
wrong direction, you could issue the ENCPOLx1 command to correct the polarity.

Immediately after issuing the ENCPOL command, the encoder will start counting in the opposite direction
(including all encoder position registers). For servo axes, the polarity is immediately changed whether or
not encoder feedback is currently selected with the SFB command.

NOTE

Changing the feedback polarity effectively invalidates any existing offset position (PSET)
setting; therefore, you will have to re-establish the PSET position.

The ENCPOL command is automatically saved in non-volatile RAM.

NOTE: ENCPOL does not affect the Master Encoder (the encoder connected to the “Master Encoder”
connector). To change the polarity of the Master Encoder, use the MEPOL command.

If you wish to reverse the commanded direction of motion, first make sure there is a direct correlation between
commanded direction and encoder direction, then issue the appropriate CMDDIR command to reverse both the
commanded direction and the encoder direction (see CMDDIR command description for full details).

78 6K Series Command Reference

Example (servo axis):
SFB1 ; Select encoder feedback for axis 1
SMPER100 ; Set maximum position error to 100 units on axis 1
PSET0 ; Define current position of axis 1 as position zero
1TPE ; *1TPE+0 (response indicates encoder #1 is at position zero)
MA0 ; Select incremental positioning mode
D+8000 ; Set distance to 8,000 units in the positive direction
GO1 ; Move axis 1. If the encoder polarity is incorrect, the axis will be

; unstable and will stop (drive disabled) as soon as the maximum
; position error of 100 units is reached.

1TPE ; *1TPE-100 (response should show that encoder #1 is approximately at
; position -100; the minus sign indicates that the encoder is
; counting in the wrong direction)

ENCPOL1 ; Reverse encoder polarity on axis 1
PSET0 ; Define current position of axis 1 as position zero
DRIVE1 ; Enable the drive (drive was disabled when the SMPER value was

; exceeded)
D+8000 ; Set distance to 8,000 units in the positive direction
GO1 ; Move axis 1
1TPE ; *1TPE+8000 (response shows encoder #1 has moved 8,000 units in the

; positive direction, indicating that the encoder is now counting in
; the correct direction)

ENCSND Encoder Step and Direction Mode
Type Encoder; Counter
Syntax <!><@><a>ENCSND
Units n/a
Range b = 0 (quadrature signal), 1 (step & direction) or X (don't care)
Default 0
Response ENCSND: *ENCSND0000_0000

1ENCSND: *1ENCSND0

See Also MESND, [PE], SFB, TPE

Product Rev

6K 5.0

Use the ENCSND command to change the functionality of one or more of the encoder connectors to accept a
counting source from a step and direction signal, instead of from an encoder quadrature signal. The counter
is reported by PE and TPE. If the axis is a servo axis, the step and direction count source is used even
though the feedback source selected (SFB) is an “encoder.”

ENCSND0......(default setting) accept a quadrature signal from an encoder.

ENCSND1......Accept step and direction signals. The count is registered on a positive edge of a
transition for a signal measured on encoder channel A+ and A- connections. The
direction of the count is specified by the signal on encoder channel B+ and B-
connections. Therefore, you should connect your step and direction input device as
follows: Connect Step+ to A+, Step- to A-, Direction+ to B+, and Direction- to B-.

END End Program/Subroutine/Path Definition
Type Program or Subroutine Definition
Syntax <!>END
Units n/a
Range n/a
Default n/a
Response n/a

See Also $, DEF, DEL, ERASE, GOBUF, GOSUB, GOTO, RUN

Product Rev

6K 5.0

The END command marks the ending point of a program/subroutine/path contour definition. All commands
between the DEF and the END statement will be considered in a program, subroutine, or path contour.

Example:
DEF pick ; Begin definition of program named pick
GO1100 ; Initiate motion on axes 1 and 2
END ; End program definition
pick ; Execute program named pick

Command Descriptions 79

EOL End of Line Terminating Characters
Type Communication Interface
Syntax <!>EOL<i>,<i>,<i>
Units n/a
Range i = 0 - 256
Default 13,10,0
Response EOL: *EOL13,10,0

See Also], [, BOT, EOT, ERRLVL, PORT, WRITE, XONOFF

Product Rev

6K 5.0

The End of Line Terminating Characters (EOL) command designates the characters to be placed at the end
of each line, but not the last line, in a multi-line response. The last line of a multi-line response has the EOT

characters. Up to 3 characters can be placed at the end of each line. The characters are designated with their
ASCII equivalent (no character that has a value of zero [Ø] will be output). For example, a carriage return is
ASCII 13, a line feed is ASCII 10, and no terminating character is designated with a zero.

The PORT command determines which COM port is affected by the EOL command.

NOTE: Although you may issue a single command, like TSTAT, each line of the response will have the
EOL characters. The last line in the response will have the EOT characters. If the response is only
one line long, the EOT characters will be placed after the response, not the EOL characters.

Character ASCII Equivalent

Line Feed 10
Carriage Return 13
Ctrl-Z 26

For a more complete list of ASCII Equivalents, refer to the ASCII Table in Appendix B.

Example:
EOL13,0,0 ; Place a carriage return after each line of a response

EOT End of Transmission Characters
Type Communication Interface
Syntax <!>EOT<i>,<i>,<i>
Units n/a
Range i = 0 - 256
Default 13,0,0
Response EOT: *EOT13,0,0

See Also], [, BOT, EOL, ERRLVL, PORT, WRITE

Product Rev

6K 5.0

The End of Transmission Terminating Characters (EOT) command designates the characters to be placed at
the end of every response. Up to 3 characters can be placed after the last line of a multi-line response, or
after all single-line responses. The characters are designated with their ASCII equivalent (no character that
has a value of zero [Ø] will be output). For example, a carriage return is ASCII 13, a line feed is ASCII 10,
a Ctrl-Z is ASCII 26, and no terminating character is designated with a zero.

The PORT command determines which COM port is affected by the EOT command.

NOTE: Although you may issue a single command, like TSTAT, each line of the response will have the
EOL characters. The last line in the response will have the EOT characters. If the response is only
one line long, the EOT characters will be placed after the response, not the EOL characters.

Character ASCII Equivalent

Line Feed 10
Carriage Return 13
Ctrl-Z 26

For a more complete list of ASCII Equivalents, refer to the ASCII Table in Appendix B.

Example :
EOT13,10,26 ; Place a carriage return, line feed, and Ctrl-Z after the last line

; of a multi-line response, and after all single line responses

80 6K Series Command Reference

[ER] Error Status
Type Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [ASX], DRFEN, DRFLVL, EFAIL, ERROR, ERRORP, ESTALL, GOWHEN,
INFNC, K, LH, LIMFNC, LS, S, SMPER, STRGTT, TASX, TER, TERF

Product Rev

6K 5.0

The Error Status (ER) command is used to assign the error status bits to a binary variable, or to make a
comparison against a binary or hexadecimal value. To make a comparison against a binary value, the letter b
(b or B) must be placed in front of the value. The binary value itself must only contain ones, zeros, or Xs (1,
Ø, X, x). To make a comparison against a hexadecimal value, the letter h (h or H) must be placed in front of
the value. The hexadecimal value itself must only contain the letters A through F, or the numbers Ø through 9.

Syntax: VARBn=<i%>ER where n is the binary variable number, or ER can be used in an expression such
as IF(ER=b11Ø1) , or IF(ER=h7F) . NOTE: If you are using multi-tasking, be aware that each
task has its own error status register. If you wish to check the error status of a external task (a task
other than the task that is executing the ER operator), then you must prefix the ER operator to
address the targeted task (e.g., 2%ER for the error status of Task 2).

The bit select operator (.), in conjunction with the bit number, can be used to specify a specific
error bit. Examples: VARB1=ER.2 assigns error bit 2 to binary variable 1; IF(ER.2=b1) is a
conditional statement that is true if error bit 2 is set to 1.

The specific error-checking bits must be enabled by the Error-Checking Enable (ERROR) command before
the ER command will provide an error response — see programming example below.

Multi-Tasking : If you are using multi-tasking, each task has its own error checking bits (ERROR), error status
register (ER, TER, TERF), and ERRORP program. Regarding axis-related error conditions (e.g., drive fault, end-
of-travel limit, etc.), only errors on the task’s associated (TSKAX) axes are detected in its error status register.

The function of each error status bit is shown below.

Bit # Function (1 = Yes; Ø = No)

 1* Stall Detected: Functions when stall detection has been enabled (ESTALL).
 2 Hard Limit Hit: Functions when hard limits are enabled (LH).
 3 Soft Limit Hit: Functions when soft limits are enabled (LS).
 4 Drive Fault: Detected only if the drive is enabled (DRIVE), the drive fault input is enabled (DRFEN), and the drive

fault level is set correctly (DRFLVL).

 5 RESERVED (refer to the ERROR command)
 6 Kill Input: When an input is defined as a Kill input (INFNCi-C or LIMFNCi-C), and that input becomes active.
 7 User Fault Input: When an input is defined as a User Fault input (INFNCi-F or LIMFNCi-F), and that input

becomes active.
 8 Stop Input: When an input is defined as a Stop input (INFNCi-D or LIMFNCi-D), and that input becomes active.

 9 Enable input is activated (not grounded).
10 Pre-emptive (on-the-fly) GO or registration move profile not possible.
11 ** Target Zone Settling Timeout Period (set with the STRGTT command) is exceeded.
12 ** Maximum Position Error (set with the SMPER command) is exceeded.

13 RESERVED
14 Position relationship in GOWHEN already true when GO, GOL, FSHFC, or FSHFD was executed.
15 RESERVED
16 Bad command detected (bit is cleared with TCMDER command).

17 Encoder failure (EFAIL1 must be enabled before error can be detected; error is cleared by sending EFAILØ to
the affected axis).

18 Cable to an expansion I/O brick is disconnected, or power to the I/O brick is lost; error is cleared by reconnecting
the I/O brick and issuing the ERROR.18-0 command and then the ERROR.18-1 command.

19-32 RESERVED

* Stepper axes only
** Servo axes only

Command Descriptions 81

Example:
ERROR111101101 ; Enable error-checking bits 1-4, 6, 7, and 9
VARB1=ER ; Error status assigned to binary variable 1
VARB2=ER.4 ; Error status bit 4 assigned to binary variable 2
VARB2 ; Response if bit 4 is set to 1:

; *VARB2=XXX1_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX
IF(ER=b1110X11X1) ; If the error status contains 1's for bit locations 1, 2, 3,

; 6, 7, and 9, and a 0 for bit location 4, do the IF statement
TREV ; Transfer revision level
NIF ; End if statement
IF(ER=hF600) ; If the error status contains 1's for bit locations 1, 2, 3,

; 4, 6, and 7, and 0's for every other bit location, do the
; IF statement

TREV ; Transfer revision level
NIF ; End if statement

ERASE Erase All Programs
Type Subroutine or Program Definition
Syntax <!>ERASE
Units n/a
Range n/a
Default n/a
Response n/a

See Also [DATP], DEF, DEL, RESET

Product Rev

6K 5.0

The Erase All Programs (ERASE) command deletes all programs created with the DEF command, including
all data programs (DATP). If you do not want to erase all the programs, you can use the DEL command to
selectively delete programs. The RESET command will erase all programs (only in bus-based controllers)
and reset all values to factory defaults.

ERES Encoder Resolution
Type Encoder Configuration
Syntax <!><@><a>ERES<i>,<i>,<i>,<i>,<i>,<i>,<i>,<i>
Units i = counts/rev
Range 1 - 65535 (stepper axes); 200 - 1024000 (servo axes)
Default 4000
Response ERES: *ERES4000,4000,4000,4000,4000,4000,4000,4000

1ERES: *1ERES4000

See Also DRES, EFAIL, ENCCNT, ESTALL, TSTAT

Product Rev

6K 5.0

Stepper Axes: The ERES command establishes the number of encoder counts received for a move equal to
the distance set in the drive resolution (DRES) command. If the motor/drive resolution equals
25000 steps/rev, and a 1 revolution move is performed (with scaling (SCALE) disabled), the
number of encoder counts received back would be the encoder resolution value (ERES). A standard
1000-line per revolution encoder gives 4000 counts post-quadrature. If the encoder is coupled to
the back of a motor, the ERES value will be 4000. This value, along with the drive resolution value
(DRES) are important for the motion algorithm to correctly interpret move distances, move
velocities, and move accelerations.

Servo Axes: The servo system's resolution is determined by the resolution of the encoder used with the
servo drive/motor system. The ERES command establishes the number of steps, or counts (post
quadrature), per unit of travel. For example, Compumotor’s SM and NeoMetric Series motors with
the “E” encoder option use 1,000-line encoders, and therefore have a 4,000 count/rev post-
quadrature resolution (requires ERES4ØØØ). If the encoder is mounted directly to the motor, then to
ensure that the motor will move according to the programmed distance and velocity, the
controller's resolution (ERES value) must match the encoder's resolution.

82 6K Series Command Reference

Resolutions for Compumotor Encoders:

Stepper axes:
• -RE, -RC, -EC, and -E Series Encoders: ...ERES4000
• -HJ Series Encoders:ERES2048

Servo axes:
• SM, N or J Series Servo Motors:............... SM/N/JxxxxD-xxxx: ERES2000

SM/N/JxxxxE-xxxx: ERES4000
Dynaserv (stepper or servo):

• DR10xxB..ERES507904
• DR1xxxE..ERES614400
• DR1xxxA..ERES819200
• DR5xxxB..ERES278528
• DR5xxxA..ERES425894
• DM10xxB...ERES655360
• DM1xxxA...ERES1024000
• DM1004x ...ERES655360

Example (axis 1 is stepper axis, axis 2 is servo axis):
SCALE0 ; Disable scaling
DEL proga ; Delete program called proga
DEF proga ; Begin definition of program called proga
DRES25000 ; Motor/drive resolution set to 25000 steps/rev on axis 1

; (DRES is used for stepper axes only)
ERES4000,4000 ; Encoder resolution set to 4000 post-quadrature counts/rev on

; axes 1 & 2 (encoder on axis 1 is for stall detection only)
ESTALL1 ; Enable stall detection for the stepper axis (axis 1)
MA00 ; Incremental mode for axes 1 and 2
MC00 ; Preset mode for axes 1 and 2
A10,12 ; Set the acceleration to 10 and 12 units/sec/sec for axes 1 & 2
V1,1 ; Set the velocity to 1 unit/sec for axes 1 and 2
D100000,80000 ; Set the distance to 100000 and 1000 units for axes 1 and 2
GO11 ; Initiate motion on axes 1 and 2:

; Axis 1 will move 100,000 commanded counts (4 revs).
; Axis 2 will move 80,000 encoder counts (20 revs)

END ; End definition of proga

ERRBAD Error Prompt
Type Communication Interface
Syntax <!><@>ERRBAD<i>,<i>,<i>,<i>
Units n/a
Range i = 0 - 256
Default 13,10,63,32
Response ERRBAD: *ERRBAD13,10,63,32

See Also BOT, EOT, ERRDEF, ERRLVL, ERROK, PORT, TCMDER

Product Rev

6K 5.0

The Error Prompt (ERRBAD) command designates the characters to be placed into the output buffer after an
erroneous command has been entered. Up to 4 characters can be placed in the output buffer. These characters
serve as a prompt for the next command. The characters are designated with their ASCII equivalent. For
example, a carriage return is ASCII 13, a line feed is ASCII 10, a question mark is ASCII 63, a space is ASCII
32, and no terminating character is designated with a zero.

The PORT command determines which COM port is affected by the ERRBAD command.

For a more complete list of ASCII equivalents, refer to the ASCII Table in Appendix B.

Example:
ERRBAD13,0,0,0 ; Place a carriage return only in the output buffer after

; processing an erroneous command

Command Descriptions 83

ERRDEF Program Definition Prompt
Type Communication Interface
Syntax <!><@>ERRDEF<i>,<i>,<i>,<i>
Units n/a
Range i = 0 - 256
Default 13,10,45,32
Response ERRDEF: *ERRDEF13,10,45,32

See Also ERRBAD, ERRLVL, ERROK, PORT, XONOFF

Product Rev

6K 5.0

The Program Definition Prompt (ERRDEF) command designates the characters to be placed into the output
buffer after a DEF command has been entered. These characters will continue to be placed into the output
buffer after each command until the END command is processed. Up to 4 characters can be placed in the
output buffer. These characters serve as a prompt while defining a program. The characters are designated
with their ASCII equivalent. For example, a carriage return is ASCII 13, a line feed is ASCII 10, a hyphen
is ASCII 45, a space is ASCII 32, and no terminating character is designated with a zero. For a more
complete list of ASCII equivalents, refer to the ASCII Table in Appendix B.

The PORT command determines which COM port is affected by the ERRDEF command.

Example:
ERRDEF13,0,0,0 ; Place a carriage return only in the output buffer after each

; command in the program definition

ERRLVL Error Detection Level
Type Error Handling
Syntax <!>ERRLVL<i>
Units i - error level settings
Range i = 0, 1, 2, 3, or 4
Default 4 if COM port is set up for RS-232C;

0 if COM port is set up for RS-485
Response ERRLVL: *ERRLVL4

See Also EOT, ERRBAD, ERRDEF, ERROK, PORT

Product Rev

6K 5.0

The Error Detection Level (ERRLVL) command specifies the format for all Response feedback and error
messages (error messages are listed on page 9 of this manual, and in the Troubleshooting chapter of the
Programmer's Guide). Error level 4 is the default error detection level.

The PORT command determines which COM port is affected by the ERRLVL command.

Error Level Description

ERRLVL4 All responses are returned as shown in the Response field of the corresponding command, followed by
the EOT characters and the ERROK characters. Error conditions return an error message corresponding
to the error condition followed by the EOT characters and the ERRBAD characters. Program definitions
beginning with the DEF command and ending with the END command place the ERRDEF characters in
the output buffer after each command is processed.

ERRLVL3 All responses are returned as shown in the Response field of the corresponding command, followed by
the EOT characters and the ERROK characters. Error conditions return only the ERRBAD characters.
Program definitions beginning with the DEF command and ending with the END command place the
ERRDEF characters in the output buffer after each command is processed.

ERRLVL2 All responses are returned as shown in the Response field of the corresponding command, followed by
the EOT characters. There are no ERROK characters and no error responses.

ERRLVL1 All responses are returned as shown in the Response field of the corresponding command, minus the
command itself, followed by the EOT characters. There is no error response.

ERRLVLØ All responses are returned as shown in the Response field of the corresponding command, minus the
command itself and the asterisk, followed by the EOT characters. There is no error response.

84 6K Series Command Reference

ERROK Good Prompt
Type Communication Interface
Syntax <!><@>ERROK<i>,<i>,<i>,<i>
Units n/a
Range i = 0 - 256
Default 13,10,62,32
Response ERROK: *ERROK13,10,62,32

See Also ERRBAD, ERRDEF, ERRLVL, PORT, XONOFF

Product Rev

6K 5.0

The Good Prompt (ERROK) command designates the characters to be placed into the output buffer after a
command has been entered correctly. Up to 4 characters can be placed in the output buffer. These
characters serve as a prompt for the next command. The characters are designated with their ASCII
equivalent. For example, a carriage return is ASCII 13, a line feed is ASCII 10, a greater than symbol is
ASCII 62, a space is ASCII 32, and no terminating character is designated with a zero. For a more complete
list of ASCII equivalents, refer to the ASCII Table in Appendix B.

The PORT command determines which COM port is affected by the ERROK command.

Example:
ERROK13,0,0,0 ; Place a carriage return only in the output buffer after

; processing a valid command

ERROR Error-Checking Enable
Type Error Handling
Syntax <!><%>ERROR... (32 bits)
Units n/a
Range b = 0 (disable), 1 (enable), or X (don't change)
Default 0
Response ERROR: *ERROR0000_0000_0000_0000_0000_0000_0000_0000

 bit 1
 bit 32

See Also [ASX], DRFEN, DRFLVL, EFAIL, [ER], ERRORP, ESTALL, GOWHEN,
INFNC, K, LH, LIMFNC, LS, S, TASX, TER, TRGFN

Product Rev

6K 5.0

When an error-checking bit is enabled (ERROR11...11), the operating system will respond to a specific
execution error by doing a GOSUB or a GOTO to the error program defined with the ERRORP command
(see table below). Each bit corresponds to a different error condition. To enable or disable a specific bit, the
syntax is ERROR.n-b, where “n” is the error bit number and “b” is either 1 to enable or Ø to disable.

MULTI-TASKING

If you are operating multiple tasks, be aware that you must enable error conditions (ERROR) and
specify an error program (ERRORP) for each task (e.g., 2%ERROR.2-1 and 2%ERRORP FIX for
Task 2). Each task has its own error status register (reported with ER, TER, and TERF).
Regarding axis-related error conditions (e.g., drive fault, end-of-travel limit, etc.), only errors on
the task’s associated (TSKAX) axes will cause a branch to the task’s ERRORP program.

Bit # Function (Error bits #13, #15, and #18 - #32 are reserved.) Branch Type

 1* Stall Detected: Functions when stall detection has been enabled (ESTALL).
ESK must be enabled .

GOSUB

 2 Hard Limit Hit: Functions when hard limits are enabled (LH). GOTO if COMEXLØ;
GOSUB if COMEXL1

 3 Soft Limit Hit: Functions when soft limits are enabled (LS). GOTO if COMEXLØ;
GOSUB if COMEXL1

 4 Drive Fault: Detected only if the drive is enabled (DRIVE), the drive fault input is
enabled (DRFEN), and the drive fault level is set correctly (DRFLVL).

GOTO

 5 Commanded Kill or Commanded Stop (a K, !K , <ctrl>K , S, or !S command is sent).

NOTE
If you want the program to stop, you must issue the !HALT command.

!K = GOTO;
!S = GOTO if COMEXSØ;
!S = GOSUB if
COMEXS1, but need !C

Command Descriptions 85

Bit # Function (Error bits #13, #15, and #18 - #32 are reserved.) Branch Type

 6 Input Kill: When an input is defined as a KILL input (INFNCi-C or LIMFNCi-C), and
that input becomes active.

GOTO

 7 User Fault Input: When an input is defined as a user fault input (INFNCi-F or
LIMFNCi-F), and that input becomes active.

GOTO

 8 Stop Input: When an input is defined as a stop input (INFNCi-D or LIMFNCi-D), and
that input becomes active.

GOTO

 9 Enable input is activated (not grounded). GOTO

10 Pre-emptive (on-the-fly) GO or registration move profile not possible at the time of
attempted execution.

GOSUB

11 ** Target Zone Settling Timeout Period (set with the STRGTT command) is exceeded. GOSUB

12 ** Maximum Position Error (set with the SMPER command) is exceeded. GOSUB

14 GOWHEN condition already true when a subsequent GO, GOL, FSHFC, or FSHFD
command is executed.

GOSUB

16 Bad command detected (bit is cleared with TCMDER command). GOSUB

17 Encoder failure (EFAIL1 must be enabled before error can be detected;
error is cleared by sending EFAILØ to the affected axis).

GOSUB

18 Cable to an expansion I/O brick is disconnected, or power to the I/O brick is lost;
error is cleared by reconnecting the I/O brick (or restore power to the I/O brick) and
issuing the ERROR.18-0 command and then the ERROR.18-1 command.

GOTO

* Stepper axes only; ** Servo axes only
NOTE: Error bits 13, 15, and 19-32 are reserved.

ERRORP Error Program Assignment
Type Error Handling
Syntax <!><%>ERRORP<t>
Units t = text (name of error program)
Range Text name of 6 characters or less
Default n/a
Response ERRORP: *ERRORPerr1

See Also [ER], ERRLVL, ERROR, TER

Product Rev

6K 5.0

Using the ERRORP command, you can assign any previously defined program as the error program. For
example, to assign a previously defined program named CRASH as the error program, enter the ERRORP CRASH

command. If you later decide not to have an error program, issue the ERRORP CLR command; after the ERRORP

CLR command, no error program will be called until you assign a new one.

The purpose of the error program is to provide a programmed response to certain error conditions (see table
below) that may occur during the operation of your system. Programmed responses typically include actions
such as shutting down the drive(s), activating or de-activating outputs, etc. To detect and respond to the
error conditions, the corresponding error-checking bit(s) must be enabled with the ERROR command (refer
to the ERROR Bit # column in the table below). It is the programmer's responsibility to determine the cause
of the error, and take action based on the error. The error condition can be determined using the ER

evaluation in an IF statement (e.g., IF(ER=b1ØX)). An error program set-up example is provided in the
Programmer's Guide.

When an error condition occurs and the associated error-checking bit has been enabled with the ERROR

command, the 6K controller will branch to the error program. Depending on the error condition, the branch
be either a GOTO or GOSUB. If the error condition calls for a GOSUB, then after the ERRORP program is
executed, program control returns to the point at which the error occurred. If you do not want to return to
the point at which the error occurred, you can use the HALT command to end program execution or you can
use the GOTO command to go to a different program. If the error condition calls for a GOTO, there is no
way to return to the point at which the error occurred.

86 6K Series Command Reference

MULTI-TASKING

If you are operating multiple tasks, be aware that you must enable error conditions (ERROR) and
specify an error program (ERRORP) for each task (e.g., 2%ERROR.2-1 and 2%ERRORP FIX for
Task 2). Each task has its own error status register (reported with ER, TER, and TERF).
Regarding axis-related error conditions (e.g., drive fault, end-of-travel limit, etc.), only errors on
the task’s associated (TSKAX) axes will cause a branch to the task’s ERRORP program.

The ERRORP assignment is not saved in battery-backed RAM. To ensure that the ERRORP assignment is
retained when you cycle power or issue a RESET command, put the ERRORP command in the startup program
assigned with the STARTP command.

WHEN TO BRANCH

If you wish the branch to the error program to occur at the time the error condition is
detected, use the continuous command execution mode (COMEXC1). Otherwise, the
branch will not occur until motion on all axes has stopped.

Canceling the Branch to the Error Program: The error program will be continuously called/repeated
until you cancel the branch to the error program. (This is true for all cases except error condition #9, enable
input activated, in which case the error program is called only once.) There are three ways to cancel the
branch:

• Disable the error-checking bit with the ERROR.n-0 command, where "n" is the number of the error-
checking bit you wish to disable. For example, to disable error checking for the kill input activation (bit
#6), issue the ERROR.6-0 command. To re-enable the error-checking bit, issue the ERROR.n-1 command.

• Delete the program assigned as the ERRORP program (DEL <name of program>).

• Satisfy the How to Remedy the Error requirement identified in the table below.

NOTE

In addition to canceling the branch to the error program, you must also remedy the
cause of the error; otherwise, the error program will be called again when you resume
operation. Refer to the How to Remedy the Error column in the table below for details.

ERROR
Bit # Cause of the Error Branch Type to ERRORP How to Remedy the Error

1 Stepper axes only:
Stall detected (Stall Detection
and Kill On Stall must be
enabled first—see ESTALL
and ESK, respectively)

Gosub Issue a GO command.

2 Hard Limit Hit (hard limits must
be enabled first—see LH)

If COMEXLØ, then Goto;
If COMEXL1, then Gosub

Change direction & issue GO command on the
axis that hit the limit; or issue LHØ.

3 Soft Limit Hit (soft limits must
be enabled first—see LS)

If COMEXLØ, then Goto;
If COMEXL1, then Gosub

Change direction & issue GO command on the
axis that hit the limit; or issue LSØ.

4 Drive Fault (Detected only if drive
enabled – DRIVE, drive fault input
enabled – DRFEN, and drive fault
level correct – DRFLVL).

Goto Clear the fault condition at the drive, & issue a
DRIVE1 command for the faulted axis.

5 Commanded Stop or Kill
(whenever a K, !K , <ctrl>K , S,
or !S command is sent)
— See “Commanded Kill or
Stop” note below.

If !K , then Goto;
If !S & COMEXSØ,
then Goto;
If !S & COMEXS1, then
Gosub, but need !C

No fault condition is present—there is no error
to clear.

If you want the program to stop, you must
issue the !HALT command.

6 Kill Input Activated
(see INFNCi-C or LIMFNCi-C)

Goto Deactivate the kill input.

Command Descriptions 87

ERROR
Bit # Cause of the Error Branch Type to ERRORP How to Remedy the Error

7 User Fault Input Activated
(see INFNCi-F or LIMFNCi-F)

Goto Deactivate the user fault input, or disable it by
assigning it a different function.

8 Stop Input Activated
(see INFNCi-D or LIMFNCi-D)

Goto Deactivate the stop input, or disable it by
assigning it a different function.

9 Enable input not grounded Goto Re-ground the enable input, and issue a
@DRIVE1 command.

10 Pre-emptive (on-the-fly) GO or
registration move profile not
possible at the time of attempted
execution.

Gosub Issue another GO command.

11 Servo Axes Only:
Target Zone Timeout (STRGTT
value has been exceeded).

Gosub Issue these commands in this order:
STRGTEØ, DØ, GO, STRGTE1

12 Servo Axes Only:
Exceeded Max. Allowable
Position Error (set with the
SMPER command).

Gosub Issue a DRIVE1 command to the axis that
exceeded the allowable position error. Verify
that feedback device is working properly.

14 GOWHEN condition already true
when GO, GOL, FSHFC, or
FSHFD executed.

Goto Issue another GOWHEN command; or issue a
!K command and check the program logic
(use the TRACE and STEP features if
necessary).

16 Bad command detected. Gosub Issue the TCMDER command.

17 Encoder failure (EFAIL1 must be
enabled before error can be
detected).

Gosub Send the EFAILØ command to the affected
axis.

18 Expansion I/O brick disconnected,
or lost power.

Goto Reconnect I/O brick or restore power. Then
issue ERROR.18-0 and then ERROR.18-1 .

Reserved Bits : Bits 13, 15, and 19-32 are reserved.

Branching Types : If the error condition calls for a GOSUB, then after the ERRORP program is executed, program control
returns to the point at which the error occurred. If you do not want to return to the point at which the error occurred, you
can use the HALT command to end program execution or you can use the GOTO command to go to a different program. If
the error condition calls for a GOTO, there is no way to return to the point at which the error occurred.

Commanded Kill or Stop : When ERROR bit 5 is enabled (ERROR.5-1), a Stop (S or !S) or a Kill (K, !K or <ctrl>K)
command will cause the controller to branch to the error program. Note, however, that this error condition does not set an
error bit (ER), because there is no way to clear the error condition upon leaving the error program. Therefore, you should
use the IF(ER=b00000000000000000000000000000000) statement in your error program to determine if the cause
of the error was a commanded kill or stop (i.e., if no error bits are set).

Example:
DEF err1 ; Define error program err1
IF(ER=b01) ; If the error is a hard limit, send a message & stop program

; execution
WRITE"Hard Limit Hit" ; Write Hard Limit Hit message
HALT ; Terminate program execution
NIF ; End IF statement
IF(ER=b0X1) ; If the error is a soft limit, back off the soft limit,

; reset position, & continue
D~,~,~,~ ; Change direction in preparation to back off the soft limit
D1,1,1,1 ; Set distance to 1 step (just far enough to back off the soft

; limit)
GO1111 ; Initiate the 1-step move to back off the soft limit
PSET0,0,0,0 ; Reset the position to zero
NIF ; End IF statement
END ; End definition of error program err1
ERRORP err1 ; Set error program to err1. Branch to err1 upon receiving a hard

; or soft limit
ERROR01100000 ; Set error condition bits to look for hard limit or a soft limit

88 6K Series Command Reference

ESDB Stall Backlash Deadband
Type Encoder Configuration
Syntax <!><@><a>ESDB<i>,<i>,<i>,<i>,<i>,<i>,<i>,<i>
Units i = encoder steps
Range 0 - 99,999,999
Default 0
Response ESDB: *ESDB0,0,0,0,0,0,0,0

1ESDB: *1ESDB0

See Also [AS], DRES, EFAIL, ERES, ESK, ESTALL, TAS

Product Rev

6K 5.0

(applicable only to
stepper axes)

The Stall Backlash Deadband (ESDB) command establishes the maximum number of encoder steps that a
move can fall behind after a change in direction before stall detection is initiated. If there is no change in
direction, the stall backlash deadband value will not be used to determine if there is a stall condition. To use
the stall backlash deadband, stall detection (ESTALL) must be enabled.

A stall condition will be recorded by bit 12 of the axis status register. The TAS command can be used to get
the axis status response.

Example : Refer to the enable stall detect (ESTALL) command example.

ESK Kill on Stall
Type Encoder Configuration
Syntax <!><@><a>ESK
Units n/a
Range b = 0 (disable), 1 (enable), or X (don't change)
Default 0
Response ESK: *ESK0000_0000

1ESK: *1ESK0

See Also DRES, EFAIL, ERES, ESDB, ESTALL

Product Rev

6K 5.0

(applicable only to
stepper axes)

The Kill on Stall (ESK) command will immediately stop pulses from being sent to an axis when a stall has
been detected. Stall detect (ESTALL) must also be enabled before the ESK command will have any affect.

Example : Refer to the enable stall detect (ESTALL) command example.

ESTALL Enable Stall Detect
Type Encoder Configuration
Syntax <!><@><a>ESTALL
Units n/a
Range b = 0 (disable), 1 (enable), or X (don't change)
Default 0
Response ESTALL: *ESTALL0000_0000

1ESTALL: *1ESTALL0

See Also [AS], DRES, EFAIL, ENCCNT, [ER], ERES, ESDB, ESK, TAS, TER

Product Rev

6K 5.0

(applicable only to
stepper axes)

The Enable Stall Detect (ESTALL) command determines if stall conditions will be checked.

A stall condition will occur if the actual number of encoder counts received is less than expected for each
motor step output segment. The number of encoder counts expected is determined by dividing the encoder
resolution (ERES) by 100. The motor step output segment is determined by dividing the drive resolution
(DRES) by 50.

For example, given an encoder resolution (ERES) of 4000 and a drive resolution (DRES) of 25000, the
number of encoder counts expected for each motor step output segment = 4000

100
 = 40. The motor step

output segment = 25000
50

 = 500. Therefore, during a move, after every 500 motor steps are sent out, the

controller checks to see if it received 40 encoder counts. If it did, then everything is O.K. If not, then a
stall condition exists.

When a stall condition occurs, it is reported in bit 12 in the AS and TAS axis status commands.

To accurately detect a stall, the drive resolution (DRES) and the encoder resolution (ERES) must be properly set.

Command Descriptions 89

Example:
SCALE0 ; Disable scaling
DEL proga ; Delete program called proga
DEF proga ; Begin definition of program called proga
DRES25000,25000 ; Motor/drive resolution set to 25000 steps/rev on axes 1 and 2
ERES4000,4000 ; Encoder resolution is 4000 post-quadrature counts/rev, both axes
ENCCNT11 ; Use encoder count references for axes 1 and 2
ESDB10,10 ; Stall backlash set to 10 commanded counts on axes 1 and 2
ESTALL11 ; Enable stall detection on axes 1 and 2
ESK11 ; Enable kill on stall for axes 1 and 2
MA00 ; Incremental positioning mode for axes 1 and 2
MC00 ; Preset positioning mode for axes 1 and 2
A10,12 ; Set the acceleration to 10 and 12 units/sec/sec for axes 1 and 2
V1,1 ; Set the velocity to 1 unit/sec for axes 1 and 2
D100000,250000 ; Set the distance to 100000 and 1000 units for axes 1 and 2
GO11 ; Initiate motion on axes 1 and 2:

; Axis 1 will move 100000 commanded counts (4 revs)
; Axis 2 will move 250000 commanded counts (10 revs)
; (If, at any time during the above moves any of the actual
; encoder counts fall behind, a stall condition will be flagged,
; and motion will stop on the appropriate axis.)

END ; End definition of proga

EXE Execute a Program From a Compiled Program
Type PLC Scan Program
Syntax i%EXEt
Units i = Task Number

t = Program Name (6 characters or less)
Range i = 1-10
Default n/a
Response n/a

See Also INSELP, PCOMP, PEXE, PLCP, SCANP

Product Rev

6K 5.0

Use the EXE command to start a standard (non-compiled) program from within a compiled PLCP program. The
EXE command specifies the name of the program, and the task in which it will be launched. The program
named in the EXE command need not be defined at the time the PLCP program is compiled; however, the
program must be defined before the SCANP or PRUN is issued. If no task number is assigned with a % prefix,
then the task in which the PLCP program is compiled (PCOMP) will be the task that runs the program. Note,
however, that the EXE program cannot be executed in the Task Supervisor (task 0).

The PLCP program will ignore the EXE command if a currently running program is detected within the specified
task; therefore, the EXE command can essentially only be used to initiate a new task with the program it is
launching. Like the INSELP command, the program launched by the EXE command will not interrupt a currently
running program, nor will it interrupt a WAIT or T command.

CAUTION : Using the SCANP command to run a PLCP program in Scan mode will cause the PLCP program
to execute as often as every system update period (2 ms). An EXE command used within a PLCP program
running in Scan mode could therefore attempt to launch a program in the specified task as often as every 2
ms. This may not allow enough time for the program launched in the specified task by the EXE command to
complete before the same EXE command is issued again. As stated, the PLCP program will ignore the EXE

command if a currently running program is detected, so timing must be considered when launching
programs with the EXE command.

To execute a compiled program from within a compiled PLCP program, use the PEXE command.

Example:
DEF PLCP1 ; Define PLC program PLCP1
IF(IN.1=b1) ; If input 1 is active
3%EXE PROG1 ; Launch program PROG1 in Task 3
ELSE
2%EXE PROG2 ; Otherwise launch program PROG2 in Task 2
NIF
END

PCOMP PLCP1 ; Compile PLCP1
SCANP PLCP1 ; Scan with program PLCP1

90 6K Series Command Reference

[FB] Value of Current Feedback Device
Type Servo; Assignment or Comparison
Syntax See below
Units See below
Range See below
Default n/a
Response n/a

See Also [ANI], ANIFB, ANIRNG, CMDDIR, ENCPOL, GOWHEN, [PANI],
[PE], PSET, SCALE, SCLD, SFB, TFB, TPANI

Product Rev

6K 5.0

Use the FB operator to assign the value of one of the current feedback devices to a variable or to make a
comparison. Depending on the configuration of the SFB command, the feedback device could be an encoder
or an analog input.

If you issue a PSET command, the feedback device position value will be offset by the PSET command value.

If scaling is not enabled, the position values returned will be encoder or ANI counts. If scaling is enabled
(SCALE1), the encoder and ANI values will be scaled by the SCLD value. For more information on scaling,
refer to page 16.

Syntax: VARn=aFB where n is the variable number, and a is the axis number, or FB can be used in an
expression such as IF(1FB<6) . An axis specifier must precede the FB operator, or it will default
to axis 1 (e.g., VAR1=1FB, IF(1FB<2ØØØØ, etc.).

Example:
SFB1 ; Feedback for axis 1 is encoder #1
VAR6=1FB ; Assign position (scalable) of encoder #1 (axis 1) to variable #6
IF(1FB<500) ; If position (scalable) of encoder #1 (axis 1) is less than 500,

; do the commands following the IF statement until the NIF command
VAR4=1FB+1000 ; Set variable #4 equal to current position of encoder plus 1,000
NIF ; End of IF statement

FFILT Following Filter
Type Following
Syntax <!><@><a>FFILT<i>,<i>,<i>,<i>,<i>,<i>,<i>,<i>
Units i = filtering level
Range i = 0, 1, 2, 3, or 4
Default 0
Response FFILT *FFILT0,0,0,0,0,0,0,0

1FFILT *1FFILT0

See Also FMAXA, FMAXV, FPPEN

Product Rev

6K 5.0

The FFILT command specifies the bandwidth of the low pass filter applied to the measurements of master
position. This command is to be used in these situations:

• Measurement of master position is contaminated by either electrical noise (when analog input is
the master) or mechanical vibration.

• Measurement noise is minimal, but the motion that occurs on the master input is oscillatory. In
this case, using the filter can prevent the oscillatory signal from propagating into the follower
axis (i.e., ensuring smoother motion on the follower axis).

The table below shows how the value of the FFILT command specifies the low pass filter's bandwidth:

FFILT Setting Low pass Filter Bandwidth

0
1
2
3
4

∞ (no filtering) – default setting
120 Hz
80 Hz
50 Hz
20 Hz

Example:
FFILT1,2 ; Set filtering bandwidth to 120 Hz for axis 1, and 80 Hz for axis 2

Command Descriptions 91

FGADV Following Geared Advance
Type Following
Syntax <!><@><a>FGADV<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = advance distance (scalable)
Range 0.00000-999,999,999 (scalable with SCLD)
Default n/a
Response n/a

See Also FOLMD, FOLRD, FOLRN, [FS], FSHFD, GOWHEN, SCLD, TFS

Product Rev

6K 5.0

The FGADV command provides the ability to super-impose an advance or retard on Following motion. This
is the same ability provided by the FSHFD command, except that the super-imposed motion is also geared to
master motion. The FGADV command has the positive or negative “advance” distance as a parameter, but it
initiates motion instead of simply setting up the distance. The shape of the super-imposed profile is
determined by the FOLMD, FOLRN, and FOLRD commands (just as a normal preset Following move).

The FGADV command profile may be delayed with the GOWHEN command.

A FGADV move may be performed only while the conditions below exist (Following status bit #23, reported
with the FS, TFS, and TFSF commands, indicates that it is “OK to do FGADV move ”):

• Master is specified with a FOLMAS command
• Following is enabled with the FOLEN command
• The follower axis is either not moving, or moving at constant ratio in continuous mode (MC1)

A FGADV move may not be performed:

• During a preset (MC0) move
• In a compiled profile or program

Following Status (FS, TFS, and TFSF) bit #24 reports if a “FGADV move is underway ”.

Example:
COMEXC1 ; All command processing during motion
FOLRN25 ; Set numerator of follower-to-master Following ratio
FOLRD10 ; Set denominator of follower-to-master Following ratio
FOLMD1000 ; Set master distance to 1000 units
MC1 ; Enable continuous positioning mode
D+ ; Set direction to positive
FOLEN1 ; Enable Following
GO ; Ramp up to a 2.5 to 1 ratio over 1000 master distance units
FOLMD500 ; Set master distance to 500 units
FOLRN13 ; Superimposed ratio will be 1.3 (added to 2.5 = 3.8 total)
WAIT(FS.23=B1) ; Wait for OK to do geared advance

; (in this case, ramp is complete)
FGAVD400 ; Advance the follower axis 400 counts over a distance

; of 500 master counts
WAIT (FS.23=B1) ; Wait for OK to do geared advance

; (in this case, FGADV400 super-imposed profile is complete)
FGADV-400 ; Retard the follower axis 400 counts over a distance of

; 500 master counts (2.5 - 1.3 = 1.2 net ratio)

92 6K Series Command Reference

FMAXA Follower Axis Maximum Acceleration
Type Following
Syntax <!><@><a>FMAXA<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec/sec
Range r = 0.00001 - 39,999,998 (scalable with SCLA)
Default 0.00 (no limit imposed)
Response FMAXA *FMAXA0.0000,0.0000,0.0000,0.0000 ...

1FMAXA *FMAXA0.0000

See Also FFILT, FMAXV, FPPEN, SCLA

Product Rev

6K 5.0

(applicable only to
stepper axes)

The FMAXA command sets the maximum acceleration for follower axes. The FMAXA command is scaled by
the SCLA parameter.

As part of a ramp to new ratio, or simply following an accelerating master at constant ratio, a follower may be
required to accelerate. If the required acceleration is larger than FMAXA, the follower will begin falling behind
its commanded position. The 6K controller will attempt to make up this position error as soon as the
commanded accel falls below FMAXA. In stepper controllers, an error correction velocity is added to that
implied by the commanded ratio.

As with FMAXV, FMAXA should be determined and defined early in the development stage of an application
to prevent any damage to the load on the follower axis when unexpectedly high accelerations are
commanded. The torque available from the follower motor will also be a determining factor in this
parameter in order to prevent motor stalls.

Example:
FMAXA75,100 ;Set axis 1 maximum follower acceleration to 75 user units and axis 2

; maximum acceleration to 100 user units.

FMAXV Follower Axis Maximum Velocity
Type Following
Syntax <!><@><a>FMAXV<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec (scalable with SCLV)
Range r = 0.000000-1600000.000000
Default 0.00 (no limit imposed)
Response FMAXV *FMAXV0.0000,0.0000,0.0000,0.0000 ...

1FMAXV *FMAXV0.0000

See Also FFILT, FMAXA, FPPEN, SCLV

Product Rev

6K 5.0

(applicable only to
stepper axes)

The FMAXV command sets the maximum velocity at which follower axes may travel. The FMAXV command
accepts numeric variables (VAR) as an argument and is scaled by the SCLV parameter.

Normally in a Following application, the follower velocities will be known based on the normal speed of the
master and the commanded Following ratios (FOLRN and FOLRD). In some cases, however, the master speed
may be higher than normal, the follower may be commanded to perform a shift move, or some other event
may occur which will cause the follower to travel at a velocity higher than expected. In these cases, the 6K
controller will increase the speed of the follower as necessary to perform the required move, but only up to
the FMAXV value.

If the commanded speed is higher than FMAXV, the follower axis will start falling behind its commanded
position. The 6K controller will attempt to make up this position error as soon as the commanded speed falls
below FMAXV. In stepper controllers, an error correction velocity is automatically added to that implied by the
commanded ratio.

The FMAXV value should be determined and defined early in the development stage of an application to
prevent any damage to the load on the follower axis when unexpectedly high velocities are commanded.

Example:
FMAXV15,20 ;Set the axis 1 follower maximum velocity to 15 user units and

; axis 2 follower maximum velocity to 20 user units.

Command Descriptions 93

FMCLEN Master Cycle Length
Type Following
Syntax <!><@><a>FMCLEN<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = master distance units (scalable)
Range r = 0-999,999,999 (scalable with SCLMAS)
Default 0
Response FMCLEN *FMCLEN0,0,0,0,0,0,0,0

1FMCLEN *1FMCLEN0

See Also FMCNEW, FMCP, FOLEN, [FS], GOWHEN, [PMAS], SCLMAS, TFS,
TPMAS, WAIT

Product Rev

6K 5.0

The FMCLEN command defines the length of the master cycle in user units. This value is scaled by the SCLMAS

parameter. Numeric variables (VAR) can be used with this command. The initial value for FMCLEN is zero
(FMCLENØ), which means that the default master cycle length is the maximum internal size (4,294,967,296).

The concept of a master cycle may be useful when moves or other events must be initiated at certain master
positions in a repetitive cycle. By specifying a master cycle length, periodic actions may be programmed in
a loop or with subroutines which refer to cycle positions, even if the master runs continuously. It is possible
to program the 6K controller to suspend program operation or delay moves until specified master cycle
positions. The master cycle length, FMCLEN, should be defined before the functions which wait for periodic
master cycle positions are used. An axis need not be in Following mode (FOLEN1) to utilize the concept of a
master cycle. However, master positions will not be measured until a master has been assigned with
the FOLMAS command.

Example (refer also to FOLEN example #2):
SCLMAS4000,16000 ; Set the master scale factors: axis 1 = 4000; axis 2 = 16000
FMCLEN3,(VAR2) ; Set axis 1 master cycle length to 3 user units, and axis 2

; to the value of variable 2 times the SCLMAS value

FMCNEW Restart Master Cycle Counting
Type Following
Syntax <!><@><a>FMCNEW
Units n/a
Range b = 0 (do not restart), 1 (restart immediately), or X (don't change)
Default n/a
Response n/a

See Also FMCLEN, FMCP, GOWHEN, [NMCY], [PMAS], TPMAS, TRGFN, WAIT

Product Rev

6K 5.0

The FMCNEW1 command restarts master cycle counting. This sets the master cycle position (PMAS) to the
value most recently specified with FMCP, and sets the master cycle number (NMCY) to zero. The master cycle
position and the master cycle number are set immediately, and program flow continues normally.

The function of the FMCNEW1 command can be initiated with a trigger input by specifying a TRGFNcx1

command. If the FMCNEW1 command is used, master cycle counting is restarted immediately, if TRGFNcx1

is used, the 6K controller will record the instruction to set the master cycle position when the specified
trigger occurs. In this case, the master cycle counting is restarted when the specified trigger is activated,
even though commands continue to execute and the master cycle counting continues.

FMCNEWØ or FMCNEW1 will remove the status of master cycle restart pending a trigger input (TRGFNcx1). In
the case of FMCNEWØ, no restart will occur, and the specified trigger will not cause a new cycle restart.
Furthermore, if there is a trigger-based restart pending on axis X, and on axis Y a GOWHEN condition is
specified based on PMAS of axis X, then issuing an FMCNEWØ on axis X will clear the pending trigger on axis
X and will also clear the pending GOWHEN on axis Y.

A new cycle automatically occurs (i.e., the master cycle position is set to zero, not the FMCP value), when
the master cycle length (FMCLEN) is reached, even if no FMCNEW command has been executed.

Example:
TPMAS ; Display master position: response is *TPMAS12.2,0.5
FMCNEW11 ; Start new master cycle for axes 1 and 2
TPMAS ; Display master position: response is *0,0

94 6K Series Command Reference

FMCP Initial Master Cycle Position
Type Following
Syntax <!><@><a>FMCP<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = master position in scalable steps
Range r = ±999,999,999 (scalable with SCLMAS)
Default 0
Response FMCP *FMCP+0,+0,+0,+0,+0,+0,+0,+0

1FMCP *1FMCP0

See Also FMCNEW, FOLMAS, [FS], GOWHEN, SCLMAS, TFS, WAIT

Product Rev

6K 5.0

The FMCP command defines the initial master cycle position in user units. The initial master cycle position
is assigned as the current master cycle position each time master cycle counting is restarted with the
FMCNEW or TRGFNcx1 command. This value is scaled by the SCLMAS parameter. Numeric variables (VAR)
can be used with this command. The default value for FMCP is zero (FMCPØ), which means that the master
cycle position will be zero when master cycle counting is restarted (see FMCNEW).

The concept of an initial master cycle position may be useful if a new master cycle position counting must
be restarted at a master position which is different from what needs to be considered the “zero position” of a
periodic cycle. The initial position defined with FMCP applies to the first cycle only. When a master cycle is
complete, the master cycle position rolls over to zero. A negative value would be used if some master travel
were desired before master cycle position was zero. A positive value would be used if it was necessary to
enter the first master cycle at a position greater than zero.

For example, suppose FMCLEN was set to 20 and FMCP was set to 7. When master cycle position counting is
restarted, either via FMCNEW1 or the specified trigger (TRGFNcx1), the initial master cycle position will be 7.
Rollover will occur after the master travels 13 more units, and the master cycle position would go to zero.

Example:
FMCP-2,7 ; Set the initial master cycle position to -2 for axis 1

; and to 7 for axis 2

FOLEN Following Mode Enable
Type Following
Syntax <!><@><a>FOLEN
Units n/a
Range b = 0 (disable), 1 (enable) or X (don't change)
Default 0
Response FOLEN: *FOLEN0000_0000

1FOLEN: *1FOLEN0

See Also FGADV, FOLK, FOLMAS, FOLRD, FOLRN, FOLRNF, [FS], FSHFC,
FSHFD, GOWHEN, JOG, JOY, TFS

Product Rev

6K 5.0

The FOLEN command indicates whether subsequent moves on the specified axes will be following a master
(FOLEN1) or normal time-based moves (FOLEN0). The term Following mode means that FOLEN1 has been
given, and that the motion of the follower is dependent on the motion of the master at all times. If FOLEN0

is given, the motion of the master is still monitored, but the motion of the follower is independent of the
master.

To move in the Following mode, the master must be previously specified with the FOLMAS command.

Enabling the Following mode (FOLEN1) will set the net position shift value (reported by TPSHF and PSHF)
to zero. This is true even if the follower is already in Following mode.

S-Curve profiling is not operational during Following moves.

RESTRICTIONS ON USING FOLEN

The FOLEN command may not be executed during certain conditions (results in the error
message “NOT VALID DURING RAMP”).

• You may not enable Following (FOLEN1) on an axis that is in motion, waiting for a
GOWHEN condition, or operating in the Joystick mode (JOY1) or Jog mode (JOG1).

• You may not disable Following (FOLEN0) on an axis that is in motion (unless moving at
ratio in continuous mode, MC1, and not shifting) or waiting for a GOWHEN condition.

Command Descriptions 95

FOLEN Examples

Example #1:
The 6K product is controlling a rotary drive, the master is a 1000-line incremental encoder mounted on the
back of an externally controlled motor, and programming units are to be revs/second (rps).

Stepper Products:

The follower will start ramping to a ratio of 1:1 when trigger #1 (TRG-1A) goes active. This
means the actual step ratio of follower to master is 25000 to 4000, or 6.25 follower steps for
every master. After 25 master revolutions, the follower will decelerate to a 0.5:1 ratio (3.125
follower steps for every master). After a total of 75 master revolutions, the follower will ramp to
zero ratio (i.e., stop) and repeat the cycle when trigger #1 is activated. All ramps to new ratios,
including zero ratio, take place over one master revolution.

Scaling Set Up: (prior to defining program)
SCALE1 ; Enable scaling
SCLD25000 ; Set follower distance scale factor to 25,000 steps/rev

; (assumes a motor/drive res of 25,000 steps/rev)
SCLMAS4000 ; Set master scale factor to 4000 steps/rev

Servo Products:

The follower will start ramping to a ratio of 1:1 when trigger #1 (TRG-1A) goes active. This
means the actual step ratio of follower to master is 4000 to 4000, or 1 follower steps for every
master. After 25 master revolutions, the follower will decelerate to a 0.5:1 ratio (0.5 follower
steps for every master). After a total of 75 master revolutions, the follower will ramp to zero
ratio (i.e., stop) and repeat the cycle when trigger #1 is activated. All ramps to new ratios,
including zero ratio, take place over one master revolution.

Scaling Set Up: (prior to defining program)
SCALE1 ; Enable scaling
SCLD4000 ; Set follower distance scale factor to 4,000 steps/rev

; (assumes an encoder resolution of 4,000 steps/rev)
SCLMAS4000 ; Set master scale factor to 4000 steps/rev

The application program is defined as follows:
DEL FOLTST ; Delete program called FOLTST
DEF FOLTST ; Begin definition of program called FOLTST
INFNC1-H ; Set input #1 (TRG-1A) to be "trigger interrupt" (used with GOWHEN later)
COMEXC1 ; Select continuous command processing mode
MC1 ; Select continuous positioning mode
FOLMAS31 ; Assign encoder input #3 as master for axis #1
FOLMD1 ; Follower should change ratios over 1 master revolution
FMCLEN100 ; Set master cycle length to 100 revs
FOLRD1 ; Set follower-to-master Following ratio denominator to 1

; (applies to all subsequent FOLRN commands)
FOLEN1 ; Enable Following on axis #1
D+ ; Set motion to the positive- direction
$STRMV ; Label to repeat move
1TRGFNA1 ; Suspend execution of next move until trigger (TRG-1A) is active
1TRGFNAx1 ; Begin new master cycle (counter at 0) when trigger (TRG-1A) is active
FOLRN1 ; Set follower-to-master Following ratio numerator to 1 (ratio set to 1:1)
GO1 ; Start continuous Following move (when TRG-1A is active)
WAIT(1AS.26=b0 AND FS.4=b1) ; Wait for profile to actually start
 ; (when TRG-1A is active) and be at ratio
GOWHEN(1PMAS>=25) ; Suspend execution of next move until master position >= 25
FOLRN0.5 ; Set Following ratio numerator to 0.5 (ratio set to 0.5:1)
GO1 ; Initiate new move according to new Following ratio

; (when master position >= 25)
WAIT(1AS.26=b0 AND FS.4=b1) ; Wait for profile to actually start
 ; (when master position >= 25) and be at ratio
GOWHEN(1PMAS>=75) ; Suspend execution of next move until master position >= 75
FOLRN0 ; Set Following ratio numerator to zero

; (ratio causes follower to ramp to stop)
GO1 ; Initiate new move with new Following ratio (when master pos. >= 75)
WAIT(1AS.26=b0 AND FS.1=b0) ; Wait for profile to actually start

; (when master position >= 75) and the follower is not moving
JUMP STRMV ; Repeat the cycle
END ; End of program

96 6K Series Command Reference

Example #2:
Stepper Axes:

The master is an encoder mounted to gearing on a conveyor line. The gearing results in 16,000
encoder steps per conveyor inch. The follower on axis one is a 25,000 step/rev microstepper on a
36" long, 4-pitch leadscrew. The follower waits for the product to be sensed on the conveyor,
accelerates to a 1-to-1 ratio, waits for a safe location to actuate the stamping equipment, then
applies an inked stamp to the product at the correct location. After the stamp is placed, the
follower quickly moves back to the starting position and waits for the next product. Note that this
example illustrates how the WAIT command can be used to wait for master cycle positions in order
to coordinate motion.

Scaling Set Up: (prior to defining program)
SCALE1 ; Enable scaling
SCLA100000 ; Set accel scaling: 100,000 steps/inch
SCLV100000 ; Set velocity scaling: 100,000 steps/inch
SCLD100000 ; Set follower distance scaling: 100,000 steps/inch
SCLMAS16000 ; Set master scale factor to 16000 steps/inch to program in inches

Servo Axes:
The master is an encoder mounted to gearing on a conveyor line. The gearing results in 16,000
encoder steps per conveyor inch. The follower on axis one is a 4,000 step/rev servo on a 36" long,
4-pitch leadscrew. The follower waits for the product to be sensed on the conveyor, accelerates to
a 1-to-1 ratio, waits for a safe location to actuate the stamping equipment, then applies an inked
stamp to the product at the correct location. After the stamp is placed, the follower quickly moves
back to the starting position and waits for the next product. Note that this example illustrates how
the WAIT command can be used to wait for master cycle positions in order to coordinate motion.

Scaling Set Up: (prior to defining program)
SCALE1 ; Enable scaling
SCLA16000 ; Set accel scaling: 16,000 steps/inch
SCLV16000 ; Set velocity scaling: 16,000 steps/inch
SCLD16000 ; Set follower distance scaling: 16,000 steps/inch
SCLMAS16000 ; Set master scale factor to 16,000 steps/inch to program in inches

The application program is defined as follows:
DEF STAMPR ; Begin definition of program called STAMPR
COMEXS1 ; Continue command execution after Stop
COMEXC1 ; Continue command execution during motion
SCALE1 ; Enable parameter scaling
1OUTFNC1-A ; Configure onboard output #1 as a general-purpose prog. output
1INFNC2-H ; Define TRG-1B as trigger interrupt (use as GOWHEN input)
A10 ; Acceleration = 10 inches/sec/sec
V5 ; Velocity = 5 inches/sec (non-Following moves)
MA1 ; Enable absolute positioning mode for axis 1
FOLMAS21 ; Assign encoder input #2 as master for axis 1
FOLRN1 ; Set follower-to-master Following ratio numerator to 1
FOLRD1 ; Set follower-to-master Following ratio denominator to 1 (ratio is 1:1)
FOLMD1 ; Accel the follower over 1 master inch for Following moves
FMCLEN40 ; Master cycle length is 40 inches
$INKON ; Label to repeat inking process
FOLEN1 ; Enable Following on axis #1
1TRGFNBx1 ; Begin new master cycle when TRG-1B goes active

; (product sensed on conveyor)
1TRGFNB1 ; Start next move when TRG-1B is active
D+ ; Set to positive-direction
MC1 ; Select continuous positioning mode
GO1 ; Start continuous follower move on trigger #2
WAIT(1PMAS>=10.5) ; Wait until master position is 10.5 inches - this is when the
 ; stamping device can be actuated without mechanical damage
 ; to the leadscrew assembly
1OUT.1-1 ; Turn on actuator (output #1) to place ink stamp on product
T.1 ; Wait for the ink stamp to be pressed in place by a

; stationary stamper
1OUT.1-0 ; Turn off actuator (output #1)
S1 ; Stop follower move
WAIT(1AS.1=b0) ; Wait until the axis is not moving
FOLEN0 ; Disable Following on axis #1
D0 ; Set distance (position) to zero
MC0 ; Select preset positioning mode
GO1 ; Move back to zero (the home position)
WAIT(MOV=b0) ; Wait until the axis is not moving
JUMP INKON ; Begin cycle again on trigger #2
END ; End of program

Command Descriptions 97

FOLK Following Kill
Type Following
Syntax <!>FOLK
Units n/a
Range b= 0 (disable) or 1 (enable)
Default 0
Response FOLK *FOLK0000_0000

See Also DRIVE, [ER], ERROR, FOLEN, FOLRD, FOLRN, FOLMAS, FOLMD,
FSHFC, FSHFD, INFNC, K, [PSHF], SMPER, TER

Product Rev

6K 5.0

Under default operation (FOLK0), certain error conditions (i.e., drive fault input active, or max. position
error limit exceeded) will cause the 6K controller to disable the drive and kill the Following profile
(follower’s commanded position loses synchronization with the master).

If you enable Following Kill (FOLK1), these error conditions will still disable the drive (DRIVE0), but will
not kill the Following profile. Because the Following profile is still running, the controller keeps track of
what the follower’s position should be in the Following trajectory. To resume Following operation, resolve
the error condition (drive fault, excessive position error), enable the drive (DRIVE1), and command the
controller to impose a shift to compensate for the lapse/shift that occurred while the drive was disabled and
the follower was not moving. To impose the shift, assign the negative of the internally monitored shift value
(PSHF) to a variable (e.g., VAR1 = -1 * PSHF) and command the shift using a variable substitution in the
FSHFD command (e.g., FSHFD(VAR1)).

The FOLK command only preserves Following profiles; normal velocity-based profiles will be killed
regardless of the FOLK command.

FOLMAS Assignment of Master to Follower
Type Following
Syntax <!><@><a>FOLMAS<±ii>,< ±ii>,< ±ii>,< ±ii>,< ±ii>,< ±ii>,< ±ii>,< ±ii>
Units 1st i = master axis #;

2nd i = master count source;
± sets direction of master counts relative to direction of
actual master count source

Range 1st i = 1-8 (axis);
2nd i = 1 (encoder),
 2 (analog input),
 4 (commanded position)
 5 (internal count source), or
 6 (internal sine wave source).
NOTE: “1”, by itself, selects the master encoder.
 “0”, by itself, disables the axis from being a follower

Default +0 (disable from being a follower axis)
Response FOLMAS *FOLMAS+0,+0,+0,+0, +0,+0,+0,+0

1FOLMAS *1FOLMAS+0

See Also ANIMAS, FGADV, FOLEN, FOLK, FOLMD, FOLRD, FOLRN, FOLRNF,
[FS], FVMACC, FVMFRQ, SINAMP, SINANG, SINGO, TFS

Product Rev

6K 5.0

Use FOLMAS to assign or un-assign a master to a follower axis. Each data field (±ii) configures that axis
as a follower following the specified master count source. In the syntax for each follower axis (±ii), the
sign bit sets the direction of master counting relative to the actual direction of the counts as received from
the master count source. The first i selects the axis number of the master you are assigning to the follower,
and the second i selects the count source of that master axis.

Exceptions to the syntax:

• If a one (1) is place int he data field (±ii), that axis will follow the counts from the Master Encoder
(the separate encoder labeled “MASTER ENCODER”).

• If a zero (Ø) is placed in the data field (±ii), that axis becomes a normal non-Following axis.

98 6K Series Command Reference

Virtual Master . There are two “Virtual Master” options (an internal count source and an internal sine
wave) for applications that require the synchronization features of Following, but have no external master.
For a detailed description virtual master features, see “Virtual Master” in the Programmer’s Guide.

• Master Source Option 5 (e.g., FOLMAS±i5) selects the internal count source as master. The frequency
and acceleration of the internal count source are established with the FVMACC and FVMFRQ

commands, respectively.

• Master Source Option 6 (e.g., FOLMAS±i6) selects the internal sine wave as master. The angle and
amplitude of the sine wave are established with the SINANG and SINAMP commands, respectively. To
start and stop the internal sine wave generator, use the SINGO command.

If scaling is enabled (SCALE1), the measurement of the master is scaled by the SCLMAS value. For more
information on scaling, refer to page 16 or to the SCLMAS command description.

NOTES

• A follower axis cannot use its own feedback device or commanded position as the
master input.

• Multiple axes may follow the same count source (e.g., encoder) from the same
master. However, multiple axes may not follow different count sources (e.g., encoder
and commanded position) from the same master.

• Before you can use an analog input as a master count source, you must first use the
ANIMAS command to assign the analog input to a master axis number. Then you can
user the FOLMAS command to assign the analog input as a master counting source
for a specific follower axis.

As an example, the FOLMAS+31,-12,, command sets up these parameters:

• Follower axis #1 is set up as follows (+31): Encoder #3 is assigned as the master to follower axis #1.
The positive sign bit indicates that master counts will count in the same direction as encoder #3.

• Follower axis #2 is set up as follows (-12): Master analog input #1 is assigned as the master to
follower axis #2. The negative sign bit indicates that the master counts will count in the opposite
direction of the sign of the voltage change on the analog input.

• Axes 3 and 4 are not affected.

NOTE

The FOLMAS command configures an axis to be a follower, but does not automatically
enable Following. To enable Following use the FOLEN1 command. To enable follower
motion, enable Following (FOLEN1), issue a ratio (FOLRN and FOLRD), and issue the GO
command.

As soon as the master is specified with the FOLMAS command, a continuously updated relationship is
maintained between the follower's position and the master's position. Also, master velocity is continuously
measured. For steppers only, the configuration of the follower axis is used in the implementation of the
step output, so several commands need to be executed before FOLMAS; they are DRES, ERES, and PULSE.

Notice that the master axis number does not need to be the same as the follower axis number. (For example,
given FOLMAS21,44,,31 , axis 1 is follower to the encoder input on axis #2, axis #2 is follower to the
commanded output of axis #4, axis #3 is not configured as a follower, and axis 4 is follower to the encoder
input of axis #3.)

There are several applications in which a minus sign in the FOLMAS command is used. A minus sign should
be used whenever the master is moving in the desired positive direction and yet the 6K controller actually
perceives the master to be moving in the negative direction. For example, this can occur when the master
input device is mounted on the opposite side of a conveyor. Putting a minus sign in front of the master
parameter specification in the FOLMAS command causes the incoming master signal to be negated before it
is used by the follower. The term master count refers to the count after negation, if any.

For preset follower moves, the direction the follower travels depends on the mode of operation (absolute or
incremental) and the commanded position. However, once a preset follower move is commanded, it will

Command Descriptions 99

only start moving if the master is moving in the positive direction. This is true no matter the commanded
direction of the follower move.

For continuous follower moves, the master count direction has a different effect. If the commanded move is
positive in direction and the master is counting up, the actual follower travel direction will be positive. If the
commanded move is positive in direction and the master is counting down, the actual follower travel
direction will be negative. Similar cases exist for follower moves commanded in the negative direction.

Example: (refer to the FOLEN examples)

FOLMD Master Distance
Type Following
Syntax <!><@><a>FOLMD<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units i = distance in counts
Range 0 - 999,999,999 (scalable by SCLMAS)
Default 0
Response FOLMD *FOLMD0,0,0,0,0,0,0,0

1FOLMD *FOLMD0

See Also ANIMAS, FGADV, FOLEN, FOLK, FOLRN, FOLRNF, FOLRD, MC,
[PMAS], SCLMAS, TPMAS

Product Rev

6K 5.0

If a follower is in continuous positioning mode (MC1), FOLMD is the master distance over which acceleration
or deceleration from the current ratio to the new ratio takes place. Or, if a follower is in preset positioning
mode (MCØ), the FOLMD command indicates the master distance over which the next preset move will take
place.

If scaling is enabled (SCALE1), the FOLMD value is specified in user units and is scaled by the SCLMAS

parameter (for more detail on scaling, refer to page 16 or to the SCLMAS command description). Numeric
variables (VAR) can be used with this command (e.g., FOLMD12,(VAR6),3,6).

By carefully specifying accurate master distances for each ramp of a follower's move profile, a precise
position relationship between master and follower will be maintained during all phases of the profile. The
“Master and Follower Distance Calculation” section in the Following chapter of the Programmer's Guide
discusses the relationship between ratio changes and the corresponding master and follower distances.

HINT: If a follower is in continuous mode (MC1) and the master is starting from rest, setting FOLMD to Ø will
ensure precise tracking of the master's acceleration ramp. This is how the trackball application
example is written in the Following chapter of the Programmer's Guide.

Examples: (refer also to FOLEN example #2)
SCALE1 ; Enable parameter scaling
SCLMAS4000 ; Master scale factor is 4000 steps/rev
SCLD4000 ; Follower scale factor is 4000 steps/rev
DEL progx ; Delete program called progx
DEF progx ; Begin definition of program called progx
FOLMAS31 ; Axis 3 encoder is the master for axis 1
FOLMD0 ; Assign Following acceleration distance to 0 master revs

; (i.e., instantaneous)
FOLRN1 ; Set follower-to-master Following ratio numerator to 1
FOLRD1 ; Set follower-to-master Following ratio denominator to 1

; Ratio set to 1:1
FOLEN1 ; Enable Following on axis #1
D- ; Set direction to opposite direction of the master
GO1 ; Begin following master. If the master is not moving, follower

; will remain at rest until master moves, at which time the
; follower will track the master precisely, but in the opposite
; direction as the master.

END ; End definition of progx

100 6K Series Command Reference

FOLRD Denominator of Follower-to-Master Ratio
Type Following
Syntax <!><@><a>FOLRD<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = master distance in counts
Range r = 1.00000 - 999,999,999 (scalable by SCLMAS)
Default 1
Response FOLRD *FOLRD1,1,1,1,1,1,1,1

1FOLRD *FOLRD1

See Also COMEXC, FGADV, FOLEN, FOLK, FOLMAS, FOLRN, FOLRNF, SCLMAS

Product Rev

6K 5.0

The FOLRD command establishes the denominator of a ratio between follower and master travel. (Ratios are
always specified as positive, similar to velocity.) For a preset move (MCØ), it is the maximum allowed ratio,
and for a continuous move (MC1), it is the final ratio reached by the follower. The actual follower direction
will depend on commanded moves (D+ or D-) and master direction.

If no FOLRD parameter is specified, it is assumed to be 1.

If scaling is enabled (SCALE1), the FOLRD value is scaled by the SCLMAS value. For more detail on scaling,
refer to page 16 or to the SCLMAS command description.

Numeric variables (VAR) can be used with this command for master parameters (e.g., FOLRD(VAR5),5).

Each time FOLRN or FOLRD are given, the 6K controller divides the scaled numerator and denominator to
calculate the ratio, but roundoff errors are eliminated by measuring both master and follower over a large
distance. After scaling, the maximum magnitude of the ratio is 127 follower steps for every master step.

ON-THE-FLY CHANGES : You can change Following ratio on the fly (while motion is in progress) in
two ways. One way is to send an immediate command (!FOLRD) followed by an immediate go command
(!GO). The other way is to enable the continuous command execution mode (COMEXC1) and execute a
buffered command (FOLRD) followed by a buffered go command (GO).

Example : (refer also to the FOLEN examples)
SCLD25000 ; Set follower scaling factor to 25,000
SCLMAS4000 ; Set master scaling factor to 4,000
SCALE1 ; Enable scaling
FOLRN5 ; Set ratio numerator to 5 (5 * 25,000 = 125,000)
FOLRD3 ; Set ratio denominator to 3 (3 * 4,000 = 12,000)

; (Resulting ratio is 125 follower steps to every 12 master steps.)

FOLRN Numerator of Follower-to-Master Ratio
Type Following
Syntax <!><@><a>FOLRN<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = follower distance in steps
Range r = 0.00000 - 999,999,999.99999 (scalable by SCLD)
Default 1
Response FOLRN *FOLRN1,1,1,1,1,1,1,1

1FOLRN *FOLRN1

See Also FGADV, FOLEN, FOLK, FOLMAS, FOLRNF, FOLRD, SCLD

Product Rev

6K 5.0

The FOLRN command establishes the numerator of a ratio between follower and master travel. (Ratios are
always specified as positive, similar to velocity.) For a preset move (MCØ), it is the maximum allowed ratio,
and for a continuous move (MC1), it is the final ratio reached by the follower. The actual follower direction
will depend on commanded moves (D+ or D-) and master direction.

If no FOLRN parameter is specified, it is assumed to be 1.

If scaling is enabled (SCALE1), the FOLRN value is scaled by the SCLD value. For more detail on scaling,
refer to page 16 or to the SCLD command description.

Numeric variables (VAR) can be used with this command for follower parameters (e.g., FOLRN(VAR2),5).

Each time FOLRN or FOLRD are given, the 6K controller divides the scaled numerator and denominator to
calculate the ratio, but roundoff errors are eliminated by measuring both master and follower over a large
distance. After scaling, the maximum magnitude of the ratio is 127 follower steps for every master step.

Command Descriptions 101

ON-THE-FLY CHANGES : You can change Following ratio on the fly (while motion is in progress) in
two ways. One way is to send an immediate command (!FOLRN) followed by an immediate go command
(!GO). The other way is to enable the continuous command execution mode (COMEXC1) and execute a
buffered command (FOLRN) followed by a buffered go command (GO).

Example : refer to the FOLRD and FOLEN examples

FOLRNF Numerator of Final Follower-to-Master Ratio, Preset Moves
Type Following; Compiled Motion
Syntax <!><@><a>FOLRNF<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = follower distance in steps
Range 0.00000
Default 0
Response FOLRNF *FOLRNF0,0,0,0,0,0,0,0

1FOLRNF *1FOLRNF0

See Also FGADV, FOLEN, FOLRD, FOLRN, FOLMD, SCLD

Product Rev

6K 5.0

The Numerator of Final Follower-to-Master Ratio, Preset Moves (FOLRNF) command establishes the
numerator of the final ratio between follower and master travel. (Ratios are always specified as positive,
similar to velocity.) The FOLRNF command designates that the motor will move the load the distance
designated in a preset GOBUF segment, completing the move at a final ratio of zero. FOLRNF applies only to
the first subsequent GOBUF, which marks an intermediate “end of move” within a following profile. FOLRNF is
used only in conjunction with the GOBUF command. Normal preset GO moves always finish with zero FOLRNF.

If scaling is enabled (SCALE1), the FOLRNF value is scaled by the SCLD value. For more detail on scaling,
refer to page 16 or to the SCLD command description.

NOTE: The only allowable value for FOLRNF is Ø, and it may only be used with compiled preset Following
moves (a non-zero FOLRNF value will result in an immediate error message). FOLRNF is allowed for a
segment only if the starting ratio is also zero (i.e., it must be the first segment, or the previous segment must
have ended in zero ratio).

With compiled preset Following moves where FOLRNF has not been given, the final ratio is given with FOLRN,
and the shape of the intermediate profile will be constrained to be within the starting and ending ratios.

For more information on using the FOLRNF command, refer to the Custom Profiling chapter in the
Programmer's Guide.

FPPEN Master Position Prediction Enable
Type Following
Syntax <!><@><a>FPPEN
Units n/a
Range b = 0 (disable), 1 (enable) or X (don't change)
Default 1
Response FPPEN *FPPEN1111_1111

1FPPEN *1FPPEN1

See Also [FS], TFS

Product Rev

6K 5.0

The FPPEN command enables or disables Master Position Prediction in the 6K controller Following algorithm.
Master Position Prediction is enabled by default, but can be disabled as desired with the FPPENØ command.

The 6K controller measures master position once per position sample period and calculates a corresponding
follower commanded position. This calculation, and achieving the subsequent follower commanded position,
requires 2 sample periods (4 milliseconds).

Enabling Master Position Prediction (FPPEN1) eliminates any lag in follower position which would be
dependent on master speed. It may be desirable to disable Master Position Prediction (FPPENØ) when
maximum follower smoothness is important and minor phase delays can be accommodated. A detailed
discussion of Master Position Prediction is given in the Following chapter of the Programmer's Guide.

Example:
FPPEN11 ; Enable Master Position Prediction for axis 1 and 2.

102 6K Series Command Reference

[FS] Following Status
Type Following; Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also FGADV, FMCLEN, FMCP, FOLEN, FOLMAS, FPPEN, FSHFC, FSHFD, MC,
[NMCY], [PMAS], TFS, TFSF, VARB

Product Rev

6K 5.0

The Following Status (FS) command is used to assign the Following status bits for a specific axis to a
binary variable, or to make a comparison against a binary or hexadecimal value. The function of each status
bit is shown below.

Bit Assignment
(left to right) Function (YES = 1; NO = Ø)

1 Follower in Ratio Move A Following move is in progress.

2 Ratio is Negative The current ratio is negative (i.e., the follower counts are counting in the
opposite direction from the master counts).

3 Follower Ratio Changing The follower is ramping from one ratio to another (including a ramp to or
from zero ratio).

4 Follower At Ratio The follower is at constant non-zero ratio.

* 5 FOLMAS Active A master is specified with the FOLMAS command.

* 6 FOLEN Active Following has been enabled with the FOLEN command.

* 7 Master is Moving The specified master is currently in motion.

8 Master Dir Neg The current master direction is negative. (bit must be cleared to allow
Following move in preset mode–MCØ).

9 OK to Shift Conditions are valid to issue shift commands (FSHFD or FSHFC).

10 Shifting now A shift move is in progress.

11 Shift is Continuous An FSHFC-based shift move is in progress.

12 Shift Dir is Neg The direction of the shift move in progress is negative.

13 Master Cyc Trig Pend A master cycle restart is pending the occurrence of the specified trigger.

14 Mas Cyc Len Given A non-zero master cycle length has been specified with the FMCLEN
command.

15 Master Cyc Pos Neg The current master cycle position (PMAS) is negative. This could be by
caused by a negative initial master cycle position (FMCP), or if the master
is moving in the negative direction.

 16 Master Cyc Num > 0 The master position (PMAS) has exceeded the master cycle length
(FMCLEN) at least once, causing the master cycle number (NMCY) to
increment.

17 Mas Pos Prediction On Master position prediction has been enabled (FPPEN).

18 Mas Filtering On A non-zero value for master position filtering (FFILT) is in effect.

19 RESERVED

20 RESERVED

21 RESERVED

22 RESERVED

23 OK to do FGADV move OK to do Geared Advance move (master assigned with FOLMAS,
Following enabled with FOLEN, and follower axis is either not moving, or
moving at constant ratio in continuous mode).

 24 FGADV move underway Geared Advance move profile is in progress.

* All these conditions must be true before Following motion will occur.

Command Descriptions 103

Syntax: VARBn=aFS where n is the binary variable number and a is the axis identifier, or FS can be used
in an expression such as IF(1FS=b11Ø1) , or IF(1FS=h7F) . The FS command must be used
with an axis specifier, or it will default to axis 1.

To make a comparison against a binary value, place the letter b (b or B) in front of the value that
the Following status is being compared against. The binary value itself must only contain ones,
zeros, or Xs (1, Ø, X, x). To make a comparison against a hexadecimal value, the letter h (h or H)
must be placed in front of the value that the Following status is being compared against. The
hexadecimal value itself must only contain the letters A through F, and the numbers Ø through 9.

If you wish to assign only one bit of the Following status to a binary variable, instead of all 32,
the bit select (.) operator can be used. The bit select, in conjunction with the bit number, is used
to specify a specific Following status bit (e.g., VARB1=1FS.12 assigns axis 1 status bit 12 to
binary variable 1).

Example:
VARB1=1FS ; Following status for axis 1 assigned to binary variable 1
VARB2=1FS.12 ; Axis 1 Following status bit 12 assigned to binary variable 2
VARB2 ; Response if bit 12 is set to 1 should be:

; *VARB2=XXXX_XXXX_XXX1_XXXX_XXXX_XXXX_XXXX_XXXX
IF(4FS=b111011X11) ; If the Following status for axis 4 contains 1's for

; inputs 1, 2, 3, 5, 6, 8, and 9, and a 0 for bit location 4,
; do the IF statement

TREV ; Transfer revision level
NIF ; End if statement
IF(2FS=h7F00) ; If the Following status for axis 2 contains 1's for inputs 1,

; 2, 3, 5, 6, 7, and 8, and 0's for every other bit location,
; do the IF statement

TREV ; Transfer revision level
NIF ; End if statement

FSHFC Continuous Shift
Type Following
Syntax <!><@><a>FSHFC<i>,<i>,<i>,<i>,<i>,<i>,<i>,<i>
Units i = shift feature to implement
Range i = 0 (stop), 1 (positive-direction), 2 (negative-direction),

 or 3 (kill)
Default n/a
Response n/a

See Also FGADV, FOLEN, FOLK, FOLRN, FOLRNF, FOLRD, [FS], FSHFD, MC,
[PSHF], TFS, TPSHF

Product Rev

6K 5.0

The FSHFC command allows time-based follower moves to be superimposed on continuous Following
moves. This results in a shift (change in phase) between the master position and the follower position.
Continuous shift moves in the positive- or negative-direction may be commanded only while the follower is
in the Following mode (FOLEN1).

Steppers only: An FSHFC move may be performed only when the follower is in the continuous
positioning mode (MC1) and performing a Following move at a constant ratio.

The most recently commanded velocity (V) and acceleration (A) for the follower axis will determine the
speed at which the FSHFC move takes place. The velocity and direction of the FSHFC shift is independently
superimposed on whatever velocity and direction results from the ratio and motion of the master. The
FSHFC shift is not a change in ratio; rather, it is a velocity added to a ratio. The velocity commanded is
added to the present speed at which the follower is moving, up to the velocity limit of the product. For
example, assume a follower is traveling at 1 rps in the positive direction while following a master. If a
FSHFC move is commanded in the positive direction at 2 rps, the follower's actual velocity (after
acceleration) will be 3 rps.

The FSHFC parameters stop (Ø) and kill (3) can be used to halt a continuous FSHFC move (positive-
direction or negative-direction). The example below shows how to stop a FSHFC continuous move.

An FSHFC move may be needed to adjust the relative follower position on the fly during the continuous
Following move. For example, suppose an operator is visually inspecting the follower's motion with respect

104 6K Series Command Reference

to the master. If he notices that the master and follower are out of synchronization, it may be desirable to
have an interrupt programmed (e.g., activated with a push-button switch) that will allow the operator to
advance or retard the follower at a super-imposed correction speed until the operator chooses to have the
follower start tracking the master again. The example below shows this.

FSHFC Example:
Assume all scale factors and set-up parameters have been entered for the master and follower. In this
example, the follower (axis #1) is continually following the master at a 1:1 ratio. If the operator notices
some mis-alignment between master and follower, he can press 1 of 2 pushbuttons (connected to onboard
trigger inputs #1 and #2, which are also referred to as TRG-1A and TRG-1B) to shift the follower in the
positive- or negative-direction at 0.1 user scaled units until the button is released. After the adjustment, the
program continues on as before.

Example:
DEF SHIFT ; Begin definition of program called SHIFT
V.1 ; Add or subtract 0.1 user scaled units from the follower velocity

; when shifting
COMEXS1 ; Continue command execution after stop
COMEXC1 ; Continue command execution during motion
FOLMAS31 ; Axis 3 encoder input is the master for axis 1
FOLRN1 ; Set follower-to-master Following ratio numerator to 1
FOLRD1 ; Set follower-to-master Following ratio denominator to 1

; (ratio set to 1:1)
FOLEN1 ; Enable Following mode on axis #1
D+ ; Set to positive-direction
MC1 ; Select continuous positioning mode
GO1 ; Start following master continuously
VARB1=b10 ; Define onboard input pattern #1 and assign to VARB1
VARB2=b01 ; Define onboard input pattern #2 and assign to VARB2
$TESTIN ; Define label called TESTIN
IF(IN=VARB1) ; IF statement (if onboard input #1 is activated, do the jump)
 JUMP SHIFTP ; Jump to shift follower in the positive-direction when pattern 1

; active
 NIF ; End of IF statement
IF(IN=VARB2) ; IF statement (if onboard input #2 is activated, do the jump)
 JUMP SHIFTN ; Jump to shift follower in the negative-direction when pattern 2

; active
 NIF ; End of IF statement
JUMP TESTIN ; Return to main program loop
$SHIFTP ; Define label called SHIFTP (subroutine to shift in the

; positive direction)
FSHFC1 ; Start continuous follower shift move in positive-direction
WAIT(IN.1=b0) ; Continue shift until onboard input #1 is deactivated
FSHFCØ ; Stop shift move
JUMP TESTIN ; Return to main program loop
$SHIFTN ; Define label called SHIFTN (subroutine to shift in the

; negative-direction)
FSHFC2 ; Start continuous follower shift move in the negative-direction
WAIT(IN.2=b0) ; Continue shift until onboard input #2 is deactivated
FSHFC0 ; Stop shift move
JUMP TESTIN ; Return to main program loop
END ; End definition of program called SHIFT

Command Descriptions 105

FSHFD Preset Shift
Type Following
Syntax <!><@><a>FSHFD<r>,<r>,<r>,<r>,<i>,<i>,<i>,<i>
Units r = shift distance
Range r = 0.00000 - 999,999,999 (scalable with SCLD)
Default n/a
Response n/a

See Also FGADV, FOLEN, FOLK, FOLRN, FOLRNF, FOLRD, [FS], FSHFC, MC,
ONCOND, [PSHF], SCLD, TFS, TPSHF

Product Rev

6K 5.0

The FSHFD command allows time-based follower moves to be superimposed on continuous Following
moves. This results in a shift (change in phase, or registration) between the master position and the follower
position. Preset shift moves of defined or variable distances, may be commanded only while the follower is in
the Following mode (FOLEN1). The FSHFD distance is scaled by the SCLD value of scaling is enabled
(SCALE1).

Steppers Only : An FSHFD move may be performed only when the follower is in the continuous
positioning mode (MC1) and performing a Following move at a constant ratio.

The most recently commanded velocity (V) and acceleration (A) for the follower axis will determine the
speed at which the FSHFD move takes place. The velocity and direction of the FSHFD shift is independently
superimposed on whatever velocity and direction results from the ratio and motion of the master.

The FSHFC parameters stop (Ø) and kill (3) can be used to halt an FSHFD.

It should be noted that FSHFD is similar in execution to GO. The entire preset distance shift, or ramp-to-shift
velocity, must finish before the 6K controller proceeds to the next command.

The FSHFD shift is not a change in ratio; rather, it is a velocity added to a ratio. The velocity commanded
will be added to the present speed at which the follower is moving, up to the velocity limit of the product.
For example, assume a follower is traveling at 1 rps in the positive direction while following a master. If a
FSHFD move is commanded in the positive direction at 2 rps, the follower's actual velocity (after
acceleration) will be 3 rps.

An FSHFD move may be needed to adjust the follower position on the fly because of a load condition which
changes during the continuous Following move. For example, suppose an operator is visually inspecting the
follower's motion with respect to the master. If the operator notices that the master and follower are out of
synchronization, it may be desirable to have an input programmed (e.g., activated with a push-button
switch) that will allow the operator to advance or retard the follower a fixed distance, and then let the
follower resume tracking the master. The example below illustrates this.

FSHFD Example:
Assume all scale factors and set-up parameters have been entered for the master and follower. In this
example, the follower (axis #1) is continually following the master at a 1:1 ratio. If the operator notices
some mis-alignment between master and follower, he can press 1 of 2 pushbuttons (connected to onboard
trigger inputs #1 and #2, which are also referred to as TRG-1A and TRG-1B) to advance or retard the
follower a fixed distance of 200 steps. After the adjustment, the follower resumes tracking the master as
before.

(Program on following page)

106 6K Series Command Reference

Example:
DEF PSHIFT ; Begin definition of program called PSHIFT
COMEXS1 ; Continue command execution after stop
COMEXC1 ; Continue command execution during motion
FOLMAS31 ; Axis 3 encoder input is the master for axis 1
FOLRN1 ; Set follower-to-master Following ratio numerator to 1
FOLRD1 ; Set follower-to-master Following ratio denominator to 1

; (ratio set to 1:1)
FOLEN1 ; Enable Following mode on axis #1
D+ ; Set direction to positive
MC1 ; Select continuous positioning mode
GO1 ; Start following master continuously
VARB1=b10 ; Define input pattern #1 and assign to VARB
VARB2=b01 ; Define input pattern #2 and assign to VARB
$TESTIN ; Define label called TESTIN
IF(IN=VARB1) ; IF statement (if onboard input #1 is activated, do the jump)
 JUMP SHIFTP ; Jump to shift follower in positive-direction when pattern 1 active
 NIF ; End of IF statement
IF(IN=VARB2) ; IF statement (if onboard input #2 is activated, do the jump)
 JUMP SHIFTN ; Jump to shift follower in negative-direction when pattern 2 active
 NIF ; End of IF statement
JUMP TESTIN ; Return to main program loop
$SHIFTP ; Define label called SHIFTP (subroutine to shift in the

; positive direction)
FSHFD200 ; Start preset follower shift move of 200 steps in positive direction
WAIT(FS.10=b0) ; Wait for shift to finish
JUMP TESTIN ; Return to main program loop
$SHIFTN ; Define label called SHIFTN (subroutine to shift in the

; negative direction)
FSHFD-2ØØ ; Start preset follower shift move of 200 steps in the negative

; direction
WAIT(FS.10=b0) ; Wait for shift to finish
JUMP TESTIN ; Return to main program loop
END ; End definition of program called PSHIFT

FVMACC Virtual Master Count Acceleration
Type Following
Syntax <!><@><a>FVMACC<i>,<i>,<i>,<i>,<i>,<i>,<i>,<i>
Units i = count acceleration in counts/sec/sec
Range ±999,999,999.9999
Default +0
Response FVMACC *FVMACC+0,+0,+0,+0,+0,+0,+0,+0

1FVMACC *1FVMACC+0

See Also FOLMAS, FVMFRQ, SINAMP, SINANG, SINGO

Product Rev

6K 1.0

Use the FVMACC command to define the rate at which the virtual master internal count frequency may
change for each axis. This command allows smooth changes in master velocity and direction.

Command Descriptions 107

FVMFRQ Virtual Master Count Frequency
Type Following
Syntax <!><@><a> FVMFRQ<i>,<i>,<i>,<i>,<i>,<i>,<i>,<i>
Units i = count frequency in counts/sec
Range ±1000000.0000
Default +0
Response FVMFRQ *FVMFRQ+0,+0,+0,+0,+0,+0,+0,+0

1FVMFRQ *1FVMFRQ+0

See Also FOLMAS, FVMACC, SINAMP, SINANG, SINGO

Product Rev

6K 1.0

Use the FVMFRQ command to define the virtual master count frequency for each axis. The “virtual master” is
an internal count source, intended to mimic the counts which might be received on an external encoder port.
Just as may be encountered with an external encoder, this count source may speed up, slow down, stop, or
count backwards.

There is one count source per axis. Each count source has a variable count frequency, defined by the user.
The count sources are always enabled, counting at the signed rate specified by this command. To start and
stop the count source, specify non-zero or zero values, respectively, for the FVMFRQ command.

The rate at which the count frequency may change is specified in counts per second per second with the
FVMACC command, allowing smooth changes in master velocity and direction.

GO Initiate Motion
Type Motion
Syntax <!><@>GO
Units n/a
Range b = 0 (don't go), 1 (go), or X (don't change)
Default 1
Response GO: No response; instead, motion is initiated on all axes

See Also A, AA, AD, ADA, COMEXC, D, DRFLVL, GOBUF, GOWHEN, K, LH, LS,
MA, MC, PSET, S, SCLA, SCLD, SCLV, SSV, TEST, V

Product Rev

6K 5.0

The Initiate Motion (GO) command instructs the motor to make a move using motion parameters that have
been previously entered. Several commands affect the motion that will occur when a GO is received: SCLA,
SCLD, SCLV, A, AA, AD, ADA, D, V, LH, LS, MA, and MC.

The GO command starts motion on any or all axes. If the GO command is issued without any arguments,
motion will be started on all axes.

If motion does not occur after a GO command has been issued, verify the drive fault level (DRFLVL) and the
limits (LH and LS).

108 6K Series Command Reference

On-The-Fly (Pre-emptive GO) Motion Profiling

While motion is in progress (regardless of the positioning mode), you can change these motion
parameters to affect a new profile:

• Acceleration (A) — S-curve acceleration is not supported in OTF motion changes
• Deceleration (AD) — S-curve acceleration is not supported in OTF motion changes
• Velocity (V)
• Distance (D)
• Preset or Continuous Positioning Mode Selection (MC)
• Incremental or Absolute Positioning Mode Selection (MA)
• Following Ratio Numerator and Denominator (FOLRN and FOLRD, respectively)

The motion parameters can be changed by sending the respective command (e.g., A, V, D, MC, etc.)
followed by the GO command. If the continuous command execution mode is enabled (COMEXC1), you
can execute buffered commands; otherwise, you must prefix each command with an immediate
command identifier (e.g., !A , !V , !D , !MC, etc., followed by !GO). The new GO command pre-empts the
motion profile in progress with a new profile based on the new motion parameter(s).

For more information, refer to the Custom Profiling section in the Programmer's Guide.

Example:
SCALE1 ; Enable scaling
SCLA25000,25000,1,1 ; Set the accel. scale factor on axes 1 & 2 to

; 25000 steps/unit, axes 3 & 4 to 1 step/unit
SCLV25000,25000,1,1 ; Set the velocity scale factor on axes 1 & 2 to

; 25000 steps/unit, axes 3 & 4 to 1 step/unit
SCLD1,1,1,1 ; Set the distance scaling factor on axes 1, 2, 3, & 4 to

; 1 step/unit
DEL proga ; Delete program called proga
DEF proga ; Begin definition of program called proga
MA0000 ; Incremental positioning mode on all axes
MC0000 ; Preset positioning mode on all axes
A10,12,1,2 ; Set the acceleration to 10, 12, 1, & 2 units/sec/sec

; on axes 1, 2, 3 & 4
V1,1,1,2 ; Set the velocity to 1, 1, 1, & 2 units/sec on

; axes 1, 2, 3 & 4
D100000,1000,10,100 ; Set the distance to 100000, 1000, 10, & 100 units on

; axes 1, 2, 3 & 4
GO1100 ; Initiate motion on axes 1 and 2, 3 & 4 do not move
END ; End definition of proga

GOBUF Store a Motion Segment in Compiled Memory
Type Compiled Motion
Syntax <@>GOBUF
Units n/a
Range b = 0 (don't go), 1 (go), or X (don't change)
Default 1
Response n/a

See Also [AS], DEF, END, [ER], FOLRNF, MA, MC, MEMORY, PCOMP, PEXE,
POUTn, PRUN, PUCOMP, PLOOP, PLN, [SS], TAS, TER, TSS, VF

Product Rev

6K 5.0

The Store a Motion Segment in Compiled Memory (GOBUF) command creates a motion segment as part of a
profile and places it in a segment of compiled memory, to be executed after all previous GOBUF motion
segments have been executed. When a GOBUF command is executed, the distance from the new D command
is added to the profile’s current goal position as soon as the GOBUF command is executed, thus extending
the overall move distance of the profile under construction.

GOBUF is not a stand-alone command; it can only be executed within compiled programs, using the PCOMP

and PRUN commands.

Each GOBUF motion segment may have its own distance to travel, velocity, acceleration and deceleration.
The end of a preset segment (MCØ) is determined by the distance or position specified; a compiled MCØ

GOBUF motion segment is finished when the "D" goal is reached. The end of a continuous segment (MC1) is
determined by the ratio or velocity specified; a compiled MC1 GOBUF motion segment is finished when the

Command Descriptions 109

velocity or ratio goal is reached. If either a preset segment or continuous segment is followed by a
compiled GOWHEN command, motion will continue at the last velocity until the GOWHEN condition becomes
true, and the next segment begins.

The GOBUF command is not allowed during absolute positioning mode (MA1).

Starting velocity of a GOBUF segment
Every GOBUF motion segment will start at a velocity equal to the previous segment’s end velocity. If the
previous GOBUF segment uses the VFØ command, then it will end at zero velocity; otherwise, the end
velocity will equal to the goal velocity (V) of the previous segment.

Ending velocity of a GOBUF segment
Preset Positioning Mode (MCØ)

A preset motion segment starts at the previous motion segment’s end velocity, attempts to reach the
goal velocity (V) with the programmed acceleration and deceleration (A and AD) values, and is
considered completed when the distance (D) goal is reached.

In non-Following motion (FOLENØ), the last preset GOBUF segment always ends at zero velocity, but
if you wish the velocity between intermediate GOBUF segments to end at zero velocity, use the VFØ

command. In Following mode (FOLEN1), the last preset GOBUF segment will end with the last-
specified goal velocity, but if you wish the velocity between intermediate GOBUF segments to end at
zero velocity, use the FOLRNF command.

Each GOBUF will build a motion segment that, by default, becomes known as the last segment in the
profile. The last motion segment in a profile must end at zero velocity. If using pre-compiled loops
(PLOOP) and the loop is closed after the last GOBUF segment (PLN occurs after the last GOBUF), then
the unit will not consider the last GOBUF as a final motion segment since it can link to either the first
segment of the loop or the next segment after the loop. If the conditions are such that the last
motion segment is within a loop and does not end at zero velocity, then an error is generated
(TSS/SS bit #31 is set) at compile time (PCOMP), and the profile remains un-compiled.

Continuous Positioning Mode (MC1)
A continuous segment starts at the previous motion segment’s end velocity, and is considered
complete when it reaches the goal velocity (V) at the programmed accel (A) or decel (AD) values.

You may use a mode continuous (MC1) non-zero velocity segment as the last motion segment in a
profile (no error will result). The axis will just continue traveling at the goal velocity.

NOTE: Each GOBUF motion segment can consume from 2-8 memory segments of compiled memory. If
there is no more space left in compiled memory, a compilation error will result.

Example:

DEF simple ; Begin definition of program
MC0 ; Preset positioning mode
MA0 ; Preset incremental

; positioning mode
D50000 ; Distance is 50000
A10 ; Acceleration is 10
AD10 ; Deceleration is 10
V5 ; Velocity is 5
GOBUF1 ; 1st motion segment, axis 1
D30000 ; Distance is 30000
V2 ; Velocity is 2
GOBUF1 ; 2nd motion segment, axis 1
D40000 ; Distance is 40000
V4 ; Velocity is 4
GOBUF1 ; 3rd motion segment, axis 1
END ; End program definition

PCOMP simple ; Compile simple
PRUN simple ; Run simple

The resulting profile from this program:

v

t0

1

2

3

4

5

D50000

D30000
D40000

110 6K Series Command Reference

GOL Initiate Linear Interpolated Motion
Type Motion (Linear Interpolated)
Syntax <!><@>GOL
Units n/a
Range b = 0 (don't go), 1 (go), or X (don't change)
Default 0
Response GOL: No response, instead motion is initiated on all axes

See Also D, GOWHEN, PA, PAA, PAD, PADA, PV, SCALE, SCLA, SCLD , SCLV

Product Rev

6K 5.0

The Initiate Linear Interpolated Motion (GOL) command instructs the motor to make a move using motion
parameters that have been previously entered. Several commands affect the motion that will occur when a
GOL is received: PA, PAA, PAD, PADA, D, PV, and SCLA, SCLD, SCLV.

The GOL command starts motion on any or all axes. If the GOL command is issued without any arguments,
motion will be started on all axes.

When moves are made using the GOL command, the endpoint of the linear interpolated move is determined
by the D command. The accelerations, decelerations, and velocities for the individual axes are calculated
internally by the 6K Series product, so that the load is moved in a straight line at the path acceleration (PA

and PAD) and velocity entered (PV). In other words, the path acceleration (PA), path average acceleration
(PAA), the path deceleration (PAD), path average deceleration (PADA), and the path velocity (PV) all
correspond to the rate of travel required to go to the point in space specified by the D command. All axes
are to arrive at the same time; therefore, if each axis' distance is different, each axis must travel at a different
rate to have each axis arrive at the same time. The 6K Series product takes care of the calculations for each
axis, you just enter the overall rate of travel.

If motion does not occur after a GOL command has been issued, verify the drive fault level (DRFLVL) and
the limits (LH and LS).

Example:
SCALE1 ; Enable scaling
@SCLA25000 ; Set path acceleration scale factor to 25000 steps/unit/unit
@SCLV25000 ; Set path velocity scale factor to 25000 steps/unit
@SCLD10000 ; Set distance scale factor to 10000 steps/unit on all axes
DEL conta ; Delete program called conta
DEF conta ; Begin definition of program called conta
PA25 ; Set the path acceleration to 25 units/sec/sec
PAD20 ; Set the path deceleration to 20 units/sec/sec
PV2 ; Set the path velocity to 2 units/sec
D10,5,2,11 ; Set the distance to 10, 5, 2, and 11 units on axes 1-4
GOL1111 ; Initiate linear interpolated motion on axes 1-4. A GOL command

; could have been issued instead of a GOL1111 command.
END ; End definition of conta

GOSUB Call a Subroutine
Type Program; Subroutine Definition; Program Flow Control
Syntax <!>GOSUB<t>
Units t = text (name of program/subroutine)
Range Text name of 6 characters or less
Default n/a
Response n/a

See Also $, BREAK, DEF, DEL, END, ERASE, GOTO, JUMP, RUN

Product Rev

6K 5.0

The Call a Subroutine (GOSUB) command branches to the corresponding program/subroutine name when
executed. A subroutine name consists of 6 or fewer alpha-numeric characters. The subroutine that the GOSUB

initiates will return control to the line after the GOSUB, when the subroutine completes operation. If an invalid
subroutine name is entered, no branch will occur, and processing will continue with the line after the GOSUB.

If you do not want to use the GOSUB command before the subroutine name (GOSUBsubname), you can
simply use the subroutine name without the GOSUB attached to it (subname).

If a subroutine is executed, and a BREAK command is received, the subroutine will return control to the
calling program or subroutine immediately.

Up to 16 levels of subroutine calls can be made without receiving an error.

Command Descriptions 111

Example:
DEF pick ; Begin definition of subroutine named pick
GO1100 ; Initiate motion on axes 1 and 2
END ; End subroutine definition
DEF place ; Begin definition of subroutine named place
GOSUB pick ; Gosub to subroutine named pick
GO1000 ; Initiate motion on axis 1
END ; End subroutine definition
place ; Execute program named place

After program place is initiated, the first thing to occur will be a gosub to program pick . Within pick , the
GO command will be executed, and then control will be passed back to program place . The GO command
in place will then be executed, and program execution will then terminate.

GOTO Goto a Program or Label
Type Program; Subroutine Definition; Program Flow Control
Syntax <!>GOTO<t>
Units t = text (name of program/label)
Range Text name of 6 characters or less
Default n/a
Response n/a

See Also $, DEF, DEL, END, GOSUB, IF, JUMP, L, LN, NIF, NWHILE, REPEAT, RUN,
UNTIL, WHILE

Product Rev

6K 5.0

The GOTO command branches to the corresponding program name or label when executed. A program or
label name consists of 6 or fewer alpha-numeric characters. The program or label that the GOTO initiates will
not return control to the line after the GOTO when the program completes operation—instead, the program
will end. This holds true unless the subroutine in which the GOTO resides was called by another program; in
this case, the END in the GOTO program will initiate a return to the calling program.

If an invalid program or label name is entered, the GOTO will be ignored, and processing will continue with
the line after the GOTO.

CAUTION

Use caution when performing a GOTO between IF & NIF , or L & LN, or REPEAT &
UNTIL , or WHILE & NWHILE. Branching to a different location within the same program
will cause the next IF , L, REPEAT or WHILE statement to be nested within the previous
IF , L, REPEAT or WHILE statement unless a NIF , LN, UNTIL or NWHILE command has
already been encountered. If you wish to avoid this nesting situation, use the JUMP
command instead of the GOTO command.

Example:
DEF pick ; Begin definition of subroutine named pick
GO1100 ; Initiate motion on axes 1 and 2
END ; End subroutine definition
DEF place ; Begin definition of subroutine named place
GOTO pick ; Goto to subroutine named pick
GO1000 ; Initiate motion on axis 1
END ; End subroutine definition
place ; Execute program named place
; After the GOTO command, the GO1000 command will not be executed because a GOTO
; was issued. If a GOSUB was used instead of the GOTO statement, control would
; have been returned to the line after the GOSUB.

112 6K Series Command Reference

GOWHEN Conditional Go
Type Motion; Following
Syntax <!><@><a>GOWHEN(expression,expression,...)

(1 expression per axis -- see diagram below)
Units n/a
Range Up to 80 characters (including parentheses)
Default n/a
Response n/a

See Also [AS], COMEXC, [ER], ERROR, ERRORP, [FB], FGADV, FSHFC,
FSHFD, GO, GOL, [IN], [LIM], [NMCY], [PC], [PE],
[PMAS], [PSHF], [PSLV], T, TAS, TER, TRGFN, WAIT

Product Rev

6K 5.0

Use the GOWHEN command is used to synchronize a motion profile of an axis with a specified position count
(commanded, feedback device, motor, master, follower, Following shift), input status, dwell (time delay), or
master cycle number on that axis or other axes. Command processing does not wait for the GOWHEN

conditions (relational expressions) to become true during the GOWHEN command. Rather, the motion from
the subsequent start-motion command (GO, GOL, FGADV, FSHFC, and FSHFD) will be suspended until the
condition becomes true.

Start-motion type commands that cannot be synchronized using the GOWHEN command are: HOM, JOG, JOY,
and PRUN. A preset GO command that is already in motion can start a new profile using the GOWHEN and GO

sequence of commands. Continuous moves (MC1) already in progress can change to a new velocity based
upon the GOWHEN and GO sequence. Both preset and continuous moves can be started from rest with the
GOWHEN and GO sequence.

GOWHEN Syntax:

GOWHEN (expression),(expression),(expression), . . .

Relational Expression Syntax:

Axis 1 Axis 2 Axis 3

(<left operand> <relational operator> <right operand>)

Possible Operators:

FB....... Feedback device position
LIM..... Limit input state

NMCY... Master cycle number

PC....... Commanded position
PE....... Encoder position
PMAS... Master position
PSLC... Slave position
PSHF... Following shift
IN....... Input state
T......... Dwell (in milliseconds)

Possible Operators:

>=
<=
=
>
<

Possible Operators:

� Numeric variables
(VAR or VARI)

� Decimal constant
� Binary value (b___)

for IN operator only

EXAMPLES

GOWHEN(1PE>4ØØØØ) ; suspend next GO until axis 1 encoder position > 4ØØØØ
GOWHEN(IN.6=b1) ; suspend next GO until onboard input #6 is activated (b1)
GOWHEN(2PMAS>255) ; suspend next GO until the master for axis 2 has

; traveled 255 master distance units

SCALING

If scaling is enabled (SCALE1), the right-hand operand is multiplied by SCLD if the
left-hand operand is FB, PC, PE, PSLV, or PSHF. The right-hand operand is
multiplied by the SCLMAS value if the left-hand operand is PMAS. The SCLD or
SCLMAS values used correlate to the axis specified with the variable (e.g., a
GOWHEN expression with 3PE scales the encoder position by the SCLD value
specified for axis 3).

Command Descriptions 113

GOWHEN Status:

Axis Status — Bit #26: Bit #26 is set when motion has been commanded by a GO, GOL, FGADV,
FSHFC, or FSHFD command, but the change in motion is suspended due to a pending GOWHEN

condition. This status bit is cleared when the GOWHEN condition is true or when a stop (!S) or kill (!K
or ̂ K) command is executed. An individual axis' GOWHEN command can be cleared using an axis-
specific S or K command (e.g., !S11XØ or !KØXX1).

AS.26Assignment & comparison operator — use in a conditional expression (see AS).
TASFFull text description of each status bit. (see “Gowhen is Pending ” line item)
TAS..........Binary report of each status bit (bits 1-32 from left to right). See bit #26.

Error Status — Bit #14: Bit #14 is set if the position relationship specified in the GOWHEN command
is already true when the GO, GOL, FGADV, FSHFC, or FSHFD command is issued. The error status is
monitored and reported only if you enable error-checking bit #14 with the ERROR command (e.g.,
ERROR.14-1). NOTE: When the error occurs, the controller with branch to the error program
(assigned with the ERRORP command).

ER.14Assignment & comparison operator — use in a conditional expression (see AS).
TERF.......Full text description of each status bit. (see “Gowhen condition true ” line item)
TER..........Binary report of each status bit (bits 1-32 from left to right). See bit #14.

GOWHEN . . . On a Trigger Input:

If you wish motion to be triggered with a trigger input, use the aTRGFNc1 command. The aTRGFNc1

command executes in the same manner as the GOWHEN command, except that motion is executed when
the specified trigger input (c) for axis (a) is activated. For more information, refer to the TRGFN

command description.

GOWHEN vs. WAIT:
A WAIT will cause the 6K controller program to halt program flow (except for execution of immediate
commands) until the condition specified is satisfied. Common uses for this function include delaying
subsequent I/O activation until the master has achieved a required position or an object has been
sensed.

By contrast, a GOWHEN will suspend the motion profile for a specific axis until the specified condition
is met. It does not affect program flow. If you wish motion to be triggered with a trigger input, use the
aTRGFNc1 command. The aTRGFNc1 command executes in the same manner as the GOWHEN

command, except that motion is executed when the specified trigger input (c) is activated (see TRGFN

command description for details). In addition, GOWHEN expressions are limited to the operands listed
above; WAIT can use additional operands such as FS (Following status) and VMAS (velocity of master).

114 6K Series Command Reference

Factors Affecting GOWHEN Execution:

If, on the same axis, a second GOWHEN command is executed before a start-motion command (GO,
GOL, FGADV, FSHFC, or FSHFD), then the first GOWHEN is over-written by the second GOWHEN

command. (GOWHEN commands are not nested.) An error is not generated when a GOWHEN command is
over-written by another GOWHEN.

While waiting for a GOWHEN condition to be met and a start-motion command has been issued, if a
second GOWHEN command is encountered, then the first sequence is disabled and another start-motion
command is needed to re-arm the second GOWHEN sequence.

A new GOWHEN command must be issued for each start-motion command (GO, GOL, FGADV, FSHFC, or
FSHFD). That is, once a GOWHEN condition is met and the motion command is executed, subsequent
motion commands will not be affected by the same GOWHEN command.

If the GOWHEN and start-motion commands are issued, the motion profile is delayed until the GOWHEN

condition is met. If a second start-motion command is encountered, the second start-motion command
will override the GOWHEN command and start motion. If this override situation is not desired, it can be
avoided by using a WAIT condition between the first start-motion command and the second start-
motion command.

It is probable that the GOWHEN command, the GO command, and the GOWHEN condition becoming true
may be separated in time, and by other commands. Situations may arise, or commands may be given
which make the GOWHEN invalid or inappropriate. In these cases, the GOWHEN condition is cleared, and
any motion pending the GOWHEN condition becoming true is canceled. These situations include
execution of the JOG, JOY, HOM, PRUN, and DRIVEØ commands, as well motion being stopped due to
hard or soft limits, a drive fault, an immediate stop (!S), or an immediate kill (!K or ̂ K).

GOWHEN in Compiled Motion: When used in a compiled program, a GOWHEN will pause the profile in
progress (motion continues at constant velocity) until the GOWHEN condition evaluates true. When
executing a compiled Following profile, the GOWHEN is ignored on the reverse Following path (i.e.,
when the master is moving in the opposite direction of that which is specified in the FOLMAS

command). A compiled GOWHEN may require up to 4 segments of compiled memory storage.

Sample 6K Code:

In the example below, axis 2 must start motion when the actual position of axis 1 has reached 4. While axis
1 is moving, the program must be monitoring inputs and serving other system requirements, so a WAIT

statement cannot be used; instead, a GOWHEN and GO sequence will delay the profile of axis 2.

SCALE1 ; Enable scaling
SCLV25000,25000 ; Set velocity scaling factors
SCLD10000,10000 ; Set distance scaling factors
DEL proga ; Delete program called proga
DEF proga ; Begin definition of program called proga
MC00 ; Set both axes to preset move mode
D20,20 ; Set distance end-point
COMEXC1 ; Enable continuous command execution mode
V1,1 ; Set velocity
A100,100 ; Set acceleration
GOWHEN(,1PE>4) ; Delay axis 2 profile. When the expression is true

; (position of encoder #1 is > 4), allow axis 2 to
; start motion.

GO11 ; Command both axes to move. Axis 2 will not start until
; conditions in the GOWHEN statement are true.
; Command processing does not wait, so other system
; functions may be performed.

END ; End definition of progam

Command Descriptions 115

HALT Terminate Program Execution
Type Program Flow Control
Syntax <!>HALT
Units n/a
Range n/a
Default n/a
Response n/a

See Also BP, BREAK, C, ELSE, IF, K, NIF, NWHILE, PS, REPEAT, S, T,
UNTIL, WAIT, WHILE

Product Rev

6K 5.0

The Terminate Program Execution (HALT) command terminates program execution when processed. This
command allows the user to terminate command processing at any point in a program. The programmer
may want processing to stop because of an error condition, an input, a variable, or just after a specific
motion has been accomplished. This command is useful when debugging a program.

Example:
DEF prog1 ; Define a program called prog1
GO1000 ; Initiate motion on axis 1
GOSUB prog2 ; Gosub to subroutine named prog2
GO0100 ; Initiate motion on axis 2
END ; End program definition
DEF prog2 ; Define a program called prog2
GO1110 ; Initiate motion on axes 1, 2, and 3
IF(IN=b1X0) ; If onboard input 1 is active (1), and input 3 is inactive (0)
HALT ; If condition is true break out of program
ELSE ; Else part of if condition
TPE ; If condition does not come true transfer position of all

; encoders to PC
NIF ; End If statement
END ; End program definition
RUN prog1 ; Execute program prog2
;
; Upon completion of motion on axis 1, subroutine prog2 is called.
; If inputs 1 and 3 are in the correct state after the motion is complete,
; program processing will be terminated. In other words, all commands waiting
; to be parsed in the program buffer will be eliminated.
; **** Note: There will not be a return to prog1.

HELP Technical Support
Type Program Debug Tool
Syntax <!>HELP
Units n/a
Range n/a
Default n/a
Response See description below

See Also None

Product Rev

6K 5.0

The (HELP) command provides the telephone numbers for technical support.

116 6K Series Command Reference

HOM Go Home
Type Homing
Syntax <!><@>HOM
Units n/a
Range b = 0 (home in positive direction), 1 (home in negative direction),

or X (do not home)
Default X
Response n/a

See Also [AS], HOMA, HOMAA, HOMAD, HOMADA, HOMBAC, HOMDF, HOMEDG,
HOMV, HOMVF, HOMZ, [LIM], LIMEN, LIMLVL, PSET, TAS, TLIM

Product Rev

6K 5.0

The Go Home (HOM) command instructs the controller to search for the home position in the direction, and on
the axes, specified by the command. If an end-of-travel limit is activated while searching for the home limit,
the controller will reverse direction and search for home in the opposite direction. However, if a second end-
of-travel limit is encountered, after the change of direction, the homing operation will be aborted.

The status of the homing operation is provided by bit 5 of each axis status register (refer to the TAS or AS
command). When the homing operation is successfully completed, the absolute position register is set to
zero (equivalent to PSETØ).

NOTE

Pause and resume functions are not recommended during the homing operation. A
Pause command or input will pause the homing motion; however, when the subsequent
Resume command or input occurs, motion will resume at the beginning of the homing
motion sequence.

The homing operation has several parameters that determine the homing algorithm:

• Home acceleration (HOMA and HOMAA)
• Home deceleration (HOMAD and HOMADA)
• Home velocity (HOMV)
• Final home velocity (HOMVF)
• Home reference edge (HOMEDG)
• Backup to home (HOMBAC)
• Final home direction (HOMDF)
• Active state of home input (LIMLVL)
• Home to encoder Z-channel (HOMZ)

For more information on homing refer to the Homing section of the Programmer's Guide.

Example:
SCALE1 ; Enable scaling
SCLA25000,25000,1,1 ; Set accel. scaling: axes 1 & 2 = 25000 steps/unit/unit;

; axes 3 & 4 = 1 step/unit/unit
SCLV25000,25000,1,1 ; Set vel. scaling: axes 1 & 2 = 25000 steps/unit;

; axes 3 & 4 = 1 step/unit
@SCLD1 ; Set distance scaling factor for all axes to 1 step/unit
DEL Homrdy ; Delete program called Homrdy
DEF Homrdy ; Begin definition of program called Homrdy
@MA0 ; Incremental index mode for all axes
@MC0 ; Preset index mode for all axes
HOMA10,12,1,2 ; Set home acceleration to 10, 12, 1, & 2 units/sec/sec for

; axes 1, 2, 3 & 4
@HOMAD20 ; Set home deceleration to 20 units/sec/sec for all axes
HOMBAC1100 ; Enable backup to home switch on axes 1 and 2 only
HOMEDG0011 ; Axes 1 & 2 stop on the positive-direction edge of the home

; switch, axes 3 and 4 are to stop on negative-direction side
@HOMDF0 ; Set final home direction to positive on all axes.
@HOMZ0 ; Disable homing to encoder Z-channel on all axes
LIMLVLxx0xx0xx0xx0 ; Set home active level to low on axes 1-4
HOMV1,1,1,2 ; Set home velocity to 1, 1, 1, and 2 units/sec for

; axes 1, 2, 3 & 4
@HOMVF.1 ; Sets home final velocity to 0.1 units/sec for all axes
HOM01XX ; Execute go home in positive-direction on axis 1,

; negative-direction on axis 2. Do not home on axes 3 and 4.
END ; End definition of Homrdy

Command Descriptions 117

HOMA Home Acceleration
Type Homing
Syntax <!><@><a>HOMA<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec/sec
Range 0.00001 - 39,999,998 (depending on the scaling factor)
Default 10.0000
Response HOMA: *HOMA10.0000,10.0000,10.0000,10.0000 ...

1HOMA: *1HOMA10.0000

See Also HOM, HOMAD, HOMBAC, HOMDF, HOMEDG, HOMV, HOMVF, HOMZ, [LIM],
LIMEN, LIMLVL, SCALE, SCLA

Product Rev

6K 5.0

The Home Acceleration (HOMA) command specifies the acceleration rate to be used upon executing the next
go home (HOM) command.

UNITS OF MEASURE and SCALING : refer to page 16.

The homing acceleration remains set until you change it with a subsequent homing acceleration command.
Homing accelerations outside the valid range are flagged as an error, with a message *INVALID DATA-FIELD

x , where x is the field number. When an invalid homing acceleration is entered the previous homing
acceleration value is retained.

If the home deceleration (HOMAD) command has not been entered, the home acceleration (HOMA) command
will set the home deceleration rate. Once the home deceleration (HOMAD) command has been entered, the
home acceleration (HOMA) command no longer affects home deceleration.

Example : Refer to the go home (HOM) command example.

HOMAA Homing Average Acceleration
Type Motion (S-Curve)
Syntax <!><@><a>HOMAA<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec/sec
Range 0.00001 - 39,999,998 (depending on the scaling factor)
Default 10.00 (trapezoidal profiling is default, where HOMAA tracks HOMA)
Response HOMAA: *HOMAA10.0000,10.0000,10.0000,10.0000 ...

1HOMAA: *1HOMAA10.0000

See Also A, AD, ADA, HOM, HOMA, HOMAD, HOMADA, HOMBAC, SCALE, SCLA

Product Rev

6K 5.0

The Homing Average Acceleration (HOMAA) command allows you to specify the average acceleration for an
S-curve homing profile. S-curve profiling provides smoother motion control by reducing the rate of change in
acceleration and deceleration; this accel/decel rate of change is known as jerk. Refer to page 13 for details on
S-curve profiling.

Scaling (SCLA) affects HOMAA the same as it does for HOMA. Refer to page 16 for details on scaling.

Example:
SCALE0 ; Disable scaling
DEL proge ; Delete program called proge
DEF proge ; Begin definition of program called proge
@MA0 ; Select incremental positioning mode
HOMA10,10 ; Set homing max. accel to 10 rev/sec/sec (axes 1 and 2)
HOMAA5,10 ; Set homing avg. accel to 5 rev/sec/sec on axis 1,

; and 10 rev/sec/sec on axis 2
HOMAD10,10 ; Set homing max. decel to 10 rev/sec/sec (axes 1 and 2)
HOMADA5,10 ; Set homing avg. decel to 5 rev/sec/sec on axis 1,

; and 10 rev/sec/sec on axis 2
HOM11XX ; Execute negative-direction homing moves on axes 1 and 2
; Axis 1 executes a pure S-curve; axis 2 executes a trapezoidal profile.
END ; End definition of program

118 6K Series Command Reference

HOMAD Home Deceleration
Type Homing
Syntax <!><@><a>HOMAD<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec/sec
Range 0.00001 - 39,999,998 (depending on the scaling factor)
Default 10.0000 (HOMAD tracks HOMA)
Response HOMAD: *HOMAD10.0000,10.0000,10.0000,10.0000 ...

1HOMAD: *1HOMAD10.0000

See Also HOM, HOMA, HOMAA, HOMADA, HOMBAC, HOMEDG, HOMDF, HOMV, HOMVF,
HOMZ, [LIM], LIMEN, LIMLVL, SCALE, SCLA

Product Rev

6K 5.0

The Home Deceleration (HOMAD) command specifies the deceleration rate to be used upon executing the
next go home (HOM) command.

UNITS OF MEASURE and SCALING : refer to page 16.

The home deceleration remains set until you change it with a subsequent home deceleration command.
Decelerations outside the valid range are flagged as an error, with a message *INVALID DATA-FIELD x ,
where x is the field number. When an invalid deceleration is entered the previous deceleration value is
retained.

If the home deceleration (HOMAD) command has not been entered, the home acceleration (HOMA) command
will set the deceleration rate. Once the home deceleration (HOMAD) command has been entered, the home
acceleration (HOMA) command no longer affects home deceleration. If the HOMAD command is set to zero
(HOMADØ), then the homing deceleration will once again track whatever the HOMA command is set to.

Example : Refer to the go home (HOM) command example.

HOMADA Homing Average Deceleration
Type Motion (S-Curve)
Syntax <!><@><a>HOMADA<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec/sec
Range 0.00001 - 39,999,998 (depending on the scaling factor)
Default 10.00 (HOMADA tracks HOMAA)
Response HOMADA: *HOMADA10.0000,10.0000,10.0000,10.0000 ...

1HOMADA: *1HOMADA10.0000

See Also A, AD, HOM, HOMA, HOMAA, HOMAD, SCALE, SCLA

Product Rev

6K 5.0

The Homing Average Deceleration (HOMADA) command allows you to specify the average deceleration for
an S-curve homing profile. S-curve profiling provides smoother motion control by reducing the rate of
change in acceleration and deceleration; this accel/decel rate of change is known as jerk. Refer to page 13
for details on S-curve profiling.

Scaling (SCLA) affects HOMADA the same as it does for HOMAD. Refer to page 16 for details on scaling.

Example:
SCALE0 ; Disable scaling
DEL proge ; Delete program called proge
DEF proge ; Begin definition of program called proge
@MA0 ; Select incremental positioning mode
HOMA10,10 ; Set homing max. accel to 10 rev/sec/sec (axes 1 and 2)
HOMAA5,10 ; Set homing avg. accel to 5 rev/sec/sec on axis 1,

; and 10 rev/sec/sec on axis 2
HOMAD10,10 ; Set homing max. decel to 10 rev/sec/sec (axes 1 and 2)
HOMADA5,10 ; Set homing avg. decel to 5 rev/sec/sec on axis 1,

; and 10 rev/sec/sec on axis 2
HOM11XX ; Execute negative-direction homing moves on axes 1 and 2.

; Axis 1 executes a pure S-curve.
; Axis 2 executes a trapezoidal profile.

END ; End definition of program

Command Descriptions 119

HOMBAC Home Backup Enable
Type Homing
Syntax <!><@><a>HOMBAC
Units n/a
Range b = 0 (disable), 1 (enable), or X (don't change)
Default 0
Response HOMBAC: *HOMBAC0000_0000

1HOMBAC: *1HOMBAC0

See Also HOM, HOMA, HOMAA, HOMAD, HOMADA, HOMDF, HOMEDG, HOMV, HOMVF,
HOMZ, [LIM], LIMEN, LIMLVL

Product Rev

6K 5.0

The Home Backup Enable (HOMBAC) command enables or disables the backup to home switch function. When
this function is enabled, the motor will decelerate to a stop after encountering the active edge of the home
region, and then move the motor in the opposite direction at the home final velocity (HOMVF) until the active
edge of the home region is encountered. This motion will occur regardless of whether or not the home input is
active at the end of the deceleration of the initial go home move.

Example : Refer to the go home (HOM) command example.

HOMDF Home Final Direction
Type Homing
Syntax <!><@><a>HOMDF
Units n/a
Range b = 0 (positive-direction), 1 (negative-direction),

or X (don't change)
Default 0
Response HOMDF: *HOMDF0000_0000

1HOMDF: *1HOMDF0

See Also HOM, HOMA, HOMAA, HOMAD, HOMADA, HOMBAC, HOMEDG, HOMV, HOMVF,
HOMZ, [LIM], LIMEN, LIMLVL

Product Rev

6K 5.0

The Home Final Direction (HOMDF) command specifies the direction the 6K Series product is to be traveling
when the home algorithm does its final approach. This command is operational when backup to home
(HOMBAC) is enabled, or when homing to an encoder Z channel (HOMZ).

Example : Refer to the go home (HOM) command example.

120 6K Series Command Reference

HOMEDG Home Reference Edge
Type Homing
Syntax <!><@><a>HOMEDG
Units n/a
Range b = 0 (positive-direction edge), 1 (negative-direction edge),

or X (don't change)
Default 0
Response HOMEDG: *HOMEDG0000_0000

1HOMEDG: *1HOMEDG0

See Also HOM, HOMA, HOMAA, HOMAD, HOMADA, HOMBAC, HOMDF, HOMV, HOMVF,
HOMZ, [LIM], LIMEN, LIMLVL,

Product Rev

6K 5.0

The Home Reference Edge (HOMEDG) command specifies which edge of the home switch the homing
operation will consider as its final destination.

As illustrated below, the positive-direction edge of the home switch is defined as the first switch transition
seen by the controller when traveling off of the positive-direction end-of-travel limit in the negative
direction. The negative-direction edge of the home switch is defined as the first switch transition seen by the
indexer when traveling off of the negative-direction end-of-travel limit in the positive-direction. This
command is operational when backup to home (HOMBAC) is enabled.

Home Switch
Active Region

Negative Direction
End-of-Travel Limit

Positive Direction
End-of-Travel Limit

Negative Direction
Edge of Home

Positive Direction
Edge of Home

Example : Refer to the go home (HOM) command example.

HOMV Home Velocity
Type Homing
Syntax <!><@><a>HOMV<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec (scalable with SCLV)
Range Stepper Axes: 0.00000-2,048,000 (max. depends on SCLV & PULSE)

Servo Axes: 0.00000-6,500,000 (max. depends on SCLV)
Default 1.0000
Response HOMV: *HOMV1.0000,1.0000,1.0000,1.0000 ...

1HOMV: *1HOMV1.0000

See Also HOM, HOMA, HOMAA, HOMAD, HOMADA, HOMBAC, HOMDF, HOMEDG, HOMVF,
HOMZ, [LIM], LIMEN, LIMLVL, PULSE, SCALE, SCLV

Product Rev

6K 5.0

The Home Velocity (HOMV) command specifies the velocity to use when the home algorithm begins its initial
go home (HOM) move. The velocity remains set until you change it with a subsequent home velocity command.
Velocities outside the valid range are flagged as an error, with a message *INVALID DATA-FIELD x , where x
is the field number. When an invalid velocity is entered the previous velocity value is retained.

UNITS OF MEASURE and SCALING : refer to page 16.

Example : Refer to the go home (HOM) command example.

Command Descriptions 121

HOMVF Home Final Velocity
Type Homing
Syntax <!><@><a>HOMVF<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec (scalable with SCLV)
Range Stepper Axes: 0.00000-2,048,000 (max. depends on SCLV & PULSE)

Servo Axes: 0.00000-6,500,000 (max. depends on SCLV)
Default 0.1000
Response HOMVF: *HOMVF0.1000,0.1000,0.1000,0.1000 ...

1HOMVF: *1HOMVF0.1000

See Also HOM, HOMA, HOMAA, HOMAD, HOMADA, HOMBAC, HOMDF, HOMEDG, HOMV,
HOMZ, [LIM], LIMEN, LIMLVL, PULSE, SCALE, SCLV

Product Rev

6K 5.0

The Home Final Velocity (HOMVF) command specifies the velocity to use when the home algorithm does its
final approach. This command is only operational when backup to home (HOMBAC) is enabled, or when
homing to an encoder Z channel (HOMZ).

The velocity remains set until you change it with a subsequent home final velocity command. Velocities
outside the valid range are flagged as an error, with a message *INVALID DATA-FIELD x , where x is the
field number. When an invalid velocity is entered, the previous velocity value is retained.

UNITS OF MEASURE and SCALING : refer to page 16.

Example : Refer to the go home (HOM) command example.

HOMZ Home to Encoder Z-channel Enable
Type Homing
Syntax <!><@><a>HOMZ
Units n/a
Range b = 0 (disable), 1 (enable), or X (don't change)
Default 0
Response HOMZ: *HOMZ0000_0000

1HOMZ: *1HOMZ0

See Also [ASX], HOM, HOMA, HOMAA, HOMAD, HOMADA, HOMBAC, HOMDF,
HOMEDG, HOMV, HOMVF, [LIM], LIMEN, LIMLVL, TASX

Product Rev

6K 5.0

This command enables homing to an encoder z-channel after the initial home input has gone active. NOTE:
The home limit input is required to go active prior to homing to the Z channel. The state of the Z-channel is
reported with bit 6 of the ASX and TASX register.

Example : Refer to the go home (HOM) command example.

122 6K Series Command Reference

IF() IF Statement
Type Program Flow Control or Conditional Branching
Syntax <!>IF(expression)
Units n/a
Range Up to 80 characters (including parentheses)
Default n/a
Response n/a

See Also ELSE, NIF

Product Rev

6K 5.0

This command is used in conjunction with the ELSE and NIF commands to provide conditional branching.
If the expression contained within the parenthesis of the IF command evaluates true, then the commands
between the IF and the NIF are executed. If the expression evaluates false, the commands between the IF
and the NIF are ignored, and command processing continues with the first command following the NIF .

When the ELSE command is used in conjunction with the IF command, true IF evaluations cause the
commands between the IF and ELSE commands to be executed, the commands after the ELSE until the NIF
are ignored. False IF evaluations cause commands between the ELSE and the NIF to be executed, with
commands between the IF and the ELSE ignored. The ELSE command is optional and does not have to be
included in the IF statement.

The IF().. ELSE .. NIF structure can be nested up to 16 levels deep.

NOTE: Be careful about performing a GOTO between IF and NIF . Branching to a different location within
the same program will cause the next IF statement encountered to be nested within the previous IF
statement, unless an NIF command has already been encountered.

IF statement programming order:IF(expression)...commands...NIF
or
IF(expression)...commands...ELSE...commands...NIF

All logical operators (AND, OR, NOT), and all relational operators (=, >, >=, <, <=, <>) can be used within
the IF expression. There is no limit on the number of logical operators, or on the number of relational
operators allowed within a single IF expression. The limiting factor for the IF expression is the command
length. The total character count for the IF command and expression cannot exceed 80 characters.
(e.g., If you add up the letters in the IF command and the letters within the () expression, including the
parenthesis and excluding each space, this count must be less than or equal to 80.)

All assignment operators (A, AD, AS, ASX, D, ER, IN , LIM , MOV, OUT, PC, PCE, PCM, PE, PER, PMAS, SEG, SS,
TIM, US, V, VEL, VELA, etc.) can be used within the IF expression.

Multiple parentheses may not be used within the IF command.

Example:
IF(IN=b1X0 AND VAR1=1) ; If onboard input 1 is ON, input 3 is OFF, and

; variable 1 equals 1, then the IF statement evaluates
; true, so commands between this statement and NIF
; are executed

 TREV ; Transfer revision level
 NIF ; End IF statement
IF(1A<5000 AND 2PC>50000) ; If the acceleration of axis 1 is less than 5000, and

; the commanded position of axis 2 is greater than
; 50000, then do the IF statement. Note: The
; acceleration value used is programmed acceleration,
; not actual.

 VAR1=VAR1+1 ; Increment variable 1
 NIF ; End if statement
IF(4VEL<123 OR 4VEL>156) ; If the current velocity of axis 4 is less than 123

; or if it is greater than 156, then do the commands
; following the IF statement

 WRITE"Something's Wrong\13" ; Put message Something's Wrong<cr> in output buffer
 NIF ; End if statement
IF(OUT=b110X1 AND VAR1<=13) ; If onboard outputs 1, 2 and 5 are ON, output 3 is

; off and variable 1 is less than or equal to 13,
; then set variable 1 equal to variable 1 plus 1,
; else set variable 1 equal to variable 1 minus 1

 VAR1=VAR1+1
 ELSE
 VAR1=VAR1-1
 NIF ; End IF statement

Command Descriptions 123

[IN] Input Status
Type Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also GOWHEN, INFNC, [LIM], ONIN, TIN, VARB

Product Rev

6K 5.0

Use the IN operator is used to assign the input value to a binary variable (VARB), or to make a comparison
against a binary or hexadecimal value. To make a comparison against a binary value, the letter b (b or B) must
be placed in front of the value. The binary value itself must only contain ones, zeros, or Xs (1, Ø, X, x). To
make a comparison against a hexadecimal value, the letter h (h or H) must be placed in front of the value. The
hexadecimal value itself must only contain the letters A through F, or the numbers Ø through 9.

Syntax: VARBn=IN where “n” is the binary variable number, or IN can be used in an expression such as
IF(IN=b11Ø1) , or IF(IN=h7F) . To assign only one input value to a binary variable, instead of
all the inputs, the bit select (.) operator can be used. For example, VARB1=2IN.10 assigns the
binary state of input 10 (2nd pin on SIM 2) on I/O brick 2 to binary variable 1.

The number of inputs available for assignment or comparison varies from one 6K Series product to another;
to ascertain the input bit assignments for your 6K Series product refer to page 6. The function of the inputs is
established with the INFNC command (although the IN operator looks at any trigger or external digital input,
regardless of its assigned function from the INFNC command).

Example:
VARB1=3IN ; Input status on I/O brick 3 assigned to binary variable 1
VARB2=2IN.12 ; Input bit 12 on I/O brick 2 assigned to binary variable 2
VARB2 ; Response if bit 12 is set to 1:

; *VARB2=XXXX_XXXX_XXX1_XXXX_XXXX_XXXX_XXXX_XXXX
IF(1IN=b111011X11) ; If the input status contains 1's for inputs 1,2,3,5,6,8,& 9,

; and 0 for input 4 on I/O brick 1, do the commands
; following the IF statement

TREV ; Transfer revision level
NIF ; End IF statement
IF(2IN=hEF00) ; If the input status contains 1's for I/O brick 2's inputs

; 1,2,3,5,6,7,& 8, and 0's for every other input, do the
; commands following the IF statement

TREV ; Transfer revision level
NIF ; End IF statement

124 6K Series Command Reference

INDEB Input Debounce Time
Type Input
Syntax <!>INDEB<i>
Units i = time in milliseconds (ms)
Range i = 2-250
Default 4
Response INDEB: *0INDEB4

1INDEB: *1INDEB4

See Also INFNC, LIMFNC, RE, REG, TIN, TLIM, TRGFN, TRGLOT

Product Rev

6K 5.0

The INDEB command governs the debounce time for all of the inputs on the specified I/O brick (all trigger
inputs, found on the “TRIGGERS/OUTPUTS” connectors, are collectively considered I/O brick 0). The debounce
is the period of time that the input must be held in a certain state before the controller recognizes it. This
directly affects the rate at which the inputs can change state and be recognized. The default setting is 4 ms.

Exception for Trigger Inputs: For trigger inputs that are assigned the “Trigger Interrupt” function
(INFNCi-H), the debounce is instead governed by the TRGLOT setting. The TRGLOT setting applies to all
trigger inputs defined as “Trigger Interrupt” inputs. The TRGLOT debounce time is the time required
between a trigger's initial active transition and its secondary active transition. This allows rapid recognition
of a trigger, but prevents subsequent bouncing of the input from causing a false position capture. The
default setting is 24 ms.

Limit Inputs . The limit inputs found on the “LIMITS/HOME” connectors are not normally debounced;
however, if a limit is assigned a different function with the LIMFNC command (other than LIMFNCi-R ,
LIMFNCi-S , or LIMFNCi-T), the input is debounced using the INDEB setting for the on-board trigger inputs
(I/O brick 0). If a general-purpose input or trigger input is assigned a limit input function (INFNCi-R ,
INFNCi-S , or INFNCi-T), the input will not be debounced.

Example :
INDEB6 ; Assign all onboard trigger a debounce time of 6 ms
2INDEB10 ; Assign inputs on I/O brick 2 a debounce time of 10 ms
1INDEB12 ; Assign inputs on I/O brick 1 a debounce time of 12 ms

INDUSE Enable/Disable User Status
Type Controller Configuration
Syntax <!>INDUSE
Units n/a
Range b = 0 (disable) or 1 (enable)
Default 0
Response INDUSE: *INDUSE0

See Also INDUST, ONUS, TUS, [US]

Product Rev

6K 5.0

The Enable/Disable User Status (INDUSE) command enables the INDUST command updates. When this
command is not enabled, the user status bits (INDUST) can be defined; however, they will not be updated in
the US or the TUS commands until INDUSE is enabled.

Example:
INDUSE1 ; Enable user status

Command Descriptions 125

INDUST User Status Definition
Type Controller Configuration
Syntax <!>INDUST<i><-<i><c>>
Units See description below
Range 1st i = 1 - 16; 2nd i = 1 - 32; c = A through S
Default See description below
Response INDUST: *INDUST1-1A AXIS 1 STATUS - STATUS OFF

 (...repeated for all 16 user status bits...)
*INDUST16-4D AXIS 4 STATUS - STATUS OFF

INDUST1: *INDUST1-1A AXIS 1 STATUS - STATUS OFF

See Also [AS], [ASX], [IN], INDUSE, ONUS, [SS], TAS, TASX, TIN,
TSS, TUS, [US]

Product Rev

6K 5.0

The User Status Definition (INDUST) command establishes the user status bit function. Each bit can
correspond to an axis status bit, a system status bit, an input, an interrupt bit, or an extended axis status bit.
The default for each user status bit is as follows:

Default for the 6K product (first two AS status bits for each axis):
Bits 1-2 = first 2 bits of axis status (AS) for axis 1
Bits 3-4 = first 2 bits of axis status (AS) for axis 2
Bits 5-6 = first 2 bits of axis status (AS) for axis 3
Bits 7-8 = first 2 bits of axis status (AS) for axis 4
Bits 9-10 = first 2 bits of axis status (AS) for axis 5
Bits 11-12 = first 2 bits of axis status (AS) for axis 6
Bits 13-14 = first 2 bits of axis status (AS) for axis 7
Bits 15-16 = first 2 bits of axis status (AS) for axis 8

The purpose of this command is to allow the user to create his or her own meaningful status word. It allows
the user to place certain status information in the order they prefer.

The syntax INDUST<i><-<i><c>> is described as follows:

• First <i> corresponds to the user status bit being defined (16 maximum).

• Second <i> corresponds to the bit of the axis status (AS), the system status (SS), the input status (IN),
or the extended axis status (ASX).

• The <c> defines what status to use:

<c> Value Function <c> Value Function

A Use axis status (AS) for axis 1 K RESERVED
B Use axis status (AS) for axis 2 L Use extended axis status (ASX) for axis 1
C Use axis status (AS) for axis 3 M Use extended axis status (ASX) for axis 2
D Use axis status (AS) for axis 4 N Use extended axis status (ASX) for axis 3
E Use axis status (AS) for axis 5 O Use extended axis status (ASX) for axis 4
F Use axis status (AS) for axis 6 P Use extended axis status (ASX) for axis 5
G Use axis status (AS) for axis 7 Q Use extended axis status (ASX) for axis 6
H Use axis status (AS) for axis 8 R Use extended axis status (ASX) for axis 7
I Use system status (SS) * S Use extended axis status (ASX) for axis 8
J Use input status (IN) **

* If you are using multitasking, the “I ” value requires you to prefix the INDUST command with the task
identifier (e.g., 2%INDUST6-2I assigns system status bit 2 for task 2 to user status bit 6). If no task prefix
is given, the system status for task 1 is used by default.

** The “J” value requires you to prefix the INDUST command with the I/O brick identifier (e.g., 2INDUST14-4J
assigns the status of I/O point on I/O brick 2 to user status bit 14). If no brick prefix is given, the onboard
trigger inputs are referenced by default. Refer to page 6 to fully understand the I/O bit patterns and use of
the brick identifier.

Example
INDUSE1 ; Enable user status
INDUST1-5A ; User status bit 1 defined as axis 1 status bit 5
INDUST2-3F ; User status bit 2 defined as axis 6 status bit 3
3INDUST3-5J ; User status bit 3 defined as input 5 on I/O brick 3
2%INDUST16-2I ; User status bit 16 defined as system status bit 2 for task 2

126 6K Series Command Reference

INEN Input Enable
Type Input or Program Debug Tool
Syntax <!>INEN<d><d>...<d> (one <d> for each input)
Units n/a
Range d = 0 (disable, leave off), 1 (disable, leave on),

E (enable), or X (don't change)
Default E
Response INEN: *INENEEEE_EEEE_EEEE_EEEE_E

1INEN: *1INENEEEE_EEEE_EEEE_EEEE_EEEE_EEEE_EEEE_EEEE
1INEN.3 *E

See Also DRFEN, ERROR, [IN], INFNC, INLVL, INPLC, INSTW, LH, LIMEN,
TIN, TIO, TSTAT

Product Rev

6K 5.0

The INEN command allows you to simulate the activation of specific trigger or external digital inputs (without
actually wiring the inputs to the controller) by disabling them and setting them to a specific level (ON or OFF).

The default INEN condition is enabled (E), requiring external wiring to exercise the input’s respective
INFNC function.

Using Inputs on Expansion I/O Bricks: If the I/O brick is disconnected or if it loses power, the controller
will perform a kill (all tasks) and set error bit #18 (see ERROR). The controller will remember the brick
configuration (volatile memory) in effect at the time the disconnection occurred. When you reconnect the
I/O brick, the controller checks to see if anything changed (SIM by SIM) from the state when it was
disconnected. If an existing SIM slot is changed (different SIM, vacant SIM slot, or jumper setting), the
controller will set the SIM to factory default INEN and OUTLVL settings. If a new SIM is installed where
there was none before, the new SIM is auto-configured to factory defaults.

Example: INEN1 disables trigger input A1 but leaves it in the ON state (the TIN command will show trigger
input 1A as active). INENØ disables trigger input A1 but leaves it in the OFF (inactive) state. To re-enable trigger
input 1A, issue the INENE command.

INEN has no effect on …

• trigger inputs when they are configured as “trigger interrupt” inputs with the INFNCi-H
command. This includes position capture and registration functions.

• trigger or external digital inputs configured as “end-of-travel limit” inputs with the INFNCi-aR or
INFNCi-aS commands. Instead, use the LH command.

• limit inputs found on your product’s “LIMITS/HOME” connector(s).

Input bit assignments for the INEN command vary by product and external I/O brick configuration. The input bit
patterns for onboard and external I/O bricks are explained on page 6 of this document.

Example:
DEF tester ; Begin definition of program tester
WHILE(IN=b11X10) ; While onboard inputs 1, 2, and 4 are active, and input 5 is not

; active, execute the statements between the WHILE & NWHILE
GO1100 ; Initiate motion on axes 1 and 2
NWHILE ; End WHILE statement
END ; End definition of program tester
INEN11X10 ; Disable onboard inputs 1,2,4, & 5, and set inputs 1, 2 & 4 in

; the active state, and input 5 in the inactive state
RUNtester ; Initiate program tester
!INEN00000 ; Disable onboard inputs 1,2,3,4, & 5, and leave them in the

; inactive state
INENeeeee ; Re-enable inputs 1 through 5

Command Descriptions 127

INFNC Input Function
Type Input
Syntax <!>INFNC<i>-<<a>c>
Units i = input #, a = axis #, c = function identifier letter
Range i = 1-32 (I/O brick dependent — see page 6);

a = 1-8 (product dependent);
c = A-T

Default A
Response INFNC: (input function and status of onboard inputs)

1INFNC: (input function and status of I/O brick 1 inputs)
1INFNC1: *1INFNC1-A NO FUNCTION - STATUS OFF

See Also COMEXR, COMEXS, ENCCNT, [ER], ERROR, [IN], INDEB, INEN,
INLVL, INPLC, INSELP, INSTW, INTHW, JOY, JOYAXH, JOYAXL,
JOYVH, JOYVL, K, KDRIVE, LH, LIMFNC, PSET, [SS], TER, TIN,
TIO, TRGFN, TRGLOT, [TRIG], TSS, TSTAT, TTRIG

Product Rev

6K 5.0

The Input Function (INFNC) command defines the function of each individual input, where i is the input bit
number, a is an axis number if required, or the program number for the case of input function P, and c is the
function. All function definitions given below will specify whether an axis number is required. A limit of 32
inputs may be assigned INFNC functions; this excludes functions A (“general-purpose”) and H (“trigger
interrupt”).

Input Debounce. Using the Input Debounce Time (INDEB) command, you can change the input debounce
time for all of the inputs on the specified I/O brick (all trigger inputs, found on the “TRIGGERS/OUTPUTS”
connectors, are collectively considered I/O brick 0). The debounce is the period of time that the input must
be held in a certain state before the controller recognizes it. This directly affects the rate at which the inputs
can change state and be recognized. Trigger inputs that are assigned the “Trigger Interrupt” function
(INFNCi-H), are instead debounced by the TRGLOT value. Inputs defined as limit inputs (INFNCi-R ,
INFNCi-S , or INFNCi-T), will not be debounced.

Input bit assignments vary by product. The input bit patterns for onboard and external I/O bricks are
explained on page 6 of this document.

Input Scan Rate. The programmable inputs are scanned once per system update (2 milliseconds).

Multitasking . If the INFNC command does not include the task identifier (%) prefix, the function affects the
task that executes the INFNC command. The functions that may be directed to a task with % are: C, D (without
an axis specified), E, F, and P (e.g., 2%INFNC3-F assigns onboard input 3 as a user fault input for task 2).
Multiple tasks may share the same input, but the input may only be assigned one function.

Identifier Function Description

A No special function (general-purpose input). Normal input, used with the IN assignment

B BCD Program Select. BCD input assignment to programs, lowest numbered input is least
significant bit (LSB). BCD values for inputs are as follows:

BCD Value
Least Significant Bit Value 1
. 2
. 4
. 8
. 10
. 20
. 40
. 80
Most Significant Bit Value 100

Note : If fewer inputs than shown above are defined to be Program Select Inputs, then
the highest input number defined as a Program Select Input is the most significant bit.

An input defined as a BCD Program Select Input will not function until the INSELP command has
been enabled.

128 6K Series Command Reference

Identifier Function Description

C Kill. Kills motion on all axes and halts all command processing (refer to K and KDRIVE
command descriptions for further details on the kill function). This is an edge detection function
and is not intended to inhibit motion. To inhibit motion, use the Pause/Resume function
(INFNCi-E). When enabled with the ERROR command, bit #6 of the TER and ER commands will
report the kill status.

<a>D Stop. Stops motion. Axis number is optional; if no axis number is specified, motion is stopped on
all axes. If COMEXS is set to zero (COMEXSØ), program execution will be terminated. If COMEXS is
set to 1 (COMEXS1), command processing will continue. With COMEXS set to 2 (COMEXS2),
program execution is terminated, but the INSELP value is retained. Motion deceleration during
the stop is controlled by the AD & ADA commands. If error bit #8 is enabled (e.g., ERROR.8-1),
activating a Stop input will set the error bit and cause a branch to the ERRORP program.

E Pause/Continue. If COMEXR is disabled (COMEXRØ), then only command execution pauses, not
motion. With COMEXR enabled (COMEXR1), both command and motion execution are paused.
After motion stops, you can release the input or issue a continue (!C) command to resume
command processing (and motion of in COMEXR1 mode).

F User Fault. Refer to the ERROR command. If error bit #7 is enabled (e.g., ERROR.7-1),
activating a User Fault input will set the error bit and cause a branch to the ERRORP program.
CAUTION: Activating the user fault input sends an !K command to the controller, “killing” motion
on all axes (refer to the K command description for ramifications).

G Reserved

H Trigger Interrupt - This function can only be assigned to the onboard trigger inputs. A “Trigger
Interrupt” input can be used for these purposes:

• Position Capture . Each axis has two dedicated trigger inputs, referred to as “TRIG-nA” and
“TRIG-nB” (n = number of the axis). These trigger inputs are located on the 25-pin
“TRIGGERS/OUTPUTS” connector. When either trigger input (TRIG-nA or TRG-nB) for a
particular axis is assigned the Trigger Interrupt function, activating the input performs a
hardware capture of that axis' position. If the axis is used as a follower in Following, activating
the trigger also performs an interpolated capture of the associated master axis position.

An additional trigger, labeled “TRIG-M”, may be used to perform a hardware capture of the
“MASTER ENCODER” (the encoder connected to the “Master Encoder” connector), as well as
the position of all axes (encoder position on servo axes; commanded or encoder position for
steppers, depending on the ENCCNT setting). To assign TRIG-M as a trigger interrupt input,
use the INFNC17-H command.

When a Trigger Interrupt input is activated, the controller captures the relevant positions and
stores them in registers that are available at the next system update (2 ms) through the use of
these transfer and assignment/comparison commands:

Captured Information Transfer Assignment/Comparison Offset * Scale Factor **
Commanded position TPCC PCC PSET SCLD
Encoder position TPCE PCE PSET or PESET SCLD
Master encoder position TPCME PCME PMESET SCLMAS
Master cycle position TPCMS PCMS PSET SCLMAS

* Captured values are offset by any existing PSET or PMESET offset.
** If scaling is enabled, the captured position is scaled by SCLD or SCLMAS.

NOTES ABOUT POSITION CAPTURE :
- Hardware Capture: The encoder position is captured within ± 1 encoder count. The

commanded position capture accuracy is ± 1 count.
- Interpolated Capture: There is a time delay of up to 50 µs between activating the trigger

interrupt input and capturing the position; therefore, the accuracy of the captured position
is equal to 50 µs multiplied by the velocity of the axis at the time the input was activated.

- Servo vs. Stepper. The nature of the axis position captured with a Trigger Interrupt input
may be different, depending on whether the axis is configured for servo or stepper
operation (AXSDEF command setting). For servo axes, both the commanded and encoder
position for the axis are captured. Analog input feedback cannot be captured. For stepper
axes, if the ENCCNT command is set to ENCCNT0 (default condition), only the commanded
position is captured. If ENCCNT1 mode is enabled, only the encoder position is captured.

More about Trigger Interrupt function on next page …

Command Descriptions 129

Identifier Function Description

H (con’t.) Continued from previous page (Trigger Interrupt function):

• Registration . (see RE description for details)

• Special trigger functions defined with the TRGFN command (see TRGFN for details).

NOTES ABOUT TRIGGER INTERRUPT INPUTS :
- When a trigger is assigned the "Trigger Interrupt" function, the debounce is governed by the

TRGLOT command setting (default is 24 ms). The TRGLOT setting overrides the existing
INDEB setting for only the trigger inputs that are assigned the “Trigger Interrupt” function.

- When configured as Trigger Interrupts, the triggers cannot be affected by the input enable
(INEN) command.

- Trigger Interrupt Status: Use the TTRIG and TRIG commands to ascertain if a trigger
interrupt input has been activated. TTRIG displays the status as a binary report, and TRIG
is an assignment/comparison operator for using the status information in a conditional
expression (e.g., in an IF statement). The TTRIG/TRIG bits are cleared with the respective
captured position is read (see table on previous page).

I Alarm Event - Will cause the 6K controller to set an Alarm Event in the Communications Server
over the Ethernet interface. You must first enable the Alarm checking bit for this input-driven
alarm (INTHW.23-1). For details on using alarms, refer to the 6K Series Programmer’s Guide.

aJ JOG positive-direction - Will jog the axis specified in a positive-direction. The JOG command
must be enabled for this function to work. Axis number required .

aK JOG negative-direction. Will jog the axis specified in a negative-direction. The JOG command
must be enabled for this function to work. Axis number required .

aL JOG Speed Select. Selects the high or low velocity range while jogging. If the input is active, the
high jog velocity range will be selected. Axis number is optional. If no axis number is designated,
it defaults to all axes.

M Joystick Release. Signals the controller to end joystick operation and resume program
execution with the next statement in your program. When the input is open (high), the joystick
mode is disabled (joystick mode can be enabled only if the input is closed, and only with the JOY
command). When the input is closed (low), joystick mode can be enabled with the JOY
command. The process of using Joystick mode is:

1. Assign the "Joystick Release" input function to a programmable input.

2. At the appropriate place in the program, enable joystick control of motion (with the JOY
command). (Joystick mode cannot be enabled unless the "Joystick Release" input is closed.)
When the JOY command enables joystick mode for the affect axes, program execution stops
on those axes (assuming the Continuous Command Execution Mode is disabled with the
COMEXCØ command).

3. Use the joystick to move the axes as required.

4. When you are finished using the joystick, open the "Joystick Release" input to disable the
joystick mode. This allows program execution to resume with the next statement after the
initial JOY command that started the joystick mode.

 N Joystick Axis Select. Allows you to control two pairs of axes with one joystick. Use the JOYAXH
and JOYAXL commands to assign analog inputs to control specific axes. Opening the Axis Select
input (input is high) selects the JOYAXH configuration. Closing the Axis Select input (input is low)
selects the JOYAXL configuration. NOTE: When this input is not connected, the JOYAXH
configuration is always in effect.

O Joystick Velocity Select. Allows you to select the velocity for joystick motion. The JOYVH and
JOYVL commands establish two joystick velocities. Opening the Velocity Select input (input is
high) selects the JOYVH configuration. Closing the Velocity Select input (input is low) selects the
JOYVL configuration. The JOYVL velocity could be used to quickly move to a location, the JOYVH
velocity could be used for low-speed accurate positioning. NOTE: When this input is not
connected, joystick motion always uses the JOYVH velocity setting.

130 6K Series Command Reference

Identifier Function Description

P Program Select. One to one correspondence for input vs. program number. The program
number comes from the TDIR command. The number specified before the program name is the
number to specify within this input definition. For example, in the 2INFNC1-3P command, 3 is
the program number. An input defined as a Program Select Input will not function until the
INSELP command has been enabled.

Q Program Security. Issuing the INFNCi-Q command enables the Program Security feature and
assigns the Program Access function to the specified programmable input.

The program security feature denies you access to the DEF, DEL, ERASE, MEMORY, LIMFNC, and
INFNC commands until you activate the program access input. Being denied access to these
commands effectively restricts altering the user memory allocation. If you try to use these
commands when program security is active (program access input is not activated), you will
receive the error message *ACCESS DENIED. The INFNCi-Q command is not saved in battery-
backed RAM, so you may want to put it in the start-up program (STARTP).

For example, once you issue the 3INFNC12-Q command, the input on the 4th pin on SIM2 (I/O
point 12) of I/O brick 3 is assigned the program access function and access to the DEF, DEL,
ERASE, MEMORY, LIMFNC, and INFNC commands will be denied until you activate the input.

To regain access to these commands without the use of the program access input, you must
issue the INEN command to disable the program security input, make the required user memory
changes, and then issue the INEN command to re-enable the input. For example, if input 3 on
brick 2 is assigned as the Program Security input, use 2INEN.3=1 to disable the input and leave
it activated, make the necessary user memory changes, and then use 2INEN.3=E to re-enable
the input.

aR End-of-Travel Limit, Positive Direction. This input function allows you to provide an end-of-
travel limit input on your remove I/O brick. An axis number is required (e.g., 3INFNC1-4R
assigns the "Positive EOT limit" function to the 1st pin on the SIM1 (I/O point 1) on extended I/O
brick #3, and makes it specific to axis 4). REMEMBER to reassign the corresponding dedicated
hardware limit (on the “LIMITS/HOME” connector) to a function other than LIMFNCi-aR ;
otherwise, the INFNCi-aR input and the LIMFNCi-aR input will have the same function. Once
an input is assigned a limit function, it is no longer debounced (INDEB has no effect), and it must
be enabled/disabled with the LH command instead of the INEN command.

aS End-of-Travel Limit, Negative Direction. This input function allows you to provide an end-of-
travel limit input on your remove I/O brick. An axis number is required (e.g., 3INFNC2-4R
assigns the "Negative EOT limit" function to the 2nd pin on the SIM1 (I/O point 2) on extended I/O
brick #3, and makes it specific to axis 4). REMEMBER to reassign the corresponding dedicated
hardware limit (on the “LIMITS/HOME” connector) to a function other than LIMFNCi-aS ;
otherwise, the INFNCi-aS input and the LIMFNCi-aS input will have the same function. Once
an input is assigned a limit function, it is no longer debounced (INDEB has no effect), and it must
be enabled/disabled with the LH command instead of the INEN command.

aT Home Limit. This input function allows you to provide a home limit input on your remote I/O
brick. An axis number is required (e.g., 3INFNC3-4R assigns the "Home limit" function to the 3rd

pin on the SIM1 (I/O point 3) on extended I/O brick #3, and makes it specific to axis 4).
REMEMBER to reassign the function of the home limit for the affected axis (e.g., given
3INFNC2-4T , you must issue a LIMFNC command to assign a different function for the home
input for axis 4). Once an input is assigned a limit function, it is no longer debounced (INDEB has
no effect), and it must be enabled/disabled with the LH command instead of the INEN command.

Example:
3INFNC1-D ; Input at I/O point #1 on brick 3 is defined to be a

; stop input for all axes

Command Descriptions 131

INLVL Input Active Level
Type Input
Syntax <!>INLVL...
Units n/a
Range b = 0 (active low), 1 (active high), or X (don't change)
Default 0
Response INLVL: *INLVL0000_0000_0 (onboard trigger inputs)

1INLVL: *1INLVL0000_0000_0000_0000_0000_0000_0000_0000
1INLVL.3: *0 (active low)

See Also INEN, INFNC, INPLC, INSTW, LIMLVL

Product Rev

6K 5.0

The Input Active Level (INLVL) command defines the active state of all programmable inputs. To determine
the input bit assignments for your 6K Series product, refer to page 6 of this document.

If the device driving the input is off (not sinking current), the input will show (using the TIN command) a
zero (0) if the input has been defined as active low, and a one (1) if the input has been defined as active
high. If the device driving the input is on (sinking current), the input will show a one (1) if the input has
been defined as active low, and zero (0) if the input has been defined as active high. The default state is
active low (INLVL0). The input schematics are provided in each 6K Series product's Installation Guide.

Example:
2INLVL0101 ; Set active level for these inputs on I/O brick 2:

; inputs 1 & 3 are active low, inputs 2 & 4 are active high.

[INO] Other Input Status
Type Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [IN], [LIM], TINO, TINOF

Product Rev

6K 5.0

The Other Input Status (INO) command is used to assign an other input value to a binary variable, or to make a
comparison against a binary or hexadecimal value. To make a comparison against a binary value, the letter b (b
or B) must be placed in front of the value. The binary value itself must only contain ones, zeros, or Xs (1, Ø,
X, x). To make a comparison against a hexadecimal value, the letter h (h or H) must be placed in front of the
value. The hexadecimal value itself must only contain the letters A through F, or the numbers Ø through 9.

Syntax: VARBn=INO where n is the binary variable number
or [INO] can be used in an expression such as IF(INO=b11Ø1) , or IF(INO=hØ2)

There are 8 other inputs available for assignment or comparison. If it is desired to assign only one bit (one
specific input) value to a binary variable, instead of all 8, use the bit select (.) operator . For example,
VARB1=INO.6 assigns the status of the ENABLE input to binary variable 1.

Format for binary assignment:bbbbbbbb
^ ^

Bit #1 Bit #8

Bit Function Location

1-5 RESERVED
6 Enable input (1 = OK for motion) ENABLE terminal
7-8 RESERVED

Example:
VARB2=INO.6 ; ENABLE input status assigned to binary variable 2
VARB2 ; Response if bit 6 is set to 1: *VARB2=XXXX_X1XX
IF(INO.6=b1) ; If ENABLE input status is 1 (OK for motion), do the commands

; following the IF statement until the NIF statement
TREV ; Transfer revision level
NIF ; End if statement

132 6K Series Command Reference

INPLC Establish PLC Data Inputs
Type Input
Syntax <!>INPLC<i>,<i-i>,<i>,<i>
Units See below
Range See below
Default 1,0—0,0,0
Response INPLC1: *INPLC1,0-0,0,0

1INPLC1: *1

See Also INEN, INFNC, INLVL, INSTW, OUTPLC, [TW]

Product Rev

6K 5.0

The Establish PLC Data Inputs (INPLC) command, in combination with the OUTPLC command, configure
the inputs and outputs to read data from a parallel I/O device such as a PLC (Programmable Logic
Controller), or a passive thumbwheel module. The actual data transfer occurs with the TW command. Refer
to the TW command for a description of the data transfer process.

The INPLC command has four fields (<i>,<i-i>,<i>,<i>):

Data Field Description

Field 1: <i> Set #: There are 4 possible INPLC sets (1-4). This field identifies which set to use.

Field 2: <i-i> Input #s : Data is read into the 6K Series product through the programmable inputs. This
field identifies the inputs to be used with the TW command. The first number is the first
input, and the second number is the last input. The inputs must be consecutive. The
number of inputs should be 8, because two BCD digits are read per data strobe. Refer to
page 6 for help in identifying which input bits are available to place in this field.

Field 3: <i> Sign Input # : This field identifies which input is designated to provide sign information. A
zero specified in the command field specifies no sign information. An active signal on the
input designated as the sign input indicates a negative data entry.

Field 4: <i> Data Valid Input # : This field identifies which input is designated to be the data valid
handshake input. A zero in this field indicates that there will be no data valid handshake
input used. When an input is specified as a data valid, the input must be active in order for
data to be read. If the input is not active, data will not be read until the signal becomes
active.

To disable a specific PLC set, enter INPLCn,Ø-Ø,Ø,Ø where n is the PLC set (1-4).

Example:
2INPLC2,1-8,9,10 ; Set INPLC set 2 as BCD digits on inputs 1-8 on I/O brick 2,

; with input 9 as the sign bit, and input 10 as the data valid
1OUTPLC2,1-4,5,50 ; Set OUTPLC set 2 as output strobes on outputs 1-4 on I/O

; brick 2, with output 5 as the output enable bit, and
; strobe time of 50 milliseconds

A(TW6) ; Read data into axis 1 acceleration using INPLC set 2 and
; OUTPLC set 2 as the data configuration

Command Descriptions 133

INSELP Select Program Enable
Type Input
Syntax <!>INSELP<i>,<i>
Units See below
Range 1st i = 0, 1, or 2; 2nd i = 0 - 5000
Default 0,0
Response INSELP: *INSELP0,0

See Also COMEXS, INEN, INFNC, INLVL, INPLC, INSTW, LIMFNC, [SS],
TDIR, TSS

Product Rev

6K 5.0

The Select Program Enable (INSELP) command enables program selection by inputs. In addition, the
command establishes the strobe time for the inputs, and if programs are selected on a one-to-one basis
(INFNCi-iP or LIMFNCi-P) or on a BCD basis (INFNCi-B or LIMFNCi-B). When programs are selected
on a one-to-one basis, each input defined with the INFNCi-iP or LIMFNCi-P command will run a specific
program upon activation. When programs are selected by BCD values, each input defined by the INFNCi-B
or LIMFNCi-B command will contribute to the BCD value, which corresponds to the program number. The
program number is derived from the order in which the programs were defined (DEF). The first program
defined is program #1, the second defined is program #2, etc. To verify which program number corresponds
to each program, use the TDIR command. The number in front of the program name is the program number.

First i = Enable or disable function (Ø = Disable, 1 and 2 = Enable). Use INFNCi-B or LIMFNCi-B
inputs if i = 1; use INFNCi-iP or LIMFNCi-P inputs if i = 2, to select program.

Second i = Strobe Time in milliseconds for inputs used to select program. The input must be active at the
end of the strobe time for it to be recognized as a valid selection. The inputs are scanned once
per system update (2 milliseconds).

The Kill (!K) command releases this mode, in addition to INSELPØ. The Stop (!S) command or an input
defined as a stop input will also release this mode, as long as COMEXS has been disabled.

Example:
2INFNC1-1P ; Input #1 on I/O brick 2 defined to select program #1
2INFNC2-2P ; Input #2 on I/O brick 2 defined to select program #2
2INFNC3-7P ; Input #3 on I/O brick 2 defined to select program #7
INSELP2,50 ; Enable continuous scan of inputs to select a program to run

134 6K Series Command Reference

INSTW Establish Thumbwheel Data Inputs
Type Input
Syntax <!>INSTW<i>,<i-i>,<i>
Units See below
Range See below
Default 1,0—0,0
Response INSTW1: *INSTW1,0-0,0

1INSTW1: *1INSTW1,0-0,0

See Also INEN, INFNC, INLVL, INPLC, OUTTW, [SS], TSS, [TW]

Product Rev

6K 5.0

The Establish Thumbwheel Data Inputs (INSTW) command, in combination with the OUTTW command,
configure the inputs and outputs to read data from an active thumbwheel device. The actual data transfer
occurs with the TW command. Refer to the TW command for a description of the data transfer process.

The INSTW command has three fields (<i>,<i-i>,<i>):

Data Field Description

Field 1: <i> Set #: There are 4 possible INSTW sets (1-4). This field identifies which set to use.

Field 2: <i-i> Input #s : Data is read into the 6K Series product through the programmable inputs. This field identifies
the inputs to be used with the TW command. The first number is the first input, and the second number
is the last input. The inputs must be consecutive. The number of inputs should be compatible to the
thumbwheel device. Refer to page 6 for help in identifying which input bits are available to place in this
field.

Field 3: <i> Sign Input # : This field identifies which input is designated to provide sign information. A zero
specified in the command field specifies no sign information. An active signal on the input designated
as the sign input indicates a negative data entry.

To disable a specific thumbwheel set, enter INSTWn,Ø-Ø,Ø where n is the thumbwheel set (1-4).

Example:
3INSTW2,1-4,5 ; Set INSTW set 2 as BCD digits on inputs 1-4 on I/O brick 3,

; with input 5 as the sign bit
2OUTTW2,1-3,4,50 ; Set OUTTW set 2 as output strobes on outputs 1-3 on I/O

; brick 2, with output 4 as the output enable bit, and
; strobe time of 50 milliseconds

A(TW2) ; Read data into axis 1 acceleration using INSTW set 2
; and OUTTW set 2 as the data configuration

Command Descriptions 135

INTHW Check for Alarm Events
Type Alarm Event
Syntax <!>INTHW... (one b for each of 32 interrupts)
Units n/a
Range b = 0 (disable), 1 (enable), or X (don't change)
Default 0
Response INTHW: *INTHW0000_0000_0000_0000_0000_0000_0000_0000

See Also INFNC, INTSW, LIMFNC, TIMINT

Product Rev

6K 5.0

Use the INTHW command to determine which conditions will cause an alarm event in the 6K
Communications Server (this requires an Ethernet interface to the 6K). The alarm bit in the 6K is cleared as
soon as the alarm occurs, but the status of the alarm remains available, through the Communications Server,
to be checked by client applications. For details on using alarms, refer to the 6K Series Programmer’s
Guide.

The table below lists the potential alarm conditions, and any number of the conditions may be enabled.

Format for INTHW: bbbb_bbbb_bbbb_bbbb_bbbb_bbbb_bbbb_bbbb
^ ^

Bit #1 Bit #32
Location Location

To enable a specific interrupt, place a 1 in the corresponding bit location (b) in the INTHWbb....bbb
command. To disable a specific interrupt bit, place a Ø in the corresponding bit location.

NOTE: A specific interrupt bit can also be enabled by specifying the bit and the state of the bit
(Ø = Disable, 1 = Enable). For example, the command INTHW.29-1 enables bit 29, whereas
INTHW.29-Ø disables bit 29.

 Bit # Function **

 1 Software (forced) Alarm #1
 2 Software (forced) Alarm #2
 3 Software (forced) Alarm #3
 4 Software (forced) Alarm #4
 5 Software (forced) Alarm #5
 6 Software (forced) Alarm #6
 7 Software (forced) Alarm #7
 8 Software (forced) Alarm #8
 9 Software (forced) Alarm #9
10 Software (forced) Alarm #10
11 Software (forced) Alarm #11
12 Software (forced) Alarm #12
13 Command Buffer Full
14 ENABLE input Activated
15 Program Complete
16 Drive Fault on any Axis

 Bit # Function

17 Reserved
18 Reserved
19 Limit Hit - hard or soft limit, on any axis
20 Stall Detected (stepper) or Position Error (servo) on any axis
21 Timer (TIMINT)

22 Reserved
23 Input - any of the inputs defined by INFNCi-I or LIMFNCi-I

24 Command Error
25 Motion Complete on Axis 1
26 Motion Complete on Axis 2
27 Motion Complete on Axis 3
28 Motion Complete on Axis 4
29 Motion Complete on Axis 5
30 Motion Complete on Axis 6
31 Motion Complete on Axis 7
32 Motion Complete on Axis 8

** Bits 1-12: software alarms are forced with the INTSW command.

136 6K Series Command Reference

INTSW Force an Alarm Event
Type Alarm Event
Syntax <!>INTSW<i>
Units i = alarm event condition # (see list in INTHW)
Range i = 1-12
Default n/a
Response n/a

See Also INTHW

Product Rev

6K 5.0

This command forces a specific alarm event. The alarm events are available in the Communications Server
(over the Ethernet interface), and a client application can read the Communications Server’s “faster status”
(alarm event) register to ascertain when certain conditions have occurred. 12 different software alarms are
available (see table in INTHW command description). By forcing an alarm condition, you can customize the
program to generate specific alarms at predefined places in your program.

The specific alarm event cannot be forced until the corresponding enable bit is set with the INTHW
command. For example, before you can force alarm event bit #3 (INTSW3), you must first enable the 6K to
check the state of alarm event bit #3 (INTHW.3-1).

The client application must determine the cause of the forced alarm event. This is accomplished by polling
the Communication Server’s “fast status” register for the alarm information. Once the register has been read
for a client application, the alarm conditions are automatically cleared in the Communications Server. For
more information on the alarms and using the fast status register, refer to the Programmer’s Guide.

Example:
INTHW1 ; Enable alarm event bit #1
A20,20 ; Set acceleration to 20 units/sec/sec on axes 1 and 2
V2,2 ; Set velocity to 2 units/sec on axes 1 and 2
D25000,25000 ; Set move distance to 25000 units on axes 1 and 2
GO11 ; Initiate motion on axes 1 and 2
INTSW1 ; Force alarm event bit #1 as soon as the moves on axes 1 and

; 2 are finished.
; **
; * Note: After the alarm occurs, it is the client application program's *
; * responsibility to examine the communication server's fast status *
; * register to determine the cause of the alarm. *
; **

Command Descriptions 137

JOG Jog Mode Enable
Type Jog
Syntax <!><@><a>JOG
Units n/a
Range b = 0 (disable), 1 (enable), or X (don't change)
Default 0
Response JOG: *JOG0000_0000

1JOG: *1JOG0

See Also DJOG, JOGA, JOGAA, JOGAD, JOGADA, JOGVH, JOGVL, INFNC, LIMFNC

Product Rev

6K 5.0

This command enables jog mode on the appropriate axis. Once jog mode has been enabled, the jog inputs
can be used to produce motion on the specific axis. The inputs that will be used as jog inputs are determined
by the INFNC or LIMFNC command. Once the jog inputs have been enabled, they will remain enabled, and
able to jog at any time while the motor is in position. Or in other words, as long as the motor is not moving
the jog inputs will be active.

After processing the JOG1 command, command processing does not stop and wait for the jog mode to be
disabled (JOGØ). Instead, the jog inputs are enabled and command processing continues with the first
command after the JOG1 command.

WARNING
If a jog input is active when jog mode is enabled, motion will occur.

To disable jog mode, issue the JOGØ command (to the appropriate axis) at any point in the program.

NOTE: If you are using an RP240 operator panel, you can enable the RP240 Jog Mode with the DJOG1
command and use the RP240's arrow keys to jog individual axes. To disable the RP240 Jog Mode,
use the !DJOGØ command or press the RP240's MENU RECALL button.

Example:
1INFNC1-L ; Input #1 on I/O brick 1 defined as jog velocity select input
1INFNC2-1J ; Input #2 on I/O brick 1 defined as jog positive-direction

; input for axis #1
1INFNC3-1K ; Input #3 on I/O brick 1 defined as jog negative-direction

; input for axis #1
1INFNC4-2J ; Input #4 on I/O brick 1 defined as jog positive-direction

; input for axis #2
1INFNC5-2K ; Input #5 on I/O brick 1 defined as jog negative-direction

; input for axis #2
JOGA100,100 ; Jog acceleration set to 100 units/sec/sec on both axes
JOGAD200,200 ; Jog deceleration set to 200 units/sec/sec on both axes
JOGVH10,8 ; The velocity when the jog velocity select input is high is

; 10 units/sec on axis #1 and 8 units/sec on axis 2
JOGVL1,.8 ; The velocity when the jog velocity select input is low is

; 1 units/sec on axis #1 and 0.8 units/sec on axis 2
JOG1100 ; Enable jog mode on axes 1 and 2. When an input occurs on

; input 2, input 3, input 4, or input 5, the motor will move at
; the appropriate jog velocity until the input is released

WAIT(1IN.6=b1) ; Wait for input #6 on I/O brick 1 to become active.
; Input #6 is being used as a signal to disable jog mode.

JOG0000 ; Disable jog mode on all axes

138 6K Series Command Reference

JOGA Jog Acceleration
Type Jog
Syntax <!><@><a>JOGA<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec/sec
Range 0.00001 - 39,999,998 (depending on the scaling factor)
Default 10.0000
Response JOGA: *JOGA10.0000,10.0000,10.0000,10.0000 ...

1JOGA: *1JOGA10.0000

See Also DJOG, JOG, JOGAA, JOGAD, JOGADA, JOGVH, JOGVL, INFNC, LIMFNC,
SCALE, SCLA

Product Rev

6K 5.0

The Jog Acceleration (JOGA) command specifies the acceleration to be used upon receiving a jog input.

UNITS OF MEASURE and SCALING : refer to page 16.

The jog acceleration remains set until you change it with a subsequent jog acceleration command.
Accelerations outside the valid range are flagged as an error, with a message *INVALID DATA-FIELD x ,
where x is the field number. When an invalid acceleration is entered the previous acceleration value is
retained.

If the jog deceleration (JOGAD) command has not been entered, the jog acceleration (JOGA) command will
also set the jog deceleration rate. Once the jog deceleration (JOGAD) command has been entered, the jog
acceleration (JOGA) command no longer affects jog deceleration.

Example: Refer to the jog mode enable (JOG) command example.

JOGAA Jogging Average Acceleration
Type Jog; Motion (S-Curve)
Syntax <!><@><a>JOGAA<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec/sec
Range 0.00001 - 39,999,998 (depending on the scaling factor)
Default 10.00 (trapezoidal profiling is default, where JOGAA tracks JOGA)
Response JOGAA: *JOGAA10.0000,10.0000,10.0000,10.0000 ...

1JOGAA: *1JOGAA10.0000

See Also A, ADA, JOG, JOGA, JOGAD, JOGADA, SCALE, SCLA

Product Rev

6K 5.0

The Jogging Average Acceleration (JOGAA) command allows you to specify the average acceleration for an
S-curve jogging profile. S-curve profiling provides smoother motion control by reducing the rate of change
in acceleration and deceleration; this accel/decel rate of change is known as jerk. Refer to page 13 for
details on S-curve profiling.

Scaling (SCLA) affects JOGAA the same as it does for JOGA. Refer to page 16 for details on scaling.

Example:
JOGA10,10,10,10 ; Sets the maximum jogging acceleration of all axes
JOGAA5,5,7.5,10 ; Sets the average jogging acceleration of all axes

JOGAD Jog Deceleration
Type Jog
Syntax <!><@><a>JOGAD<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec/sec
Range 0.00001 - 39,999,998 (depending on the scaling factor)
Default 10.0000 (JOGAD tracks JOGA)
Response JOGAD: *JOGAD10.0000,10.0000,10.0000,10.0000 ...

1JOGAD: *1JOGAD10.0000

See Also DJOG, JOG, JOGA, JOGAA, JOGADA, JOGVH, JOGVL, INFNC, LIMFNC,
SCALE, SCLA

Product Rev

6K 5.0

The Jog Deceleration (JOGAD) command specifies the deceleration to be used when a jog input is released.

UNITS OF MEASURE and SCALING : refer to page 16.

Command Descriptions 139

The jog deceleration remains set until you change it with a subsequent jog deceleration command.
Decelerations outside the valid range are flagged as an error, with a message *INVALID DATA-FIELD x ,
where x is the field number. When an invalid deceleration is entered the previous deceleration value is
retained.

If the jog deceleration (JOGAD) command has not been entered, the jog acceleration (JOGA) command will
also set the jog deceleration rate. Once the jog deceleration (JOGAD) command has been entered, the jog
acceleration (JOGA) command no longer affects jog deceleration. If JOGAD is set to zero (JOGADØ), then the
jog deceleration will once again track whatever the JOGA command is set to.

Example: Refer to the jog mode enable (JOG) command example.

JOGADA Jogging Average Deceleration
Type Jog; Motion (S-Curve)
Syntax <!><@><a>JOGADA<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec/sec
Range 0.00001 - 39,999,998 (depending on the scaling factor)
Default 10.00 (JOGADA tracks JOGAA)
Response JOGADA: *JOGADA10.0000,10.0000,10.0000,10.0000 ...

1JOGADA: *1JOGADA10.0000

See Also A, AD, JOG, JOGA, JOGAA, JOGAD, SCALE, SCLA

Product Rev

6K 5.0

The Jogging Average Deceleration (JOGADA) command allows you to specify the average deceleration for
an S-curve jogging profile. S-curve profiling provides smoother motion control by reducing the rate of
change in acceleration and deceleration; this accel/decel rate of change is known as jerk. Refer to page 13
for details on S-curve profiling.

Scaling (SCLA) affects JOGADA the same as it does for JOGAD. Refer to page 16 for details on scaling.

Example:
JOGAD10,10,10,10 ; Sets the maximum jog deceleration of all four axes
JOGADA5,5,7.5,10 ; Sets the average jog deceleration of all four axes

JOGVH Jog Velocity High
Type Jog
Syntax <!><@><a>JOGVH<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec (scalable with SCLV)
Range Stepper Axes: 0.00000-2,048,000 (max. depends on SCLV & PULSE)

Servo Axes: 0.00000-6,500,000 (max. depends on SCLV)
Default 10.0000
Response JOGVH: *JOGVH10.0000,10.0000,10.0000,10.0000 ...

1JOGVH: *1JOGVH10.0000

See Also DJOG, JOG, JOGA, JOGAA, JOGAD, JOGADA, JOGVL, INFNC, LIMFNC,
PULSE, SCALE, SCLV

Product Rev

6K 5.0

The Jog Velocity High (JOGVH) command specifies the velocity to be used upon receiving a jog input with
the jog velocity select input active (ON).

The jog high velocity remains set until you change it with a subsequent jog high velocity command.
Velocities outside the valid range are flagged as an error, with a message *INVALID DATA-FIELD x , where
x is the field number. When an invalid velocity is entered the previous velocity value is retained.

UNITS OF MEASURE and SCALING : refer to page 16.

Example: Refer to the jog mode enable (JOG) command example.

140 6K Series Command Reference

JOGVL Jog Velocity Low
Type Jog
Syntax <!><@><a>JOGVL<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec (scalable with SCLV)
Range Stepper Axes: 0.00000-2,048,000 (max. depends on SCLV & PULSE)

Servo Axes: 0.00000-6,500,000 (max. depends on SCLV)
Default 0.5000
Response JOGVL: *JOGVL0.50000,0.50000,0.50000,0.50000 ...

1JOGVL: *1JOGVL0.50000

See Also DJOG, JOG, JOGA, JOGAA, JOGAD, JOGADA, JOGVH, INFNC, LIMFNC,
PULSE, SCALE, SCLV

Product Rev

6K 5.0

The Jog Velocity Low (JOGVL) command specifies the velocity to be used upon receiving a jog input with
the jog velocity select input low, or OFF. The velocity remains set until you change it with a subsequent jog
velocity low command. Velocities outside the valid range are flagged as an error, with a message
*INVALID DATA-FIELD x , where x is the field number. When an invalid velocity is entered the previous
velocity value is retained.

UNITS OF MEASURE and SCALING : refer to page 16.

Example: Refer to the jog mode enable (JOG) command example.

JOY Joystick Mode Enable
Type Joystick
Syntax <!><@><a>JOY
Units n/a
Range b = 0 (disable), 1 (enable), or X (don't change)
Default 0
Response JOY: *JOY0000_0000

1JOY: *1JOY0

See Also ANIRNG, [AS], COMEXC, INFNC, JOYA, JOYAA, JOYAD, JOYADA,
JOYAXH, JOYAXL, JOYCDB, JOYCTR, JOYEDB, JOYVH, JOYVL, JOYZ,
LIMFNC, TAS, TIN

Product Rev

6K 5.0

The 6K controller supports joystick operation with digital inputs and analog inputs. The digital inputs
include the onboard limit inputs and trigger inputs, as well as digital input SIMs on an external I/O brick.
The 12-bit analog inputs are available only if you install an analog input SIM on an external I/O brick
(default voltage range is -10V to +10V, selectable with ANIRNG).

To Set Up Joystick Operation (refer also to the example code below):

1. Select the required digital inputs and analog inputs required for joystick operation. Connect the
joystick as instructed in your controller's Installation Guide.

2. Assign the appropriate input functions to the digital inputs used for joystick's operation:
• Release Input: INFNCi-M for triggers & external inputs, or LIMFNCi-M for limit inputs.
• Axis Select Input: INFNCi-N for triggers & external inputs, or LIMFNCi-N for limit inputs. NOTE: If

you’re not using this input, assign the analog inputs to the axes with the JOYAXH command.
• Velocity Select Input: INFNCi-O for triggers & external inputs, or LIMFNCi-O for limit inputs.

3. (optional) Use the ANIRNG command to select the voltage range for the analog inputs you will use.
The default range is -10VDC to +10VDC (other options are 0 to +5V, -5 to +5V, and 0 to +10V).

4. Assign analog inputs to control specific axes, using:
• JOYAXH: Standard analog input-to-axis assignment.
• JOYAXL (optional). Analog input-to-axis assignment when the Axis Select Input is low.

5. Define the joystick motion parameters:
• Max. Velocity when Velocity Select input switch is open/high (JOYVH command). If the Velocity

Select input is not used, joystick motion always uses the JOYVH velocity.
• Max. Velocity when Velocity Select input switch is closed/low (JOYVL command).
• Accel (JOYA command).

Command Descriptions 141

• Accel for s-curve profiling (JOYAA command).
• Decel (JOYAD command).
• Decel for s-curve profiling (JOYADA command).

6. Define the usable voltage zone for your joystick:
(make sure you have first assigned the analog inputs – see step 3 above)
• End Deadband (JOYEDB): Defines the voltage offset (from the -10V & +10V endpoints) at which

max. velocity occurs. Default is 0.1V, maxing voltage at -9.9V and +9.9V.
• Center Voltage (JOYCTR or JOYZ): Defines the voltage when the joystick is at rest to be the zero-

velocity center. Default JOYCTR setting is 0V.
• Center Deadband (JOYCDB): Defines the zero-velocity range on either side of the Center Voltage.

Default is 0.1V, setting the zero-velocity range at -0.1V to +0.1V.

7. To jog the axes:
a. In your program, enable Joystick Operation with the JOY command (Joystick Release input must

be closed in order to enable joystick mode). When the JOY command enables joystick mode for the
affect axes, program execution stops on those axes (assuming the Continuous Command Execution
Mode is disabled with the COMEXCØ command).

b. Move the load with the joystick.
c. When you are finished, open the Joystick Release input to disable joystick mode. This allows

program execution to resume with the next statement after the initial JOY command that started the
joystick mode.

Programming Example (refer also to the illustration below):

Application Requirements:
This example represents a typical two-axis joystick application in which a high-velocity range is required to
move to a region, then a low-velocity range is required for a fine search. After the search is completed it is
necessary to record the load positions, then move to the next region. A digital input can be used to indicate that
the position should be read. The Joystick Release input is used to exit the joystick mode and continue with the
motion program.

Hardware Configuration:
• An analog input SIM is installed in the 3rd slot of I/O brick 1. The eight analog inputs (1-8) are addressed as

input numbers 17-24 on the I/O brick. Analog input 17 will control axis 1, and analog input 18 will control
axis 2.

• A digital input SIM is installed in the 1st slot of I/O brick 1. The eight digital inputs (1-8) are addressed as
input numbers 1-8 on the I/O brick. Digital input 6 will be used for the Joystick Release function, and input 7
will be used for the Joystick Velocity Select input. Input 8 will be used to indicate that the position should be
read.

Setup Code (the drawing below shows the usable voltage configuration):

1INFNC7-M ; Assign Joystick Release f(n) to brick 1, input 7
1INFNC8-O ; Assign Joystick Velocity Select f(n) to brick 1, input 8
JOYAXH1-17,1-18 ; Assign analog input 17 to control axis 1,

; Assign analog input 18 to control axis 2
JOYVH1,1 ; Max. velocity on axes 1 & 2 is 10 units/sec when the

; Velocity Select input switch (1IN.7) is open (high)
JOYVL10,10 ; Max. velocity on axes 1 & 2 is 1 unit/sec when the

; Velocity Select input switch (1IN.7) is closed (low)
JOYA100,100 ; Set joystick accel to 100 units/sec/sec on both axes
JOYAD100,100 ; Set joystick decel to 100 units/sec/sec on both axes
;**** COMMANDS TO SET UP USABLE VOLTAGE: **********
1JOYCTR.17=+1.0 ; Set center voltage for analog input 17 (controls axis 1)
1JOYCTR.18=+1.0 ; and 18 (controls axis 2) to+1.0V. The +1.0V value was

; ascertained by checking the voltage of the both
; inputs (with the 1TANI.17 and 1TAIN.18 commands)
; when the joystick was at rest.

1JOYCDB.17=0.5 ; Set center deadband to compensate for the fact that
1JOYCDB.18=0.5 ; when the joystick is at rest, the voltage received on

; both analog inputs may fluctuate +/- 0.5V on either
; side of the +1.0V center.

1JOYEDB.17=2.0 ; Set end deadband to compensate for the fact that the
1JOYEDB.18=2.0 ; joystick can produce only -8.0V to +8.0V.
;**
JOY11 ; Enable joystick mode for axes 1 & 2

142 6K Series Command Reference

Veloc ity
(positive direction)

Volts

Veloc ity
(negative direction)

-10V +10V

JOYVH or JOYVL

JOYVH or JOYVL

JOYCTR or JOYZ
(voltag e when joystick is at rest)

JOYCDB
(zero-veloc ity range)

JOYEDB

JOYEDB

JOYA Joystick Acceleration
Type Joystick
Syntax <!><@><a>JOYA<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec/sec
Range 0.00120-39,999,998 (depending on the scaling factor)
Default 10.0000
Response JOYA: *JOYA10.0000,10.0000,10.0000,10.0000 ...

1JOYA: *1JOYA10.0000

See Also JOY, JOYAA, JOYAD, JOYADA, JOYAXH, JOYAXL, JOYCDB, JOYCTR, JOYEDB,
JOYVH, JOYVL, JOYZ, SCALE, SCLA

Product Rev

6K 5.0

The Joystick Acceleration (JOYA) command specifies the acceleration to be used during joystick mode.

UNITS OF MEASURE and SCALING : refer to page 16.

The joystick acceleration remains set until you change it with a subsequent joystick acceleration command.
Accelerations outside the valid range are flagged as an error, with a message *INVALID DATA-FIELD x ,
where x is the field number. When an invalid acceleration is entered the previous acceleration value is
retained.

If the joystick deceleration (JOYAD) command has not been entered, the joystick acceleration (JOYA)
command will also set the joystick deceleration rate. Once the joystick deceleration (JOYAD) command has
been entered, the joystick acceleration (JOYA) command no longer affects joystick deceleration.

Example: Refer to the joystick mode enable (JOY) command example.

JOYAA Joystick Average Acceleration
Type Motion (S-Curve)
Syntax <!><@><a>JOYAA<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec/sec
Range 0.00120-39,999,998 (depending on the scaling factor)
Default 10.00 (trapezoidal profiling is default, where JOYAA tracks JOYA)
Response JOYAA: *JOYAA10.0000,10.0000,10.0000,10.0000 ...

1JOYAA: *1JOYAA10.0000

See Also AA, AD, JOY, JOYA, JOYAD, JOYADA, SCALE, SCLA

Product Rev

6K 5.0

The Joystick Average Acceleration (JOYAA) command allows you to specify the average acceleration for an
S-curve joystick profile. S-curve profiling provides smoother motion control by reducing the rate of change

Command Descriptions 143

in acceleration and deceleration; this accel/decel rate of change is known as jerk. Refer to page 13 for
details on S-curve profiling.

Accelerating Scaling (SCLA) affects JOYAA the same as it does for JOYA. Refer to page 16 for details on
scaling.

Example:
JOYA10,10,10,10 ; Set the maximum joystick acceleration of all four axes
JOYAA5,5,7.5,10 ; Set the average joystick acceleration of all four axes

JOYAD Joystick Deceleration
Type Joystick
Syntax <!><@><a>JOYAD<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec/sec
Range 0.00120-39,999,998 (depending on the scaling factor)
Default 10.0000 (JOYAD tracks JOYA)
Response JOYAD: *JOYAD10.0000,10.0000,10.0000,10.0000 ...

1JOYAD: *1JOYAD10.0000

See Also JOY, JOYA, JOYAA, JOYADA, JOYAXH, JOYAXL, JOYCDB, JOYCTR,
JOYEDB, JOYVH, JOYVL, JOYZ, SCALE, SCLA

Product Rev

6K 5.0

The Joystick Deceleration (JOYAD) command specifies the deceleration to be used during the joystick
mode.

UNITS OF MEASURE and SCALING : refer to page 16.

The joystick deceleration remains set until you change it with a subsequent joystick deceleration command.
Decelerations outside the valid range are flagged as an error, with a message *INVALID DATA-FIELD x ,
where x is the field number. When an invalid deceleration is entered the previous deceleration value is
retained.

If the joystick deceleration (JOYAD) command has not been entered, the joystick acceleration (JOYA)
command will also set the joystick deceleration rate. Once the joystick deceleration (JOYAD) command has
been entered, the joystick acceleration (JOYA) command no longer affects joystick deceleration. If JOYAD is
set to zero (JOYADØ), then the joystick deceleration will once again track whatever the JOYA command is
set to.

Example: Refer to the joystick mode enable (JOY) command example.

JOYADA Joystick Average Deceleration
Type Motion (S-Curve)
Syntax <!><@><a>JOYADA<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec/sec
Range 0.00120-39,999,998 (depending on the scaling factor)
Default 10.00 (JOYADA tracks JOYAA)
Response JOYADA: *JOYADA10.0000,10.0000,10.0000,10.0000 ...

1JOYADA: *1JOYADA10.0000

See Also A, AD, JOY, JOYA, JOYAA, JOYAD, SCALE, SCLA

Product Rev

6K 5.0

The Joystick Average Deceleration (JOYADA) command allows you to specify the average deceleration for
an S-curve joystick profile. S-curve profiling provides smoother motion control by reducing the rate of
change in acceleration and deceleration; this accel/decel rate of change is known as jerk. Refer to page 13
for details on S-curve profiling.

Acceleration Scaling (SCLA) affects JOYADA the same as it does for JOYAD. Refer to page 16 for details on
scaling.

Example:
JOYAD10,10,10,10 ; Sets the maximum joystick deceleration of all four axes
JOYADA5,5,7.5,10 ; Sets the average joystick deceleration of all four axes

144 6K Series Command Reference

JOYAXH Joystick Analog Channel High
Type Joystick
Syntax <!><@><a>JOYAXH<B-i>,<B-i>,<B-i>,<B-i>,<B-i>,<B-i>,<B-i>,<B-i>
Units B = I/O brick number

i = Location of the analog input on I/O brick (see page 6)
Range B = 1-8

i = 1-32
Default 0-0,0-0,0-0,0-0,0-0,0-0,0-0,0-0
Response JOYAXH: *JOYAXH1-1,1-2,1-3,1-4,1-5,1-6,1-7,1-8

1JOYAXH: *1JOYAXH1-1

See Also ANIRNG, [IN], INFNC, JOY, JOYA, JOYAA, JOYAD, JOYADA, JOYAXL,
JOYCDB, JOYCTR, JOYEDB, JOYVH, JOYVL, JOYZ, [LIM], LIMFNC,
TIN, TLIM

Product Rev

6K 5.0

The Joystick Analog Channel High (JOYAXH) command specifies the analog input that will control each
axis while the Joystick Axis Select input (INFNCi-N or LIMFNCi-N) is open and the corresponding axis is
in Joystick Mode. A single analog input can control more than one axis (e.g., JOYAXH1-1,1-1 assigns the
analog input at location 1 on I/O brick 1 to control axes 1 and 2). If the Joystick Axis Select input is not
used, the JOYAXH command determines which axes are controlled by which analog inputs.

To understand how specific I/O points are addressed on the I/O bricks, refer to page 6.

NOTE: The 12-bit analog inputs are available only if you install an analog input SIM on an external I/O
brick. Use the ANIRNG command to select the voltage range for the analog inputs you will use. The default
range is -10VDC to +10VDC (other options are 0 to +5V, -5 to +5V, and 0 to +10V).

Example: Refer to the joystick mode enable (JOY) command example.

JOYAXL Joystick Analog Channel Low
Type Joystick
Syntax <!><@><a>JOYAXH<B-i>,<B-i>,<B-i>,<B-i>,<B-i>,<B-i>,<B-i>,<B-i>
Units B = I/O brick number

i = Location of the analog input on I/O brick (see page 6)
Range B = 1-8

i = 1-32
Default 0-0,0-0,0-0,0-0,0-0,0-0,0-0,0-0
Response JOYAXL: *JOYAXL1-1,1-2,1-3,1-4,1-5,1-6,1-7,1-8

1JOYAXL: *1JOYAXL1-1

See Also ANIRNG,[IN], INFNC, JOY, JOYA, JOYAA, JOYAD, JOYADA, JOYAXH,
JOYCDB, JOYCTR, JOYEDB, JOYVH, JOYVL, JOYZ, [LIM], LIMFNC,
TIN, TLIM

Product Rev

6K 5.0

The Joystick Analog Channel Low (JOYAXL) command specifies the analog input that will control each axis
while the Joystick Axis Select input (INFNCi-N or LIMFNCi-N) is closed and the corresponding axis is in
Joystick Mode. A single analog input can control more than one axis (e.g., JOYAXL1-1,1-1 assigns the
analog input at location 1 on I/O brick 1 to control axes 1 and 2). If the Joystick Axis Select input is not
used, the JOYAXL command has no effect; instead, the JOYAXH command determines which axes are
controlled by which analog inputs.

To understand how to address specific I/O points on the I/O bricks, refer to page 6.

NOTE: The 12-bit analog inputs are available only if you install an analog input SIM on an external I/O
brick. Use the ANIRNG command to select the voltage range for the analog inputs you will use. The default
range is -10VDC to +10VDC (other options are 0 to +5V, -5 to +5V, and 0 to +10V).

Example: Refer to the joystick mode enable (JOY) command example.

Command Descriptions 145

JOYCDB Joystick Center Deadband
Type Joystick
Syntax <!><@><a>JOYCDB<.i><=r>
Units i = I/O location for the analog input on brick B (see page 6)

r = volts
Range i = 1-32

r = -10.00 - +10.00 (depending on ANIRNG setting)
Default 0.1
Response 1JOYCDB.1 *1JOYCDB.1=0.1

See Also ANIRNG, INFNC, JOY, JOYA, JOYAA, JOYAD, JOYADA, JOYAXH,
JOYAXL, JOYCTR, JOYEDB, JOYVH, JOYVL, JOYZ, LIMFNC

Product Rev

6K 5.0

The JOYCDB command defines, for the specified analog input(s), the zero-velocity range on either side of the
Center Voltage established with the JOYCTR command or the JOYZ command. The default setting is 0.1V, which
sets the zero-velocity range at -0.1V to +0.1V (assuming the default JOYCTR default of 0.0V is used). NOTE:
Executing the JOYCDB command before the JOYAXH command will cause an error (“INPUT(S) NOT DEFINED

AS JOYSTICK INPUT ”).

Example: Refer to the joystick mode enable (JOY) command example.

JOYCTR Joystick Center
Type Joystick
Syntax <!><@><a>JOYCTR<.i><=r>
Units i = I/O location for the analog input on brick B (see page 6)

r = volts
Range i = 1-32

r = -10.00 - +10.00 (depending on ANIRNG setting)
Default 0.00
Response 1JOYCTR.1 *1JOYCTR.1=0.00

See Also ANIRNG, INFNC, JOY, JOYA, JOYAA, JOYAD, JOYADA, JOYAXH,
JOYAXL, JOYCDB, JOYEDB, JOYVH, JOYVL, JOYZ, LIMFNC

Product Rev

6K 5.0

The JOYCTR command defines, for the specified analog input(s), the voltage to be considered as the zero-
velocity center (usually associated with leaving the joystick in the resting position). Default is 0V. The zero-
velocity range about the center is determined by the JOYCDB command. As an alternative to the JOYCTR

command, you could use the JOYZ command. NOTE: Executing the JOYCTR command before the JOYAXH
command will cause an error (“INPUT(S) NOT DEFINED AS JOYSTICK INPUT ”).

Example: Refer to the joystick mode enable (JOY) command example.

JOYEDB Joystick End Deadband
Type Joystick
Syntax <!><@><a>JOYEDB<.i><=r>
Units i = I/O location for the analog input on brick B (see page 6)

r = volts
Range i = 1-32

r = -10.00 - +10.00 (depending on ANIRNG setting)
Default 0.1
Response 1JOYEDB.1 *1JOYCTR.1=0.1

See Also ANIRNG, INFNC, JOY, JOYA, JOYAA, JOYAD, JOYADA, JOYAXH,
JOYAXL, JOYCDB, JOYCTR, JOYVH, JOYVL, JOYZ, LIMFNC

Product Rev

6K 5.0

The JOYEDB command defines, for the specified analog input(s), the voltage offset (from the -10V & +10V
endpoints) at which maximum velocity occurs. This command is useful if your joystick does not reach either limit
of the voltage range (-10.00V to+10.00V). The default setting is 0.1V, creating a maximum voltage range of -9.9V
to +9.9V. NOTE: Executing the JOYEDB command before the JOYAXH command will cause an error (“INPUT(S)

NOT DEFINED AS JOYSTICK INPUT ”).

Example: Refer to the joystick mode enable (JOY) command example.

146 6K Series Command Reference

JOYVH Joystick Velocity — Velocity Select Input High
Type Joystick
Syntax <!><@><a>JOYVH<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec
Range Stepper Axes: 0.00000-2,048,000 (max. depends on SCLV & PULSE)

Servo Axes: 0.00000-6,500,000 (max. depends on SCLV)
Default 0.5000
Response JOYVH: *JOYVH0.5000,0.5000,0.5000,0.5000 ...

1JOYVH: *1JOYVH0.5000

See Also [IN], INFNC, JOY, JOYA, JOYAA, JOYAD, JOYADA, JOYAXH, JOYAXL,
JOYCDB, JOYCTR, JOYEDB, JOYVL, JOYZ, [LIM], LIMFNC, PULSE.
SCALE, SCLV, TIN, TLIM

Product Rev

6K 5.0

The Joystick Velocity High (JOYVH) command specifies the maximum velocity that can be obtained at full
deflection during joystick mode, with the Joystick Velocity Select input open (high). The Joystick Velocity
Select input function is defined with the INFNCi-O command or the LIMFNCi-O command. If the Velocity
Select input is not used, joystick motion always uses the JOYVH velocity.
NOTE: The data fields (<r>,<r>,<r>,<r>...) represent the axes, not the analog inputs.

The joystick velocity must be entered prior to entering joystick mode (JOY). The joystick velocity high
remains set until you change it with a subsequent JOYVH command. Velocities outside the valid range are
flagged as an error, with a message *INVALID DATA-FIELD x , where x is the field number. When an
invalid velocity is entered the previous velocity value is retained.

UNITS OF MEASURE and SCALING : refer to page 16.

Example: Refer to the joystick mode enable (JOY) command example.

JOYVL Joystick Velocity — Velocity Select Input Low
Type Joystick
Syntax <!><@><a>JOYVL<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec
Range Stepper Axes: 0.00000-2,048,000 (max. depends on SCLV & PULSE)

Servo Axes: 0.00000-6,500,000 (max. depends on SCLV)
Default 0.2000
Response JOYVL: *JOYVL0.2000,0.2000,0.2000,0.2000 ...

1JOYVL: *1JOYVL0.2000

See Also [IN], INFNC, JOY, JOYA, JOYAA, JOYAD, JOYADA, JOYAXH, JOYAXL,
JOYCDB, JOYCTR, JOYEDB, JOYVH, JOYZ, [LIM], LIMFNC, PULSE.
SCALE, SCLV, TIN, TLIM

Product Rev

6K 5.0

The Joystick Velocity Low (JOYVL) command specifies the maximum velocity that can be obtained at full
deflection during joystick mode, with the Joystick Velocity Select input closed (low). The Joystick Velocity
Select input function is defined with the INFNCi-O command or the LIMFNCi-O command. If the Velocity
Select input is not used, joystick motion always uses the JOYVH velocity.
NOTE: The data fields (<r>,<r>,<r>,<r>...) represent the axes, not the analog channels.

The joystick velocity must be entered prior to entering joystick mode (JOY). The joystick velocity low
remains set until you change it with a subsequent JOYVL command. Velocities outside the valid range are
flagged as an error, with a message *INVALID DATA-FIELD x , where x is the field number. When an
invalid velocity is entered the previous velocity value is retained.

UNITS OF MEASURE and SCALING : refer to page 16.

Example: Refer to the joystick mode enable (JOY) command example.

Command Descriptions 147

JOYZ Joystick Zero
Type Joystick
Syntax <!><@>JOYZ<.i><=b>

(multiple inputs per brick may be configured at one time)
Units B = I/O brick number

i = Location of the analog input on I/O brick (see page 6)
b = enable bit

Range B = 1-8
i = 1-32
b = 0 (don't zero), 1 (zero), or X (don't change)

Default n/a
Response n/a

See Also ANIRNG, JOY, JOYA, JOYAA, JOYAD, JOYADA, JOYAXH, JOYAXL,
JOYCDB, JOYCTR, JOYEDB, JOYVH, JOYVL

Product Rev

6K 5.0

The Joystick Zero (JOYZ) command defines the voltage when the joystick is at rest to be the zero-velocity
center. Simply leave the joystick in its resting position and issue a JOYZ command to define the current
voltage of the respective analog inputs as the zero-velocity center. The zero-velocity range about the center
is determined by the JOYCDB command.

The JOYZ command is an alternative to using the JOYCTR command.

Example:
1INFNC7-M ; Assign Joystick Release f(n) to brick 1, input 7
1INFNC8-O ; Assign Joystick Velocity Select f(n) to brick 1, input 8
JOYAXH1-17,1-18 ; Assign analog input 17 to control axis 1,

; Assign analog input 18 to control axis 2
JOYVH10,10 ; Max. velocity on axes 1 & 2 is 10 units/sec when the

; Velocity Select input (1IN.7) is high (sinking current)
JOYVL1,1 ; Max. velocity on axes 1 & 2 is 1 unit/sec when the

; Velocity Select input (1IN.7) is low (not sinking current)
JOYA100,100 ; Set joystick accel to 100 units/sec/sec on both axes
JOYAD100,100 ; Set joystick decel to 100 units/sec/sec on both axes
;**** COMMANDS TO SET UP USABLE VOLTAGE: **********
1JOYZ.17=1 ; These command are executed while the joystick is at rest. They
1JOYZ.18=1 ; set the current voltage on analog input 17 (controls axis 1)

; and input 18 (controls axis 2) as the zero-velocity center.
1JOYCDB.17=0.5 ; Set center deadband to compensate for the fact that
1JOYCDB.18=0.5 ; when the joystick is at rest, the voltage received on

; both analog inputs may fluctuate +/- 0.5V on either
; side of the zero-velocity center established with JOYZ.

1JOYEDB.17=2.0 ; Set end deadband to compensate for the fact that the
1JOYEDB.18=2.0 ; joystick can produce only -8.0V to +8.0V.
;**
JOY11 ; Enable joystick mode for axes 1 & 2

JUMP Jump to a Program or Label (and do not return)
Type Program or Subroutine Definition or Program Flow Control
Syntax <!>JUMP<t>
Units t = text (name of program/label)
Range Text name of 6 characters or less
Default n/a
Response n/a

See Also $, DEF, DEL, END, GOSUB, GOTO, IF, L, LN, NIF, NWHILE, REPEAT,
RUN, UNTIL, WHILE

Product Rev

6K 5.0

The JUMP command branches to the corresponding program name or label when executed. A program or
label name consists of 6 or fewer alpha-numeric characters.

All nested IF s, WHILEs, and REPEATs, loops, and subroutines are cleared; thus, the program or label that
the JUMP initiates will not return control to the line after the JUMP, when the program completes operation.
Instead, the program will end.

If an invalid program or label name is entered, the JUMP will be ignored, and processing will continue with
the line after the JUMP.

148 6K Series Command Reference

Example
; ***
; * In this example, the program place is executed and calls the pick *
; * subroutine. The pick subroutine then initiates motion on axes 1 & 2 *
; * (GO1100) and jumps to the program called load to initiate motion on *
; * axis 3 (GO001). Then, because the JUMP command cleared the pick *
; * subroutine, program execution is terminated instead of returning to *
; * the place program. *
; ***
DEF pick ; Begin definition of subroutine named pick
GO1100 ; Initiate motion on axes 1 and 2
JUMP load ; Jump to the program named load
END ; End subroutine definition
DEF load ; Begin definition of program named load
GO001 ; Initiate motion on axis 3
END ; End program definition
DEF place ; Begin definition of subroutine named place
GOSUB pick ; Gosub to subroutine named pick
GO1000 ; Initiate motion on axis 1
END ; End subroutine definition
RUN place ; Execute program named place

K Kill Motion
Type Motion
Syntax <!><@>K
Units n/a
Range b = 0 (don't kill), 1 (kill), or X (don't change)
Default n/a
Response !K No response, instead motion is killed on all axes

See Also DRFLVL, FOLK, GO, <CTRL>K, KDRIVE, LHAD, LHADA, S, SCANP, TAS

Product Rev

6K 5.0

The Kill Motion (K) command instructs the motor to stop motion on the specified axes. If the Kill (K)
command is used without any arguments (K or !K), motion will be stopped on all axes, and program
execution will be terminated. When the Kill (K) command is used with ones in the command fields (e.g.,
KØ11Ø), motion will be stopped on the axes specified with ones (1), and program execution will continue
with the next command. The Kill command will be used most frequently with the immediate command
delimiter in front of the command (!K). By using the immediate Kill (!K) command, motion will be stopped
at the time the command is received.

Motion is stopped at the rate set with the LHADA and LHAD commands. If you want the drive to be disabled
upon executing a K or !K command, enable the Disable Dive on Kill mode with the KDRIVE command.
CAUTION : In the KDRIVE mode, a K or !K command immediately shuts down the drive, allowing the load
to free wheel to a stop.

If the axis is involved in a PLC Scan (initiated with SCANP), a K command will clear the scan.

Example:
A2,2,25000,25000 ; Set acceleration to 2, 2, 25000, and 25000 units/sec/sec

; for axes 1, 2, 3 and 4
AD2,2,25000,25000 ; Set deceleration to 2, 2, 25000, and 25000 units/sec/sec

; for axes 1, 2, 3 and 4
V1,1,1,2 ; Set velocity to 1, 1, 1, and 2 units/sec for axes 1, 2, 3

; and 4, respectively
@D10 ; Set distance on all axes to 10 units
@GO1 ; Initiate motion on all axes -- motion begins.

; After a short period the Kill command is sent.
!K ; Kill motion on all axes (steppers stop instantaneously,

; servos stop at the LHADA/LHAD decel)

Command Descriptions 149

<CTRL>K Kill Motion
Type Motion
Syntax <CTRL>K
Units n/a
Range n/a
Default n/a
Response <CTRL>K: No response, instead motion is killed on all axes

See Also GO, K, KDRIVE, LHAD, LHADA, S

Product Rev

6K 5.0

The Kill Motion (<ctrl>K) command instructs the controller to stop motion on all axes, and terminate
program execution. In essence, the <ctrl>K command is an immediate kill (!K) command.

Motion is stopped at the rate set with the LHADA and LHAD commands. If the Disable Dive on Kill mode is
enabled with the KDRIVE command, a <ctrl>K command immediately shuts down the drive, allowing the
load to free wheel to a stop.

Example:
A2,2,25000,25000 ; Sets acceleration to 2, 2, 25000, and 25000 units/sec/sec

; for axes 1, 2, 3 and 4
AD2,2,25000,25000 ; Sets deceleration to 2, 2, 25000, and 25000 units/sec/sec

; for axes 1, 2, 3 and 4
V1,1,1,2 ; Sets velocity to 1, 1, 1, and 2 units/sec for axes 1, 2, 3

; & 4, respectively
@D10 ; Set distance on all axes to 10 units
@GO1 ; Initiate motion on all axes -- motion begins.

; After a short period the Kill command is sent.
<CTRL>K ; Kill motion on all axes (steppers stop instantaneously,

; servos stop at the LHADA/LHAD deceleration)

KDRIVE Disable Drive on Kill
Type Controller Configuration
Syntax <!><@><a>KDRIVE
Units b = enable bit
Range 0 (disable), 1 (enable), or X (don't change)
Default 0
Response KDRIVE: *KDRIVE0000_0000

1KDRIVE: *KDRIVE0

See Also DRIVE, INFNC, K, <ctrl>K, LIMFNC

Product Rev

6K 5.0

(applicable to servo
axes only)

If you enable the Disable Drive on Kill function (KDRIVE1), then when a kill command (K, !K , or
<ctrl>K) is processed or a kill input (INFNCi-C or LIMFNCi-C) is activated, the drive will be disabled
immediately; this cuts all control to the motor and allows the load to freewheel to a stop (although steppers
have some detent torque).

When the drive is disabled (shutdown/de-energized):

• Stepper Axis: Shutdown+ sources current and Shutdown- sinks current.
• Servo Axis: SHTNO relay output is disconnected from COM, and the SHTNC relay output is connected

to COM.

To re-enable the drive, issue the DRIVE1 command to the affect axis or axes.

If you leave the KDRIVE command in its default state (Ø, disabled), the kill function behaves in its normal
manner, leaving the drive enabled.

Example:
KDRIVE11 ; Set axes 1 & 2 to de-energize the drive during a kill
K ; Kill is performed and drives are de-energized

150 6K Series Command Reference

L Loop
Type Loops; Program Flow Control
Syntax <!>L<i>
Units i = number of times to loop
Range 0-999,999,999
Default 0
Response L: No response; instead, this has the same function as L0

See Also LN, LX, PLN, PLOOP

Product Rev

6K 5.0

When you combine the Loop (L) command with the end of loop (LN) command, all of the commands
between L and LN will be repeated the number of times indicated by n. If <i> = Ø, or if no argument is
specified, all the commands between L and LN will be repeated indefinitely. The loop can be stopped by
issuing a Terminate Loop (!LX) command, an immediate Kill (!K) command, or an immediate Halt
(!HALT) command.

The loop can be paused by issuing an immediate Pause (!PS) command or a Stop (!S) command with
COMEXS enabled. The loop can then be resumed with the immediate Continue (!C) command. You may nest
loops up to 16 levels deep.

NOTE: Be careful about performing a GOTO between the L and LN commands. Branching to a different
location within the same program will cause the next loop encountered to be nested within the
previous loop, unless an LN command has already been encountered.

Example:
L5 ; Repeat the commands between L and LN five times
GO1110 ; Start motion on axes 1, 2, and 3, axis 4 will remain motionless
LN ; End loop

LH Hardware End-of-Travel Limit — Enable Checking
Type Limit (End-of-Travel)
Syntax <!><@><a>LH<i>,<i>,<i>,<i>,<i>,<i>,<i>,<i>
Units n/a
Range i = 0 (disable both), 1 (disable positive-direction),

2 (disable negative-direction), or 3 (enable both)
Default 3
Response LH: *LH3,3,3,3,3,3,3,3

1LH: *1LH3

See Also [AS], [ER], ERROR, INFNC, INLVL, LHAD, LHADA, [LIM], LIMEN,
LIMFNC, LIMLVL, LS, LSAD, LSADA, LSNEG, LSPOS, TAS, TER, TLIM,
TSTAT

Product Rev

6K 5.0

Use the LH command to enable or disable the inputs defined as end-of-travel limit inputs. This pertains to
onboard limit inputs defined with the LIMFNCi-aR and LIMFNCi-aS commands (this is the factory default
configuration for limits), as well as to onboard triggers and external digital inputs defined with the INFNCi-aR
and INFNCi-aS commands.

Command Syntax:
LH<i>,<i>,<i>,<i>,<i>,<i>,<i>,<i>

Axis 2

Axis 1

Axis 4

Axis 3

With limits disabled, motion will not be restricted. When a specific limit is enabled (positive- or negative-
direction), and the limit wiring for the enabled limit is a physical open circuit, motion will be restricted
(assuming LHLVLØ or INLVLØ). The LHLVL controls the active level for onboard limit inputs, and the
INLVL command controls the active level for onboard triggers and external digital inputs.

Disable negative-direction limit; Disable positive-direction limit: i = 0
Enable negative-direction limit; Disable positive-direction limit: i = 1
Disable negative-direction limit; Enable positive-direction limit: i = 2
Enable negative-direction limit; Enable positive-direction limit: i = 3

Command Descriptions 151

If an “end-of-travel limit” input is redefined with a different function (i.e., not LIMFNCi-R , LIMFNCi-S ,
INFNCi-R or INFNCi-S), it is no longer controlled by the LH command. If the input is a limit (on the
“LIMITS/HOME” connector), use the LIMEN command; if the input is a trigger or external digital input, use
the INEN command.

NOTE

If a hard limit is encountered while limits are enabled, motion must occur in the opposite direction
after correcting the limit condition (resetting the switch); then you can make a move in the original
direction. If limits are disabled, you are free to make a move in either direction.

Example:
LH3,3 ; Enable limits on axes 1 and 2
LHAD100,100 ; Set hard limit decel to 100 units/sec/sec on axes 1 and 2
LIMLVL00x00 ; Active low hard limits for axes 1 & 2
A10,12 ; Set acceleration to 10 and 12 units/sec/sec for axes 1 and 2
V1,1 ; Set velocity to 1 unit/sec for axes 1 and 2
D100000,1000 ; Set distance to 100000 and 1000 units for axes 1 and 2
GO11XX ; Initiate motion on axes 1 and 2

LHAD Hard Limit Deceleration
Type Limit (End-of-Travel)
Syntax <!><@><a>LHAD<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec/sec
Range 0.00001-39,999,998 (depending on the scaling factor)
Default 100.0000
Response LHAD: *LHAD100.0000,100.0000,100.0000,100.0000 ...

1LHAD: *1LHAD100.0000

See Also DRES, DRFLVL, INFNC, K, LH, LHADA, [LIM], LIMFNC, LIMLVL,
LS, LSAD, LSADA, LSNEG, LSPOS, SCALE, SCLA

Product Rev

6K 5.0

The Hard Limit Deceleration (LHAD) command determines the value at which to decelerate after an end-of-
travel limit has been hit. This applies to the on-board dedicated limits, as well as to any inputs configured as
end-of-travel limits (INFNCi-R or INFNCi-S).

UNITS OF MEASURE and SCALING : refer to page 16.

When a drive fault, a Kill command (K, !K , or ̂ K), or a Kill input (INFNCi-C or LIMFNCi-C) occurs,
motion is stopped at the rate set with the LHAD and LHADA commands. If the Disable Drive on Kill mode is
enabled (KDRIVE1), the drive is immediately shut down upon a Kill command or input and allows the
motor/load to freewheel to a stop without a controlled deceleration.

The hard limit deceleration remains set until you change it with a subsequent hard limit deceleration
command. Decelerations outside the valid range are flagged as an error, with a message *INVALID DATA-

FIELD x , where x is the field number. When an invalid deceleration is entered the previous deceleration
value is retained.

Example: Refer to the hard limit enable (LH) command example.

LHADA Hard Limit Average Deceleration
Type Motion (S-Curve)
Syntax <!><@><a>LHADA<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec/sec
Range 0.00001-39,999,998 (depending on the scaling factor)
Default 100.000 (default is a constant deceleration ramp, where LHADA

tracks LHAD)
Response LHADA: *LHADA100.0000,100.000,100.000,100.000 ...

1LHADA: *1LHADA100.0000

See Also AD, ADA, INFNC, K, LHAD, LIMFNC, LIMLVL, SCALE, SCLA

Product Rev

6K 5.0

The Hard Limit Average Deceleration (LHADA) command allows you to specify the average deceleration for
an S-curve deceleration profile when a limit is hit. S-curve profiling provides smoother motion control by

152 6K Series Command Reference

reducing the rate of change in deceleration; this decel rate of change is known as jerk. Refer to page 13 for
details on S-curve profiling.

Acceleration scaling (SCLA) affects LHADA the same as it does for LHAD. Refer to page 16 for details on scaling.

Example:
LHAD10,10,10,10 ; Set the maximum deceleration of axes 1-4
LHADA5,5,7.5,10 ; Set the average deceleration of axes 1-4

 [LIM] Limit Status
Type Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [IN], INDEB, INFNC, LH, LIMEN, LIMFNC, LIMLVL, TLIM

Product Rev

6K 5.0

The Limit Status (LIM) operator is used to assign the limit status bits to a binary variable, or to make a
comparison against a binary or hexadecimal value. To make a comparison against a binary value, the letter b
(b or B) must be placed in front of the value. The binary value itself must only contain ones, zeros, or Xs (1,
Ø, X, x). To make a comparison against a hexadecimal value, the letter h (h or H) must be placed in front of
the value. The hexadecimal value itself must only contain the letters A through F, or the numbers Ø through 9.

LIM does not depict the status of trigger inputs or external digital inputs assigned an end-of-travel or home
limit function (INFNCi-R , INFNCi-S , or INFNCi-T). For such inputs, you must use the IN operator.

Syntax: VARBn=LIM where n is the binary variable number,
or LIM can be used in an expression such as IF(LIM=b1XX1) , or IF(LIM=h7)

The LIM value is the debounced version of the limits status (debounced with the ØINDEB value). Axis status
(AS) bits 15 and 16 reports the non-debounced version of the end-of-travel limits.

There are 3 limit inputs per axis, home limit, positive-direction, and negative-direction end-of-travel limits.
Each is available for assignment or comparison. If it is desired to assign only one limit input value to a
binary variable, instead of the status of all the limit inputs, the bit select (.) operator can be used. The bit
select, in conjunction with the limit input number, is used to specify a specific limit input. For example,
VARB1=LIM.4 assigns limit input 4 (positive-direction limit for axis 2) to binary variable 1.

Format for binary assignment:bbbbbbbbbbbbbbbbbbbbbbbb
^ ^

Bit #1 Bit #24

LIM bit Function LIM bit Function

1 Axis 1 - positive-direction Limit 13 Axis 5 - positive-direction Limit
2 Axis 1 - negative-direction Limit 14 Axis 5 - negative-direction Limit
3 Axis 1 - Home Limit 15 Axis 5 - Home Limit
4 Axis 2 - positive-direction Limit 16 Axis 6 - positive-direction Limit
5 Axis 2 - negative-direction Limit 17 Axis 6 - negative-direction Limit
6 Axis 2 - Home Limit 18 Axis 6 - Home Limit
7 Axis 3 - Positive-direction Limit 19 Axis 7 - Positive-direction Limit
8 Axis 3 - Negative-direction Limit 20 Axis 7 - Negative-direction Limit
9 Axis 3 - Home Limit 21 Axis 7 - Home Limit
10 Axis 4 - Positive-direction Limit 22 Axis 8 - Positive-direction Limit
11 Axis 4 - Negative-direction Limit 23 Axis 8 - Negative-direction Limit
12 Axis 4 - Home Limit 24 Axis 8 - Home Limit

Example:
IF(LIM=b11X1) ; If both limit inputs on axis 1 and the positive-direction

; limit input on axis 2 are active, then do the statements
; between the IF and NIF

TLIM ; Transfer limit status
NIF ; End IF statement

Command Descriptions 153

LIMEN Limit Input Enable
Type Inputs; Program Debug Tool
Syntax <!>LIMEN<d><d><d> (one <d> for each limit input)
Units n/a
Range d = 0 (disable, leave off), 1 (disable, leave on),

E (enable), or X (don't change)
Default E
Response LIMEN: *LIMENEEE_EEE_EEE_EEE_EEE_EEE_EEE_EEE

LIMEN.3 *E

See Also HOMLVL, INEN, LH, [LIM], LIMFNC, LIMLVL, TIO, TLIM

Product Rev

6K 5.0

The LIMEN command allows you to simulate the activation of specific limit inputs (without actually wiring
the inputs to the controller) by disabling them and setting them to a specific level (ON or OFF). This is
useful for testing and debugging your program (see program example below). LIMEN may only be used for
onboard limit inputs (found on the “LIMITS/HOME” connector), not for triggers or external digital inputs. The
default state is enabled (E), requiring external wiring to exercise their respective LIMFNC functions.

Command Syntax:

Positive direction end-of-travel limit, axis 2

LIMEN<d><d><d><d><d><d><d><d><d><d><d><d>

Negative direction end-of-travel limit, axis 1

Positive direction end-of-travel limit, axis 1

Home limit, axis 1

Negative direction end-of-travel limit, axis 2

Home limit, axis 2

Axis 1 Axis 2 Axis 3 Axis 4

The LH command is required to enable checking the state of the end-of-travel limits (i.e., LIMFNCi-R , or
LIMFNCi-S); for example, LH1 is required to detect the occurrence of the hardware limit activation, as
reported with axis status bits 15 and 16 (see TASF, TAS, AS). The default LH condition is enabled (LH1).

Input bit assignments for the LIMEN command vary by product, because of the number of limit inputs
available. The input bit patterns for onboard and external I/O bricks are explained on page 6 of this document.

Example:
DEL tsting ; Delete program called "tsting"
DEF tsting ; Begin definition of program called "tsting"
LIMFNC10-E ; Define hardware end-of-travel limit #10 (normally defined

; as the positive direction end-of-travel limit for axis 4)
; as a "pause/resume" input.

COMEXR1 ; Activating the pause/resume input will pause command and
; motion execution, de-activating the pause/resume input
; will resume command and motion execution.

MC111 ; Set axes 1-3 to continuous motion profiling mode
A15,15,15 ; Set acceleration on axes 1-3 to 15 units/sec/sec
AD5,5,5 ; Set deceleration on axes 1-3 to 5 units/sec/sec
V4,4,4 ; Set velocity on axes 1-3 to 4 revs/sec
GO111 ; Initiate continuous motion on axes 1-3
END ; End definition of program called "tsting"
; While this program is running and motion is in progress, you can send
; immediate LIMEN commands to simulate the function of the "pause/resume"
; input as follows:
; 1. Start the program by sending the RUN TSTING command to the controller.
; Axes 1-3 will start moving, all using the same continuous motion profile.
; 2. Send the !LIMEN.10=1 command to the controller. This disables the
; "pause/resume" input but simulates its activation. Motion and
; program execution will pause.
; 3. Send the !LIMEN.10=0 command to the controller. This disables the
; "pause/resume" input but simulates its de-activation. Motion and
; program execution will resume.
; 4. Send the !LIMEN.10=E command to the controller. This re-enables the
; "pause/resume" input for normal operation with an external switch
; or sensor.
; 5. To stop this experiment, send the !K command to the controller.
; This "kills" program execution and motion on all three axes.

154 6K Series Command Reference

LIMFNC Input Function for Limit Inputs
Type Inputs; Limits (end of travel); Homing
Syntax <!>LIMFNC<i>-<<a>c>
Units i = input # on the “LIMITS/HOME” connector (see page 6);

a = axis # (or program # for function P);
c = function identifier letter

Range i = 1-24 (product dependent); a = 1-8 (product dependent);
c = A-T

Default A
Response LIMFNC: *LIMFNC1-A NO FUNCTION - STATUS OFF

(repeated for all onboard limit inputs)

See Also COMEXR, COMEXS, [ER], ERROR, INDEB, INFNC, INPLC, INSELP,
INSTW, INTHW, JOY, JOYAXH, JOYAXL, JOYVH, JOYVL, K, KDRIVE,
LH, [LIM], LIMEN, LIMFNC, LIMLVL, PSET, [SS], TER, TIN,
TRGFN, TRGLOT, [TRIG], TSS, TSTAT, TTRIG

Product Rev

6K 5.0

The Limit Input Function (LIMFNC) command defines the function of each individual limit input found on
the “LIMITS/HOME” connector(s). The factory default configuration is that each dedicated hardware end-of-
travel and home limit is assigned to its respective LIMFNC function. That is, axis 1 positive limit is assigned
to LIMFNC1-1R , axis 1 negative limit is assigned to LIMFNC2-1S , axis 1 home limit is assigned to
LIMFNC3-1T , etc. A limit of 32 limit inputs may be assigned LIMFNC functions; this excludes functions A
(“general-purpose”) and R, S, and T (end-of-travel and home limit input functions).

Input debounce. By default, the limit inputs are not debounced. However, when a limit input is assigned a
function other than its respective LIMFNC function, it is debounced with the Input Debounce Time (INDEB)
command setting for I/O brick zero (default is 4 ms). The INDEB debounce is the period of time that the
input must be held in a certain state before the controller recognizes it. This directly affects the rate at which
the inputs can change state and be recognized. If a limit is once again returned to its respective LIMFNC
function, the debounce is removed.

Input bit assignments vary by product. The number of limits inputs and axes available depends on your
product (each axis has two end-of-travel limits and one home limit) — see page 6 for details.

Input scan rate: The limit inputs are scanned once per system update (2 milliseconds).

Enabling & disabling inputs. Limit inputs assigned an end-of-travel input function (functions R or S
described below) are enabled/disabled with the LH command — the default is enabled. Limit input functions
may be overridden with the LIMEN command — the default is enabled (no override).

Multitasking . If the LIMFNC command does not include the task identifier (%) prefix, the function affects
the task that executes the LIMFNC command. The functions that may be directed to a task with % are: C, D
(without an axis specified), E, F, and P (e.g., 2%LIMFNC3-F assigns limit input 3 as a user fault input for
task 2). Multiple tasks may share the same input, but the input may only be assigned one function.

Identifier Function Description

A No special function (general-purpose input). Status can be used with the LIM
assignment/comparison operator.

B BCD Program Select. BCD input assignment to programs, lowest numbered input is least
significant bit (LSB). BCD values for inputs are as follows:

BCD Value
Least Significant Bit Value 1
. 2
. 4
. 8
. 10
. 20
. 40
. 80
Most Significant Bit Value 100

Note : If fewer inputs than shown above are defined to be Program Select Inputs, then the highest input number
defined as a Program Select Input is the most significant bit.

An input defined as a BCD Program Select Input will not function until the INSELP command has
been enabled.

Command Descriptions 155

Identifier Function Description

C Kill. Kills motion on all axes and halts all command processing (refer to K and KDRIVE
command descriptions for further details on the kill function). This is an edge detection function
and is not intended to inhibit motion. To inhibit motion, use the Pause/Resume function
(LIMFNCi-E). When enabled with the ERROR command, bit #6 of the TER and ER commands will
report the kill status.

<a>D Stop. Stops motion. Axis number is optional; if no axis number is specified, motion is stopped on
all axes. If COMEXS is set to zero (COMEXSØ), program execution will be terminated. If COMEXS is
set to 1 (COMEXS1), command processing will continue. With COMEXS set to 2 (COMEXS2),
program execution is terminated, but the INSELP value is retained. Motion deceleration during
the stop is controlled by the AD & ADA commands. If error bit #8 is enabled (e.g., ERROR.8-1),
activating a Stop input will set the error bit and cause a branch to the ERRORP program.

E Pause/Continue. If COMEXR is disabled (COMEXRØ), then only command execution pauses, not
motion. With COMEXR enabled (COMEXR1), both command and motion execution are paused.
After motion stops, you can release the input or issue a continue (!C) command to resume
command processing (and motion of in COMEXR1 mode).

F User Fault. Refer to the ERROR command. If error bit #7 is enabled (e.g., ERROR.7-1),
activating a User Fault input will set the error bit and cause a branch to the ERRORP program.
CAUTION: Activating the user fault input sends an !K command to the controller, “killing” motion
on all axes (refer to the K command description for ramifications).

G,H Reserved

I Alarm Event - Will cause the 6K controller to set an Alarm Event in the Communications Server
over the Ethernet interface. You must first enable the Alarm checking bit for this input-driven
alarm (INTHW.23-1). For details on using alarms, refer to the 6K Series Programmer’s Guide.

aJ JOG positive-direction - Will jog the axis specified in a positive-direction. The JOG command
must be enabled for this function to work. Axis number required .

aK JOG negative-direction. Will jog the axis specified in a negative-direction. The JOG command
must be enabled for this function to work. Axis number required .

aL JOG Speed Select. Selects the high or low velocity range while jogging. If the input is active, the
high jog velocity range will be selected. Axis number is optional. If no axis number is designated,
it defaults to all axes.

M Joystick Release. Signals the controller to end joystick operation and resume program
execution with the next statement in your program. When the input is open (high), the joystick
mode is disabled (joystick mode can be enabled only if the input is closed, and only with the JOY
command). When the input is closed (low), joystick mode can be enabled with the JOY
command. The process of using Joystick mode is:

1. Assign the "Joystick Release" input function to a programmable input.

2. At the appropriate place in the program, enable joystick control of motion (with the JOY
command). (Joystick mode cannot be enabled unless the "Joystick Release" input is closed.)
When the JOY command enables joystick mode for the affect axes, program execution stops
on those axes (assuming the Continuous Command Execution Mode is disabled with the
COMEXCØ command).

3. Use the joystick to move the axes as required.

4. When you are finished using the joystick, open the "Joystick Release" input to disable the
joystick mode. This allows program execution to resume with the next statement after the
initial JOY command that started the joystick mode.

 N Joystick Axis Select. Allows you to control two pairs of axes with one joystick. Use the JOYAXH
and JOYAXL commands to assign analog inputs to control specific axes. Opening the Axis Select
input (input is high) selects the JOYAXH configuration. Closing the Axis Select input (input is low)
selects the JOYAXL configuration. NOTE: When this input is not connected, the JOYAXH
configuration is always in effect.

156 6K Series Command Reference

Identifier Function Description

Continued from previous page

O Joystick Velocity Select. Allows you to select the velocity for joystick motion. The JOYVH and
JOYVL commands establish two joystick velocities. Opening the Velocity Select input (input is
high) selects the JOYVH configuration. Closing the Velocity Select input (input is low) selects the
JOYVL configuration. The JOYVL velocity could be used to quickly move to a location, the JOYVH
velocity could be used for low-speed accurate positioning. NOTE: When this input is not
connected, joystick motion always uses the JOYVH velocity setting.

iP Program Select. One to one correspondence for input vs. program number. The program
number comes from the TDIR command. The number specified before the program name is the
number to specify within this input definition. For example, in the LIMFNC1-3P command, 3 is
the program number. An input defined as a Program Select Input will not function until the
INSELP command has been enabled.

Q Program Security. Issuing the LIMFNCi-Q command enables the Program Security feature and
assigns the Program Access function to the specified programmable input.

The program security feature denies you access to the DEF, DEL, ERASE, MEMORY, LIMFNC, and
INFNC commands until you activate the program access input. Being denied access to these
commands effectively restricts altering the user memory allocation. If you try to use these
commands when program security is active (program access input is not activated), you will
receive the error message *ACCESS DENIED. The LIMFNCi-Q command is not saved in battery-
backed RAM, so you may want to put it in the start-up program (STARTP).

For example, once you issue the LIMFNC10-Q command, the positive end-of-travel limit for axis
4 is assigned the program access function and access to the DEF, DEL, ERASE, MEMORY,
LIMFNC, and INFNC commands will be denied until you activate the input.

To regain access to these commands without the use of the program access input, you must
issue the LIMEN command to disable the program security input, make the required user
memory changes, and then issue the LIMEN command to re-enable the input. For example, if
limit input 3 is assigned as the Program Security input, use LIMEN.3=1 to disable the input and
leave it activated, make the necessary user memory changes, and then use LIMEN.3=E to re-
enable the input.

aR End-of-Travel Limit, Positive Direction . This is the factory default function for each dedicated
hardware positive-direction end-of-travel limit input found in the “LIMITS” connector(s). If a trigger
input or a digital input on an external I/O brick is assigned this function (e.g. 2INFNC1-1R), then
change the respective limit input’s function to something else (e.g., change LIMFNC1-1R to
LIMFNC1-A). When an input is assigned this function, it is not debounced.

aS End-of-Travel Limit, Negative Direction. This is the factory default function for each dedicated
hardware negative-direction end-of-travel limit input found in the “LIMITS/HOME” connector(s). If
a trigger input or a digital input on an external I/O brick is assigned this function (e.g.
2INFNC2-1S), then change the respective limit input’s function to something else (e.g., change
LIMFNC2-1S to LIMFNC2-A). When an input is assigned this function, it is not debounced.

aT Home Limit. This is the factory default function for each dedicated hardware home limit input
found in the “LIMITS/HOME” connector(s). If a trigger input or a digital input on an external I/O
brick is assigned this function (e.g. 2INFNC3-1T), then change the respective limit input’s
function to something else (e.g., change LIMFNC3-1T to LIMFNC3-A). When an input is
assigned this function, it is not debounced.

Example:
LIMFNC10-3D ; Redefine the positive EOT input for axis 4 (limit input #10)

; to be a stop input for axis 3

Command Descriptions 157

LIMLVL Hardware Limit Input Active Level
Type Limit (End-of-Travel and Homing)
Syntax <!>LIMLVL ... (see drawing below)
Units n/a
Range b = 0 (active low: requires n.c. EOT switch & n.o. home switch),

 1 (active high: requires n.o. EOT switch & n.c. home switch),
or X (don’t care)

Default 0
Response LIMLVL: *LIMLVL000_000_000_000_000_000_000_000

See Also [AS], LH, LIMEN, [LIM], LIMFNC, HOM, TAS, TLIM

Product Rev

6Kn 5.0

Use the LIMLVL command to define the active state of all dedicated hardware end-of-travel and home limits
(found on the “LIMITS/HOME” connectors). The default state is active low.

Command Syntax:

LIMLVL

Negative direction EOT limit, axis 1

Positive direction EOT limit, axis 1

Axis 1

Home limit, axis 2

Positive direction EOT limit, axis 2

Home limit, axis 1

Axis 2 Axis 3

Negative direction EOT limit, axis 2

Active Level Setting Required Switch Type * State LIM /TLIM Report

Active low (LIMLVL0)
This is the default setting.

End-of-travel limit: N.C.
Home limit: N.O.

Grounded — sinking current
(device driving the input is on)

1 (active)

Not Grounded — not sinking current
(device driving the input is off)

0 (inactive)

Active high (LIMLVL1) End-of-travel limit: N.O.
Home limit: N.C.

Grounded — sinking current
(device driving the input is on)

0 (inactive)

Not Grounded — not sinking current
(device driving the input is off)

1 (active)

* Compumotor recommends that all end-of-travel limit switches be normally-closed, because with normally-closed
limit switches the limit function (i.e., inhibit motion) is considered active when the switch contact is open or if the
wiring to the switch is broken.

Axis Status (AS, TAS, and TASF) bits 15 and 16 indicate when a hardware end-of-travel limit has been
activated (i.e., invoking the “inhibit motion” function).

Wiring instructions and specifications for the limit inputs are provided in your 6K product’s Installation
Guide.

158 6K Series Command Reference

LN End of Loop
Type Loops or Program Flow Control
Syntax <!>LN
Units n/a
Range n/a
Default n/a
Response No response; used in conjunction with the L command

See Also L, LX

Product Rev

6K 5.0

The End of Loop (LN) command marks the end of a loop. You must use this command in conjunction with
the Loop (L) command. All buffered commands that you enter between the L and LN commands are
executed as many times as the number that you enter following the L command. You may nest loops up to
16 levels deep. NOTE: Be careful about performing a GOTO between the L and LN commands. Branching to
a different location within the same program will cause the next loop encountered to be nested within the
previous loop, unless an LN command has already been encountered.

Example:
L5 ; Repeat the commands between L and LN five times
GO1110 ; Start motion on axes 1, 2, and 3, axis 4 will remain motionless
LN ; End loop

LOCK Lock Resource to Task
Type Multi-tasking
Syntax <!>LOCK<i,i>
Units 1st i = resource number

2nd i = 1 (lock the resource) or 0 (unlock the resource)
Range 1st i = 1 (COM1 port), 2 (COM2 port),

 or 3 (task swapping)
2nd i = 1 (lock the resource) or 0 (unlock the resource)

Default 0 (= not locked)
Response LOCK (see example below)

See Also [,], DRPCHK, E, PORT, TSKTRN

Product Rev

6K 5.0

Use the LOCK command to make a resource available only to the specified task. The LOCK-able resources are:

• COM1 — the “RS-232” communication port or the “ETHERNET” communication port
• COM2 — the “RS-232/485” communication port
• Task Swapping — When task swapping is locked to a specific task, statements in all other tasks will

not be executed until the task swapping is again unlocked.

To check the LOCK status of all available resources, enter the LOCK command without field value. Below is
an example response:

*LOCK1,0 COM PORT 1 - UNLOCKED
*LOCK2,0 COM PORT 2 - UNLOCKED
*LOCK3,0 TASK SWAPPING - UNLOCKED

NOTES

• If one task attempts to lock a resource in a different task (e.g., if Task1 attempts to execute the
2%LOCK1,1 command), the controller will response with an error message (“ALTERNATE TASK
NOT ALLOWED“).

• If task “A” attempts to lock a resource that is already locked to task “B”, command processing in
task “A” will pause on the LOCK command until task “B” unlocks the resource, at which time task
“B” will be able to lock the resource and continue processing.

• A resource may be locked by a task only while that task is executing a program. If program
execution is terminated for any reason (e.g., stop, kill, limit, fault, or just reaching the END of a
program), all resources locked by that task will become unlocked.

Command Descriptions 159

Example:
LOCK1,1 ; Ensure exclusive COM1 access for the task executing

; this program
WRITE"travel is" ; First part of output string
WRVAR1 ; Numeric value of travel
WRITE"inches.” ; Finish complete string
LOCK1,0 ; Allow other tasks access to COM1

LS Soft Limit Enable
Type Limit (End-of-Travel)
Syntax <!><@><a>LS<i>,<i>,<i>,<i>,<i>,<i>,<i>,<i>
Units n/a
Range i = 0 (disable both), 1 (disable positive-direction),

2 (disable negative-direction) or 3 (enable both)
Default 0
Response LS: *LS0,0,0,0,0,0,0,0

1LS: *1LS0

See Also [AS], [ER], LSAD, LSADA, LSNEG, LSPOS, TAS, TER, TSTAT

Product Rev

6K 5.0

The Soft Limit Enable (LS) command determines the status of the programmable soft move distance limits.
With soft limits disabled, motion will not be restricted. After a soft limit absolute position has been
programmed (LSPOS and LSNEG), and the soft limit is enabled (LS), a move will be restricted upon reaching
the programmed soft limit absolute position. The rate at which motion is decelerated to a stop upon
reaching a soft limit is determined by the LSAD and LSADA commands.

Disable negative- and positive-direction soft limits i = 0
Enable negative-direction, disable positive-direction soft limiti = 1
Enable positive-direction, disable negative-direction soft limiti = 2
Enable negative- and positive-direction soft limits i = 3

NOTE: The controller maintains an absolute count, even though you may be programming in the
incremental mode (MAØ). The soft limits will also function in incremental mode (MAØ) or
continuous mode (MC1). The soft limit position references the commanded position, not the
position as measured by the feedback device (e.g., encoder).

NOTE

If a soft limit is encountered while limits are enabled, motion must occur in the opposite direction
before a move in the original direction is allowed. You cannot use the PSET command to clear the
soft limit condition. If limits are disabled, you are free to make a move in either direction.

Example:
LSPOS500000,50000 ; Set soft limit positive-direction absolute positions to be

; 500000 units for axis 1, 50000 units for axis 2
; (Soft limits are always absolute)

LSNEG-500000,-50000 ; Set soft limit negative-direction absolute positions to
; be -500000 units for axis 1, -50000 units for axis 2
; (Soft limits are always absolute)

LS3,3 ; Soft limits are enabled on axes 1 and 2
LSAD100,100 ; Soft limit decel set to 100 units/sec/sec on axes 1 and 2
PSET0,0,0,0 ; Set absolute position on all axes to 0
A10,12 ; Set accel to 10 and 12 units/sec/sec for axes 1 and 2
V1,1 ; Set velocity to 1 unit/sec for axes 1 and 2
D100000,1000 ; Set distance to 100000 and 1000 units for axes 1 and 2
GO11XX ; Initiate motion on axes 1 and 2

160 6K Series Command Reference

LSAD Soft Limit Deceleration
Type Limit (End-of-Travel)
Syntax <!><@><a>LSAD<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec/sec
Range 0.00001-39,999,998 (depending on the scaling factor)
Default 100.0000
Response LSAD: *LSAD100.0000,100.0000,100.0000,100.0000 ...

1LSAD: *1LSAD100.0000

See Also DRES, LHAD, LS, LSADA, LSNEG, LSPOS, SCALE, SCLA

Product Rev

6K 5.0

The Soft Limit Deceleration (LSAD) command determines the value at which to decelerate after a
programmed soft limit (LSPOS or LSNEG) has been hit.

UNITS OF MEASURE and SCALING : refer to page 16.

The soft limit deceleration remains set until you change it with a subsequent soft limit deceleration
command. Decelerations outside the valid range are flagged as an error, with a message *INVALID DATA-

FIELD x , where x is the field number. When an invalid deceleration is entered the previous deceleration
value is retained.

Example: Refer to the soft limit enable (LS) command example.

LSADA Soft Limit Average Deceleration
Type Motion (S-Curve)
Syntax <!><@><a>LSADA<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec/sec
Range 0.00001-39,999,998 (depending on the scaling factor)
Default 100.0000 (default is a constant deceleration ramp, where LSADA

tracks LSAD)
Response LSADA: *LSADA100.0000,100.000,100.000,100.000 ...

1LSADA: *1LSADA100.0000

See Also AD, ADA, LS, LSAD, SCALE, SCLA

Product Rev

6K 5.0

The Soft Limit Average Deceleration (LSADA) command allows you to specify the average deceleration for
an S-curve deceleration profile when a soft limit is hit. S-curve profiling provides smoother motion control
by reducing the rate of change in deceleration; this decel rate of change is known as jerk. Refer to page 13
for details on S-curve profiling.

Acceleration scaling (SCLA) affects LSADA the same as it does for LSAD. Refer to page 16 for details on scaling.

Example:
LSAD10,10,10,10 ; Sets the maximum deceleration of all four axes
LSADA5,5,7.5,10 ; Sets the average deceleration of all four axes

Command Descriptions 161

LSNEG Soft Limit Negative Travel Range
Type Limit (End-of-Travel)
Syntax <!><@><a>LSNEG<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units of distance
Range -999,999,999 - +999,999,999 (scalable)
Default +0
Response LSNEG: *LSNEG+0,+0,+0,+0,+0,+0,+0,+0

1LSNEG: *1LSNEG+0

See Also LS, LSAD, LSADA, LSPOS, PSET, SCALE, SCLD

Product Rev

6K 5.0

The LSNEG command specifies the distance in absolute units where motion will be restricted when traveling
in a negative-travel direction. The reference position used to determine absolute position is set to zero upon
power-up, and can be reset using the PSET command. Be sure to set the LSPOS value greater than the
LSNEG value.

The LSNEG value remains set until you change it with a subsequent LSNEG command.

All soft limit values entered are in absolute steps. If scaling is enabled (SCALE1), LSNEG is internally
multiplied by the distance scale factor (SCLD). The soft limit position references the commanded position,
not the position as measured by a feedback device (e.g., encoder).

Example: Refer to the soft limit enable (LS) command example.

LSPOS Soft Limit Positive Travel Range
Type Limit (End-of-Travel)
Syntax <!><@><a>LSPOS<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units of distance
Range -999,999,999 - +999,999,999 (scalable by SCLD)
Default +0
Response LSPOS: *LSPOS+0,+0,+0,+0,+0,+0,+0,+0

1LSPOS: *1LSPOS+0

See Also LS, LSAD, LSADA, LSNEG, PSET, SCALE, SCLD

Product Rev

6K 5.0

The LSPOS command specifies the distance in absolute units where motion will be restricted when traveling
in a positive-travel direction. The reference position used to determine absolute position is set to zero upon
power-up, and can be reset using the PSET command. Be sure to set the LSPOS value greater than the
LSNEG value.

The LSPOS value remains set until you change it with a subsequent LSPOS command.

All soft limit values entered are in absolute steps. If scaling is enabled (SCALE1), LSPOS is internally
multiplied by the distance scale factor (SCLD). The soft limit position references the commanded position,
not the position as measured by a feedback device (e.g., encoder).

Example: Refer to the soft limit enable (LS) command example.

162 6K Series Command Reference

LX Terminate Loop
Type Loops; Program Flow Control
Syntax <!>LX
Units n/a
Range n/a
Default n/a
Response n/a

See Also L, LN, PLN, PLOOP

Product Rev

6K 5.0

The Terminate Loop (LX) command terminates the current loop in progress. This command does not halt
processing of the commands in the loop until the last command in the current loop iteration is executed. At
this point, the loop is terminated. If there are nested loops, only the inner most loop is terminated.

This command can be used externally to terminate the loop only if it is preceded by the immediate command
specifier (!LX). If the immediate command specifier is not used, the command will have no effect on a loop in
progress. An example of where the buffered Terminate Loop command (LX) might be used is provided below.

Example:
; ***
; This program will make the move specified by the GO1110 command
; indefinitely until input 2 goes high, at which point, an LX will
; be issued, terminating the loop.
; ***
L0 ; Repeat the commands between L and LN infinitely, or until

; a Terminate Loop (LX) command is received
GO1110 ; Start motion on axes 1, 2, and 3,

; axis 4 will remain motionless
IF(IN=bX1) ; If onboard trigger input A2 goes high, execute all

; statements between IF and NIF
LX ; Terminate loop
NIF ; End IF statement
LN ; End loop

Command Descriptions 163

MA Absolute/Incremental Mode Enable
Type Motion
Syntax <!><@><a>MA
Units n/a
Range b = 0 (incremental mode) or 1 (absolute mode)
Default 0
Response MA: *MA0000_0000

1MA: *1MA0

See Also COMEXC, D, GO, GOBUF, PSET

Product Rev

6K 5.0

The Absolute/Incremental Mode Enable (MA) command specifies whether the moves to follow are made
with respect to current position (incremental) or with respect to an absolute zero position.

In incremental mode (MAØ), all moves are made with respect to the position at the beginning of the move.
This mode is useful for repeating moves of the same distance.

In absolute mode (MA1), all moves are made with respect to the absolute zero position. The absolute zero
position is equal to zero upon power up, and can be redefined with the PSET command. An internal counter
keeps track of absolute position.

ON-THE-FLY CHANGES : You can change positioning modes on the fly (while motion is in progress) in
two ways. One way is to send an immediate command (!MA) followed by an immediate go command (!GO).
The other way is to enable the continuous command execution mode (COMEXC1) and execute a buffered
command (MA) followed by a buffered go command (GO).

Example:
PSET0,0,0,1000 ; Set absolute position on axes 1, 2, and 3 to zero,

; and axis 4 to 1000 units
MA1111 ; Enable absolute mode on axes 1 through 4
A2,2,25000,25000 ; Set acceleration to 2, 2, 25000, and 25000 units/sec/sec

; for axes 1, 2, 3 and 4
AD2,2,25000,25000 ; Set deceleration to 2, 2, 25000, and 25000 units/sec/sec

; for axes 1, 2, 3 and 4
V1,1,1,2 ; Set velocity to 1, 1, 1, and 2 units/sec

; for axes 1, 2, 3 and 4 respectively
@D10 ; Set distance on all axes to 10 units
GO1111 ; Initiate motion on all axes (axes 1, 2, and 3 will move

; 10 units in the positive direction, axis 4 will move
; 990 units in the negative direction)

164 6K Series Command Reference

MC Preset/Continuous Mode Enable
Type Motion
Syntax <!><@><a>MC
Units n/a
Range b = 0 (preset mode) or 1 (continuous mode)
Default 0
Response MC: *MC0000_0000

1MC: *1MC0

See Also A, AD, COMEXC, COMEXS, D, FOLMD, [FS], FSHFC, FSHFD, GO,
GOBUF, K, MA, PSET, S, SSV, TEST, TFS, V

Product Rev

6K 5.0

The Preset/Continuous Mode Enable (MC) command causes subsequent moves to go a specified distance
(MCØ), or a specified velocity (MC1).

In the Preset Mode (MCØ), all moves will go a specific distance. The actual distance traveled is specified by
the D, SCLD, and MA commands.

In the Continuous Mode (MC1), all moves will go to a specific velocity with the Distance (D) command
establishing the direction (D+ or D-). The actual velocity will be determined by the V and SCLV commands,
or the V and DRES commands.

Motion will stop with an immediate Stop (!S) command, an immediate Kill (!K) command, or by
specifying a velocity of zero followed by a GO command. Motion can also be stopped with a buffered Stop
(S) or Kill (K) command if the continuous command processing mode (COMEXC) is enabled.

ON-THE-FLY CHANGES : You can change positioning modes on the fly (while motion is in progress) in
two ways. One way is to send an immediate command (!MC) followed by an immediate go command (!GO).
The other way is to enable the continuous command execution mode (COMEXC1) and execute a buffered
command (MC) followed by a buffered go command (GO).

Example:
MA0000 ; Enable incremental mode on all axes
MC0000 ; Enable preset mode on all axes
A2,2,25000,25000 ; Set acceleration to 2, 2, 25000, and 25000 units/sec/sec

; for axes 1, 2, 3 & 4
AD2,2,25000,25000 ; Set deceleration to 2, 2, 25000, and 25000 units/sec/sec

; for axes 1, 2, 3 & 4
V1,1,1,2 ; Set velocity to 1, 1, 1, and 2 units/sec for

; axes 1, 2, 3 & 4 respectively
D10,10,10,10 ; Set distance on all axes to 10 units
GO1111 ; Initiate motion on all axes (axes 1,2, 3, & 4 will

; all move 10 units positive-direction)
COMEXC1 ; Enable continuous command processing mode
MC1111 ; Enable continuous mode on all axes
A8,8,2000,2000 ; Set acceleration to 8, 8, 2000, and 2000 units/sec/sec for

; axes 1, 2, 3 & 4
AD8,8,2000,2000 ; Set deceleration to 8, 8, 2000, and 2000 units/sec/sec for

; axes 1, 2, 3 & 4
V5,5,5,9 ; Set velocity to 5, 5, 5, and 9 units/sec for axes 1, 2, 3 & 4
GO1111 ; Initiate motion on all axes (axes 1,2, and 3 will each

; travel at a velocity of 1 unit/sec, axis 4 will travel
; at a velocity of 2 units/sec)

T15 ; Wait 15 seconds
@V5 ; Set velocity to 5 units/sec (axis 4 only affected axis)
GO1111 ; Initiate motion with new velocity of 5 units/sec (all axes)
T8 ; Wait 8 seconds
@V0 ; Set velocity to zero
GO1111 ; Initiate motion with new velocity of 5 units/sec (all axes)
WAIT(MOV=b0000) ; Wait for motion to come to a halt on all axes
COMEXC0 ; Disable continuous command processing mode

Command Descriptions 165

MEMORY Partition User Memory
Type Controller Configuration
Syntax <!>MEMORY<i>,<i>
Units i = bytes of memory (use even number only)

1st <i> = partition for “Programs”
2nd <i> = partition for “Compiled Profiles”

Range (see table below)
Default (see table below)
Response MEMORY: *MEMORY149000,1000

See Also [DATP], DEF, GOBUF, PCOMP, PLCP, [SEG], [SS], TDIR,
TMEM, TSEG, TSS

Product Rev

6K 5.0

Your controller's memory has two partitions: one for storing programs and one for storing compiled profiles
& PLC programs. The allocation of memory to these two areas is controlled with the MEMORY command.

“Programs” vs. ”Compiled Profiles & Programs”

Programs are defined with the DEF and END commands, as demonstrated in the “Program
Development Scenario” in the Programmer's Guide.

Compiled Profiles & PLC Programs are defined like programs (using the DEF and END
commands), but are compiled with the PCOMP command and executed with the PRUN
command (but PLCP programs are usually executed with SCANP). Compiled
profiles/programs could be a multi-axis contour (a series of arcs and lines), an individual
axis profile (a series of GOBUF commands), a compound profile (combination of multi-axis
contours and individual axis profiles), or a PLC program (for PLC Scan Mode).

Programs intended to be compiled are stored in program memory. After they are compiled
with the PCOMP command, they remain in program memory and the segments (see diagram
below) from the compiled program are stored in compiled memory. The TDIR report
indicates which programs are compiled as compiled profiles (“COMPILED AS A PATH”)
and which programs are compiled as PLC programs (“COMPILED AS A PLC PROGRAM”) .

For more information on multi-axis contours (Contouring), compiled profiles for individual
axes (Compiled Motion Profiling), and PLC Scan Mode, refer to the Programmer's Guide.

MEMORY Syntax:

MEMORY80000,70000 Memory allocation for Compiled Profiles & Programs (bytes).
Storage requirements depend on the number of segmants
(1 segment consumes 72 bytes). A segment could be one of
these commands:

Memory allocation for
Programs (bytes).
Storage requirements
depend on the number of
ASCII characters in the
program.

PARCM
PARCOM
PARCOP
PARCP
PLIN

Contouring: Compiled Motion:

GOBUF *
PLOOP
GOWHEN
TRGFN
POUTA
POUTB
POUTC
POUTD
POUTE
POUTF
POUTG
POUTH

PLC (PLCP) Program:

IF **
ELSE
NIF
L
LN
OUT
ANO
EXE
PEXE
VARI **
VARB **

* GOBUF commands may require up to 4 segments.
** IF statements require at least 2 segments; each AND or OR

compound requires an additional segment. VARI and VARB
each require 2 segments.

166 6K Series Command Reference

Allocation Defaults and Limits (by Product):

The following table identifies memory allocation defaults and limits for 6K Series products. When
specifying the memory allocation, use only even numbers. The minimum storage capacity for one
partition area (program or compiled) is 1,000 bytes.

Feature 6K

Total memory (bytes) 150,000

Default allocation (program,compiled) 149000,1000

Maximum allocation for programs 149000,1000

Maximum allocation for compiled profiles/programs 1000,149000

Max. # of programs 400

Max. # of labels 600

Max. # of compiled profiles 300

Max. # of compiled profile segments 2069

Max. # of numeric variables 225

Max. # of integer variables 225

Max. # of string variables 25

Max. # of binary variables 125

When teaching variable data to a data program (DATP), be aware that the memory required for each
data statement of four data points (43 bytes) is taken from the memory allocation for program storage.

CAUTION

Issuing a memory allocation command (e.g., MEMORY80000,70000) will erase all
existing programs and compiled segments. However, issuing the MEMORY command by
itself (e.g., type MEMORY <cr> by itself to request the status of how the memory is
allocated) will not affect existing programs or compiled segments.

Checking Memory Status:

To find out what programs reside in your controller's memory, and how much of the available memory
is allocated for programs and compiled profile segments, issue the TDIR command (see example
response below). Entering the TMEM command or the MEMORY command (without parameters) will
also report the available memory for programs and compiled profile segments.

Sample response to TDIR command:

*1 - SETUP USES 345 BYTES
*2 - PIKPRT USES 333 BYTES
*32322 OF 80000 BYTES (98%) PROGRAM MEMORY REMAINING
*70000 OF 70000 SEGMENTS (100%) COMPILED MEMORY REMAINING

Two system status bits (reported with the TSS, TSSF and SS commands) are available to check when
compiled profile segment storage is 75% full or 100% full. System status bit #29 is set when segment
storage reaches 75% of capacity; bit #30 indicates when segment storage is 100% full.

Example:
MEMORY80000,70000 ; Set aside 80,000 bytes for program storage,

; 70,000 bytes for compiled profile segments

Command Descriptions 167

MEPOL Master Encoder Polarity
Type Encoder; Following; Controller Configuration
Syntax <!>MEPOL
Units b = polarity bit
Range b = 0 (normal polarity), 1 (reverse polarity),

or X (don’t care)
Default 0
Response MEPOL: *MEPOL0

See Also ENCPOL, [PCME], [PCMS], [PMAS], [PME], PMESET, TPCME,
TPME, TPCMS, TPMAS

Product Rev

6K 5.0

Use the MEPOL command to reverse the counting direction (polarity) of the Master Encoder input (the
encoder connector labeled “Master Encoder”). This allows you to reverse the counting direction without
having to change the actual wiring to the encoder input.

Immediately after issuing the MEPOL command, the master encoder will start counting in the opposite
direction (including all master encoder position registers).

The MEPOL command is automatically saved in non-volatile RAM.

MESND Master Encoder Step and Direction Mode
Type Encoder; Counter; Following
Syntax <!>MESND
Units b = enable bit
Range b = 0 (quadrature signal), 1 (step & direction),

or X (don’t care)
Default 0
Response MESND: *MESND0

See Also ENCSND, [PME], TPME

Product Rev

6K 5.0

Use the MESND command to specify the functionality of the Master Encoder input.

MESND0....... (default setting) accept a quadrature signal from the master encoder.

MESND1....... Accept step and direction signals. The count is registered on a positive edge of a
transition for a signal measured on encoder channel A+ and A- connections. The
direction of the count is specified by the signal on encoder channel B+ and B-
connections. Therefore, you should connect your step and direction input device as
follows: Connect Step+ to A+, Step- to A-, Direction+ to B+, and Direction- to B-.

[MOV] Axis Moving Status
Type Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [AS], GO, TAS

Product Rev

6K 5.0

The Axis Moving Status (MOV) command is used to assign the moving status to a binary variable, or to make
a comparison against a binary or hexadecimal value. To make a comparison against a binary value, the
letter b (b or B) must be placed in front of the value. The binary value itself must only contain ones, zeros,
or Xs (1, Ø, X, x). To make a comparison against a hexadecimal value, the letter h (h or H) must be placed
in front of the value. The hexadecimal value itself must only contain the letters A through F, or the numbers
Ø through 9.

The axis moving status is also reported with bit #1 of the TAS, TASF and AS commands

168 6K Series Command Reference

Syntax: VARBn=MOV where n is the binary variable number,
or MOV can be used in an expression such as IF(MOV=b1XX1) , or IF(MOV=h3)

Each bit of the MOV command corresponds to a specific axis. The first bit (left to right) is for axis 1, the
second is for axis 2, etc. If the specific axis is in motion, the bit will be a one (1). If the specific axis is not
in motion, the bit will be a zero (Ø).

Each 6K Series product has 1 moving/not moving bit per axis. For example, the 6K4 has 4 axes, thus 4
moving/not moving bits. If it is desired to assign only one moving/not moving bit to a binary variable,
instead of all the moving/not moving bits, the bit select (.) operator can be used. The bit select operator, in
conjunction with the moving/not moving bit number, are used to specify a specific moving/not moving bit.
For example, VARB1=MOV.2 assigns bit 2 (representing axis 2 moving/not moving) to binary variable 1.

Example:
COMEXC1 ; Enable continuous command processing mode
COMEXS1 ; Save command buffer on stop
MC1111 ; Enable continuous mode on all axes
A2,2,25000,25000 ; Set acceleration to 2, 2, 25000, and 25000 units/sec/sec

; for axes 1, 2, 3 and 4 respectively
AD2,2,25000,25000 ; Set deceleration to 2, 2, 25000, and 25000 units/sec/sec

; for axes 1, 2, 3 and 4 respectively
V1,1,1,2 ; Set velocity to 1, 1, 1, and 2 units/sec for axes 1, 2, 3

; and 4 respectively
GO1111 ; Initiate motion on all axes (axes 1,2, and 3 will each

; travel at a velocity of 1 unit/sec, axis 4 will travel
; at a velocity of 2 units/sec)

T5 ; Wait 5 seconds
S1111 ; Stop motion on all axes
WAIT(MOV=b0000) ; Wait for motion to come to a halt on all axes
COMEXC0 ; Disable continuous command processing mode

NIF End IF Statement
Type Program Flow Control or Conditional Branching
Syntax <!>NIF
Units n/a
Range n/a
Default n/a
Response No response when used in conjunction with the IF command

See Also ELSE, IF

Product Rev

6K 5.0

This command is used in conjunction with the IF and ELSE commands to provide conditional program flow. If
the expression contained within the parentheses of the IF command evaluates true, then the commands between
the IF and the ELSE are executed. The commands between the ELSE and the NIF are ignored. If the expression
evaluates false, the commands between the ELSE and the NIF are executed. The commands between IF and
ELSE are ignored. The ELSE command is optional and does not have to be included in the IF statement.

Programming order:IF(expression) ...commands... NIF
or
IF(expression) ...commands... ELSE ...commands... NIF

NOTE: Be careful about performing a GOTO between IF and NIF . Branching to a different location within
the same program will cause the next IF statement encountered to be nested within the previous IF
statement, unless an NIF command has already been encountered.

Example:
IF(IN=b1X0) ; Specify IF condition to be onboard input 1 = 1, input 3 = Ø
T5 ; IF condition evaluates true wait 5 seconds
ELSE ; Else part of IF condition
TPE ; IF condition does not evaluate true, transfer position

; of all encoders
NIF ; End IF statement

Command Descriptions 169

[NMCY] Master Cycle Number
Type Following; Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also FMCLEN, FMCNEW, FMCP, [FS], [PMAS], TFS, TNMCY, TRGFN

Product Rev

6K 5.0

The Master Cycle Number (NMCY) command is used to assign the current master cycle number (specific to
one axis) to a numeric variable, or to make a comparison against another value. The master must be
assigned first (FOLMAS command) before this command will be useful. For a complete discussion of master
cycles, refer to the Following chapter in the Programmer's Guide.

The value represents the current cycle number, not the position of the master (or the follower). The master
cycle number is set to zero when master cycle counting is restarted, and is incremented each time a master
cycle finishes (i.e., rollover occurs). It will often correspond to the number of complete parts in a
production run. This value may be used for subsequent decision making, or simply recording the cycle
number corresponding to some other event.

Syntax: VARn=aNMCY where “n” is the variable number and “a” is the axis number, or NMCY can be used
in an expression such as IF(1NMCY>=5) . The NMCY command must be used with an axis
specifier, or it will default to axis 1 (e.g., VAR1=1NMCY, IF(2NMCY>12) , etc.).

Example:
IF(2NMCY>500) ; If the master for axis 2 has moved through 500 cycles ...
WRITE"500 cycles have occurred" ; Send string to serial port or the AT-bus
NIF ; End of IF statement
VAR12=3NMCY ; Set VAR12 to equal the number of cycles that have

; occurred on axis 3 master

[NOT] Not
Type Operator (Logical)
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [AND], IF, NWHILE, [OR], REPEAT, UNTIL, WAIT, WHILE

Product Rev

6K 5.0

The NOT operator is used in conjunction with the program flow control commands (IF , REPEAT..UNTIL ,
WHILE..NWHILE , WAIT). The NOT operator compliments a logical expression. If an expression is true, the
NOT operator will make the expression false. If an expression is false, the NOT operator will make the
expression true. This fact is best illustrated by the following examples:

If variable #1 equals 1, then the following is a true statement: IF(VAR1<3)
By using the NOT operator, the same statement becomes false: IF (NOT VAR1<3)
If variable #2 equals 2, then the following statement is false: WHILE(VAR2=3)
By using the NOT operator, the same statement becomes true: WHILE (NOT VAR2=3)

To evaluate an expression (NOT Expression) to determine if the expression is true, use the following rule:

NOT TRUE = FALSE
NOT FALSE = TRUE

In the following example, variable #1 is displayed, then is incremented by 1 as long as VAR1 is not equal to 10.

Example:
VAR1=1 ; Set variable 1 equal to 1
WHILE(NOT VAR1=10) ; Compare variable 1 to 10, and logically not the expression
WRVAR1 ; Write out variable 1
VAR1=VAR1 + 1 ; Set variable 1 to increment 1 by 1
NWHILE ; End WHILE statement

170 6K Series Command Reference

NTADDR Ethernet IP Address
Type Communication Interface
Syntax NTADDR<i,i,i,i>
Units i,i,i,i = IP address (commas are used in place of periods)
Range i = 0-255
Default 192,168,10,30 (network address is 192.168.10.30)
Response NTADDR: *192,168,10,30

See Also TNTMAC

Product Rev

6K 5.0

Use the NTADDR command to change the 6K controller’s IP address (e.g., to correct an IP address conflict).
NOTE: The 6K product needs to be reset (cycle power or issue RESET command) in order for the new
address to take effect.

The NTADDR setting is automatically saved in battery backed RAM.

NTMASK Ethernet Network Mask
Type Communication Interface
Syntax NTMASK<i,i,i,i>
Units i,i,i,i = mask
Range i = 0-255
Default 255,255,255,0
Response NTMASK: *255,255,255,0

See Also NTADDR, TNTMAC

Product Rev

6K 5.0

Use the NTMASK command to configure the 6K controller’s network mask. NOTE: The 6K product needs to
be reset (cycle power or issue RESET command) in order for the new network mask to take effect.

The NTMASK setting is automatically saved in battery backed RAM.

NWHILE End WHILE Statement
Type Program Flow Control or Conditional Branching
Syntax <!>NWHILE
Units n/a
Range n/a
Default n/a
Response No response when used in conjunction with the WHILE command

See Also WHILE

Product Rev

6K 5.0

The WHILE command, in conjunction with the NWHILE command, provide a means of conditional program
flow. The WHILE command marks the beginning of the conditional statement, the NWHILE command marks
the end. If the expression contained within the parenthesis of the WHILE command evaluates true, then the
commands between the WHILE and NWHILE are executed, and continue to execute as long as the expression
evaluates true. If the expression evaluates false, then program execution jumps to the first command after
the NWHILE.

Up to 16 levels of WHILE NWHILE commands may be nested.

NOTE: Be careful about performing a GOTO between WHILE and NWHILE. Branching to a different
location within the same program will cause the next WHILE statement encountered to be nested
within the previous WHILE statement, unless an NWHILE command has already been encountered.

Programming order: WHILE(expression) ...commands... NWHILE

Example:
WHILE(IN=b1X0) ; While input 1 = 1, input 3 = Ø, execute commands between

; WHILE and NWHILE
T5 ; Wait 5 seconds
TPE ; Transfer position of all encoders
NWHILE ; End WHILE statement

Command Descriptions 171

ONCOND On Condition Enable
Type On Condition (Program Interrupt)
Syntax <!><%><@>ONCOND
Units n/a
Range b = 0 (disable), 1 (enable) or X (don't change)
Default 0
Response ONCOND: *ONCOND0000

See Also FSHFD, ONIN, ONP, ONUS, ONVARA, ONVARB, [SS], TSS

Product Rev

6K 5.0

The On Condition Enable (ONCOND) command enables the ONIN, ONUS, ONVARA, and ONVARB commands.
When enabled, the expressions specified in the ONIN, ONUS, ONVARA, and ONVARB commands will be
continuously evaluated. If any of the expressions ever evaluate true, a GOSUB will be made to the ONP
program/subroutine.

ONP, ONIN, ONUS, ONVARA, and ONVARB should be defined before enabling the On Condition. If ONP is not
defined first, the error message *UNDEFINED LABEL will appear.

ONCONDbbbb: First b = ONIN Enable
Second b = ONUS Enable
Third b = ONVARA Enable
Fourth b = ONVARB Enable

When ON conditions WILL NOT interrupt immediately : These are situations in which an ON
condition does not immediately interrupt the program in progress. However, the fact that the ON condition
evaluated true is retained, and when the condition listed below is no longer preventing the interrupt, the
interrupt will occur.

• While a WAIT statement is in progress
• While a time delay (T) is in progress
• While a program is being defined (DEF)
• While a pause (PS) is in progress
• While a data read (DREAD, DREADF, or READ) is in progress
• While motion is in progress due to GO, GOL, GOWHEN, HOM, JOY, JOG, or PRUN and the continuous

command execution mode is disabled (COMEXCØ).

Multi-Tasking : Each task has it own ONP Program and its own set of On conditions.

Example:
DEF bigmov ; Define program bigmov
D20,20,1,3 ; Sets move distance on axes 1 and 2 to 20 units,

; axis 3 to 1 unit, and axis 4 to 3 units
GO1111 ; Initiate motion on all axes
END ; End program definition
ONP bigmov ; Set ON program to bigmov
2ONINxxx1 ; When input #4 on I/O brick 2 is activated,

; GOSUB to the ONP program
ONCOND1000 ; Enable ONIN condition
;
; Now that the ONP program named bigmov is defined, if input #4 becomes
; active during normal program operation, the program will GOSUB to the
; ONP program (bigmov).

172 6K Series Command Reference

ONIN On an Input Condition Gosub
Type On Condition (Program Interrupt)
Syntax <!><%>ONIN...
Units n/a
Range b = 0 (disable), 1 (enable) or X (don't care)
Default 0
Response ONIN: *ONIN0000_0000_0000_0000_0

1ONIN: *1ONIN0000_0000_0000_0000_0000_0000_0000_0000

See Also INFNC, ONCOND, ONP, TIN

Product Rev

6K 5.0

The On an Input Condition Gosub (ONIN) command specifies the input bit pattern which will cause a
branch to the ON program (ONP). If the input pattern occurs, a GOSUB is performed. The subroutine or
program that the GOSUB branches to is selected with the ON program (ONP) command.

The number of onboard and external inputs available varies by the product and configuration of I/O bricks used.
Refer to page 6 for details.

The ONIN command must be enabled using the ONCOND command before any branching will occur. Once a
branch to the ONP program occurs, ONIN command will not call the ONP program while the ONP program is
executing, eliminating the possibility of recursive calls. After returning from the ONP program, the input
pattern specified by the ONIN command must evaluate false before another branch to the ONP program,
resulting from the ONIN inputs, will be allowed.

Multi-Tasking : Each task has it own ONP Program and its own set of On conditions. Only 1 ONIN condition
is allowed per task. Therefore, only one I/O brick can be referenced in an ONIN condition for a specific
task.

Example:
DEF bigmov ; Define program bigmov
D20,20,1,3 ; Sets move distance on axes 1 and 2 to 20 units,

; axis 3 to 1 unit, and axis 4 to 3 units
GO1111 ; Initiate motion on all axes
END ; End program definition
ONP bigmov ; Set ON program to bigmov
2ONINxxx11xx1 ; When inputs 4, 5, and 8 on I/O brick 2 is activate,

; GOSUB to the ONP program
ONCOND1000 ; Enable ONIN condition
;
; Now that the ONP program named bigmov is defined, if input #4 becomes
; active during normal program operation, the program will GOSUB to
; the ONP program (bigmov).

ONP On Condition Program Assignment
Type On Condition (Program Interrupt)
Syntax <!><%>ONP<t>
Units t = text (name of On Condition program)
Range text name of 6 characters or less
Default n/a
Response ONP: *ONP bigmov

See Also DEF, END, ONCOND, ONIN, ONUS, ONVARA, ONVARB

Product Rev

6K 5.0

The On Condition Program (ONP) command assigns the program to which programming will GOSUB when
an ON condition is met. The program must be defined (DEF) previous to the execution of the ONP
command. The ONP command must be specified before enabling the ON conditions (ONCOND). If ONP is not
defined first, the error message *UNDEFINED LABEL will appear.

To unassign the program as the ON condition program, issue the ONP CLR command. Deleting the program
with the DEL command will accomplish the same thing.

Within the ONP program, the programmer is responsible for checking which ON condition caused the
branch, if multiple ON conditions (ONCOND) have been enabled. Once a branch to the ONP program occurs,

Command Descriptions 173

the ONP program will not be called again until after it has finished executing. After returning from the ONP
program, the condition that caused the branch must evaluate false before another branch to the ONP program
will be allowed.

Multi-Tasking : Each task has it own ONP Program and its own set of On conditions.

Example:
DEF bigmov ; Define program bigmov
D20,20,1,3 ; Sets move distance on axes 1 and 2 to 20 units,

; axis 3 to 1 unit, and axis 4 to 3 units
GO1111 ; Initiate motion on all axes
END ; End program definition
ONP bigmov ; Set ON program to bigmov
2ONIN.4-1 ; When input #4 on I/O brick 2 is activated,

; GOSUB to the ONP program
ONCOND1000 ; Enable ONIN condition
;
; Now that the ONP program named bigmov is defined, if input #4 becomes
; active during normal program operation, the program will GOSUB to
; the ONP program (bigmov).

ONUS On a User Status Condition Gosub
Type On Condition (Program Interrupt)
Syntax <!><%>ONUS... (16 bits)
Units n/a
Range b = 0 (disable), 1 (enable) or X (don't care)
Default 0
Response ONUS: *ONUS0000_0000_0000_0000

See Also INDUSE, INDUST, ONCOND, ONP

Product Rev

6K 5.0

The On a User Status Condition Gosub (ONUS) command specifies the user status bit pattern, defined using
the INDUST command, which will cause a branch to the ON program (ONP). If the bit pattern occurs, a
GOSUB is performed. The subroutine or program that the GOSUB branches to is selected by the ON
program (ONP) command.

The ONUS command must be enabled using the ONCOND command before any branching will occur. Once a
branch to the ONP program occurs, ONUS command will not call the ONP program while the ONP program is
executing, eliminating the possibility of recursive calls. After returning from the ONP program, the user
status bit pattern specified by the ONUS command must evaluate false before another branch to the ONP
program, resulting from the ONUS status bits, will be allowed.

Multi-Tasking : Each task has it own ONP Program and its own set of On conditions.

Example:
INDUSE1 ; Enable user status
INDUST1-5A ; User status bit 1 defined as axis 1 status bit 5
INDUST2-3F ; User status bit 2 defined as axis 6 status bit 3
3INDUST3-5J ; User status bit 3 defined as input 5 on I/O brick 3
INDUST4-1K ; User status bit 4 defined as interrupt status bit 1
2%INDUST16-2I ; User status bit 16 defined as system status bit 2 for task 2
DEF bigmov ; Define program bigmov
D20,20,1,3 ; Sets move distance on axes 1 and 2 to 20 units,

; axis 3 to 1 unit, and axis 4 to 3 units
GO1111 ; Initiate motion on axes 1-4
END ; End program definition
ONP bigmov ; Set ON program to bigmov
ONUSxxx1 ; On user status bit #4 (interrupt status bit 1) GOSUB to

; the ONP program
ONCOND0100 ; Enable ONUS condition

174 6K Series Command Reference

ONVARA On Variable 1 Condition Gosub
Type On Condition (Program Interrupt)
Syntax <!><%>ONVARA<i,i,i>
Units See below
Range ±999,999,999.99999999
Default +0.0,+0.0,+0.0
Response ONVARA: *ONVARA+0.0,+0.0,+0.0

See Also ONCOND, ONP, ONVARB, VAR, VARI

Product Rev

6K 5.0

The On Variable 1 Condition Gosub (ONVARA) command specifies the low and high values which will cause
a branch to the ON program (ONP). If the value of variable 1 is less than or equal to the first i , or greater
than or equal to the second i , a GOSUB is performed. The subroutine or program that the GOSUB
branches to is selected by the ON program (ONP) command. If the third field is non-zero, integer variables
(VARI) are used for the comparison.

The ONVARA command must be enabled using the ONCOND command before any branching will occur. Once
a branch to the ONP program occurs, ONVARA command will not call the ONP program while the ONP
program is executing, eliminating the possibility of recursive calls. After returning from the ONP program,
variable 1 must be reset to a value within the low and high values before another branch to the ONP
program, resulting from the value of variable 1, will be allowed.

Multi-Tasking : Each task has it own ONP Program and its own set of On conditions.

Example:
DEF bigmov ; Define program bigmov
D20,20,1,3 ; Sets move distance on axes 1 and 2 to 20 units,

; axis 3 to 1 unit, and axis 4 to 3 units
GO1111 ; Initiate motion on all axes
END ; End program definition
ONP bigmov ; Set ON program to bigmov
ONVARA0,12 ; On VAR1 <= 0, or VAR1 >= 12 GOSUB to ONP program
ONCOND0010 ; Enable ONVARA condition

ONVARB On Variable 2 Condition Gosub
Type On Condition (Program Interrupt)
Syntax <!><%>ONVARB<i,i,i>
Units See below
Range ±999,999,999.99999999
Default +0.0,+0.0,+0.0
Response ONVARB: *ONVARB+0.0,+0.0,+0.0

See Also ONCOND, ONP, ONVARA, VAR, VARI

Product Rev

6K 5.0

The ONVARB command specifies the low and high values which will cause a branch to the ON program
(ONP). If the value of variable 2 is less than or equal to the first i , or greater than or equal to the second i , a
GOSUB is performed. The subroutine or program that the GOSUB branches to is selected by the ON
program (ONP) command. If the third field is non-zero, integer variables (VARI) are used for the comparison.

The ONVARB command must be enabled using the ONCOND command before any branching will occur. Once
a branch to the ONP program occurs, ONVARB command will not call the ONP program while the ONP
program is executing, eliminating the possibility of recursive calls. After returning from the ONP program,
variable 2 must be reset to a value within the low and high values before another branch to the ONP
program, resulting from the value of variable 1, will be allowed.

Multi-Tasking : Each task has it own ONP Program and its own set of On conditions.

Example:
DEF bigmov ; Define program bigmov
D20,20,1,3 ; Sets move distance on axes 1 and 2 to 20 units,

; axis 3 to 1 unit, and axis 4 to 3 units
GO1111 ; Initiate motion on all axes
END ; End program definition
ONP bigmov ; Set ON program to bigmov
ONVARB0,12 ; On VAR2 <= 0, or VAR2 >= 12 GOSUB to ONP program
ONCOND0001 ; Enable ONVARB condition

Command Descriptions 175

[OR] Or
Type Operator (Logical)
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [AND], IF, [NOT], NWHILE, REPEAT, UNTIL, WAIT, WHILE

Product Rev

6K 5.0

Use the OR command as a logical operator in a program flow control command (IF , REPEAT, UNTIL , WHILE,
NWHILE, WAIT). The OR command logically links two expressions. If either of the two expressions are true, and
are linked with an OR command, then the whole statement is true. This fact is best illustrated by example.

If VAR1=1 and VAR2=1 then, even though variable 2 is not greater than 3, this is a true statement:
IF(VAR1>0 OR VAR2>3) . This statement would not be true: IF(VAR1<>1 OR VAR2=2) .

To evaluate an expression (Expression 1 OR Expression 2 = Result) to determine if the whole expression is
true, use the following rule:

TRUE OR TRUE = TRUE FALSE OR TRUE = TRUE
TRUE OR FALSE = TRUE FALSE OR FALSE = FALSE

Example:
VAR1=1 ; Set variable 1 equal to 1
IF(VAR1=1 OR IN=b1XXX) ; Compare variable 1 to 1, and check for input #1

; to be active
WRITE"FIRST EXAMPLE" ; If either condition is true, write out FIRST EXAMPLE
NIF ; End IF statement

OUT Output State
Type Output
Syntax <!>OUT...
Units n/a
Range b = 0 (off), 1 (on) or X (don't change)
Default 0
Response n/a

See Also OUTALL, OUTEN, OUTFNC, OUTLVL, OUTP, TIO, TOUT

Product Rev

6K 5.0

The Output State (OUT) command turns the output bits on and off. You may use this command to control any of
the onboard outputs, as well as any outputs on external I/O bricks, as long as they are left in the default function
(OUTFNCi-A). If you attempt to change the state of an output that is not defined as an OUTFNCi-A (general-
purpose) output, the controller will respond with an error message (“OUTPUT BIT USED AS OUTFNC”) and the
OUT command will not be executed (but command processing will continue).

The number of onboard and external outputs varies by the product and configuration of I/O bricks used. Refer to
page 6 for details.

If it is desired to set only one output value, instead of all outputs, the bit select (.) operator can be used,
followed by the number of the specific output. For example, OUT.12-1 turns on output 12.

Example:
2OUT10 ; Turn on outputs 1 & 2 on I/O brick 2
1OUT.9-1 ; Turn on output 9 (the 1st I/O point on SIM2) on I/O brick 1

176 6K Series Command Reference

[OUT] Output Status
Type Assignment or Comparison
Syntax See below
Units n/a
Range b = 0 (off), 1 (on) or X (don't change)
Default 0
Response n/a

See Also OUTALL, OUTEN, OUTFNC, OUTLVL, TIO, TOUT, VARB

Product Rev

6K 5.0

Use the Output Status (OUT) operator to assign the output states to a binary variable (VARB), or to make a
comparison against a binary or hexadecimal value. To make a comparison against a binary value, the letter
b (b or B) must be placed in front of the value. The binary value itself must only contain ones, zeros, or Xs
(1, Ø, X, x). To make a comparison against a hexadecimal value, the letter h (h or H) must be placed in
front of the value. The hexadecimal value itself must only contain the letters A through F, or the numbers Ø
through 9.

Syntax: VARBn=OUT where “n” is the binary variable number and “” is number of the I/O brick
where the output resides (not required if addressing the onboard outputs),
or OUT can be used in an expression such as IF(2OUT=b11Ø1) , or IF(1OUT=h7F)

The number of onboard and external outputs varies by product and number I/O bricks used. Refer to page 6 for
details.

The function of the outputs is established with the OUTFNC command (although the OUT operator looks at all
outputs regardless of their assigned function from the OUTFNC command). If it is desired to assign only one
output value to a binary variable, instead of all outputs, the bit select (.) operator can be used, followed by
the number of the specific output. For example, VARB1=2OUT.12 assigns output 12 (the 2nd I/O point on
SIM2) on I/O brick 2 to binary variable 1.

Example:
VARB1=OUT ; Output status assigned to binary variable 1
VARB2=OUT.4 ; On-board output bit 4 assigned to binary variable 2
VARB2 ; Response if bit 4 is set to 1 (for 6K4, 6K6, & 6K8):

; *VARB2=XXX1_XXXX
IF(OUT=b110X1) ; If the output status contains 1's for outputs 1, 2, & 5,

; and a 0 for output 4, do the IF statement
TREV ; Transfer revision level
NIF ; End IF statement

Command Descriptions 177

OUTALL Output State for Multiple Outputs
Type Output
Syntax <!>OUTALL<i>,<i>,
Units 1st i = beginning number of output range

2nd i = ending number of output range
b = enable/disable bit

Range 1st i = 1 to n (n is max. number of outputs available)
2nd i = First i to n
b = 0 (off) or 1 (on)

Default 0
Response n/a

See Also OUT, OUTEN, OUTFNC, OUTLVL, TIO, TOUT

Product Rev

6K 5.0

The OUTALL command turns a range of output bits on and off. You may use this command to control any
contiguous range of the onboard outputs, as well as any outputs on external I/O bricks, as long as all outputs
in the range are left in the default function (OUTFNCi-A). If you attempt to change the state of an output that
is not defined as an OUTFNCi-A (general-purpose) output, the controller will respond with an error message
(“OUTPUT BIT USED AS OUTFNC”) and the OUTALL command will not be executed (but command
processing will continue).

The number of onboard and external outputs varies by the product and configuration of I/O bricks used. Refer to
page 6 for details.

Example:
OUTALL1,4,1 ; Turn on on-board outputs 1-4
2OUTALL3,8,1 ; On I/O brick 2, turn on outputs at I/O locations 3-8

; (I/O pins 3-8 on SIM1)

OUTEN Output Enable
Type Output or Program Debug Tool
Syntax <!>OUTEN<d><d><d><d>... (one <d> for each input)
Units n/a
Range d = 0 (Disable output function and turn output off)

d = 1 (Disable output function and turn output on)
d = E (Enable output function)
d = X (don't change)

Default E
Response OUTEN: *OUTENEEEE_EEEE (onboard outputs)

1OUTEN: *1OUTENEEEE_EEEE_EEEE_EEEE_EEEE_EEEE_EEEE_EEEE
1OUTEN.3 *E

See Also OUT, OUTFNC, OUTLVL, TIO, TOUT, TSTAT

Product Rev

6K 5.0

The Output Enable (OUTEN) command allows the user to disable any of the outputs from their configured
function and set them on or off. This command is used for troubleshooting and initial start-up testing. It
allows you to simulate output operations by bypassing the configured output function.

The OUTEN command has no effect on onboard outputs (located on the “TRIGGERS/OUTPUTS” connector)
when they are configured as output-on-position outputs with the OUTFNCi-H command.

The number of onboard and external outputs varies by the product and configuration of I/O bricks used. Refer to
page 6 for details.

Example:
; This allows the user to test if the fault output is working,
; without the inconvenience of trying to force a fault.
1OUTFNC1-1B ; Define output #1 on I/O brick 1 as axis 1 moving/not moving
1OUTFNC2-2B ; Define output #2 on I/O brick 1 as axis 2 moving/not moving
1OUTFNC3-A ; Define output #3 on I/O brick 1 as programmable
1OUTFNC4-A ; Define output #4 on I/O brick 1 as programmable
1OUTFNC5-F ; Define output #5 on I/O brick 1 as fault output
1OUTENxxxx1 ; Disable programmed function of output #5 on I/O brick 1

; and turns it on

178 6K Series Command Reference

OUTFNC Output Function
Type Output
Syntax <!>OUTFNC<i><-<a>c>
Units i = output #, a = axis, c = function identifier (letter)
Range i = 1-32 (I/O brick dependent — see page 6)

a = 1-8 (depends on product)
c = A-H

Default c = A (programmable output function – default)
Response OUTFNC: (function and status of onboard outputs)

1OUTFNC: (function and status of outputs on I/O brick 1)
1OUTFNC1: *1OUTFNC1-A PROGRAMMABLE OUTPUT - STATUS OFF

See Also DRFEN, OUT, OUTEN, OUTLVL, OUTP, OUTPLC, OUTTW, POUT, SMPER,
TIO, TSTAT

Product Rev

6K 5.0

The Output Function (OUTFNC) command defines the functions for each output. The factory setting for all
the outputs is programmable output bits (OUTFNCi-A). A limit of 32 output may be assigned OUTFNC
functions; this excludes A (“general-purpose”) function.

For the functions that are axis specific (B, D, and E), an optional axis specifier may be placed in front of the
function. By placing the axis specifier in front of the function letter, the output will only go active when the
specific axis specified has the corresponding condition. If an axis specifier is not specified, then if any of the
axes have the corresponding condition, the output will go active. The output functions are as follows:

Output bit assignments vary by product. The number of onboard and external outputs varies by the product
and configuration of I/O bricks used. Refer to page 6 for details.

Output Scan Rate: The programmable outputs are scanned once per system update (2 milliseconds).

Multitasking . If the OUTFNC command does not include the task identifier (%) prefix, the function affects
the task that executes the OUTFNC command. Only function “C” may be directed to a specific task with the %
prefix (e.g., 2%OUTFNC3-C assigns onboard output 3 as a program-in-progress output for task 2). Multiple
tasks may share the same output, but the output may only be assigned one function.

Identifier Function Description

A Programmable Output : Standard output (default function). Turn on or off with the OUT, POUTn,
or OUTALL commands to affect external processes. To view the state of the outputs, use the
TOUT command. To use the state of the outputs as a basis for conditional branching or looping
statements (IF , REPEAT, WHILE, etc.), use the [OUT] command.

<a>B Moving/Not Moving Axis : Output activates when the axis is moving. As soon as the move is
completed, the output will change to the opposite state.

Servo Axes: With the target zone mode enabled (STRGTE1), the output will not change state
until the move completion criteria set with the STRGTD and STRGTV commands has been met.
In this manner, the output functions as an In Position output.

C Program in Progress : Output activates when a program is being executed. After the program
is finished, the output's state is reversed.

<a>D End-of-Travel Limit Encountered : Output activates when a hard or soft end-of-travel limit has
been encountered. When a limit is encountered, you will not be able to move the motor in that
same direction until you clear the limit by changing direction (D) and issuing a GO command.
(An alternative is to disable the limits with the LH0 command, but this is recommended only if
the motor is not coupled to the load.)

<a>E Stall Indicator (Stepper axes only): Output activates when a stall is detected. To detect a stall,
you must first connect an encoder and enable stall detection with the ESTALL1 command. For
details refer to the Programmer's Guide.

F Fault Indicator : Output activates when either the user fault input or the drive fault input
becomes active. The user fault input is a general-purpose input defined as a user fault input
with the INFNCi-F or LIMFNCi-F command. Make sure the drive fault input is enabled
(DRFEN) and the drive fault active level (DRFLVL) is appropriate for the drive you are using.

Command Descriptions 179

<a>G Position Error Exceeds Max. Limit (Servos Only): Output activates when the maximum
allowable position error, as defined with the SMPER command, is exceeded. The position error
(TPER) is defined as the difference between the commanded position (TPC) and the actual
position as measured by the feedback device. When the maximum position error is exceeded
(usually due to instability or loss of position feedback from the feedback device), the controller
shuts down the drive and sets error status bit #12 (reported by the TER command). If the SMPER
command is set to zero (SMPER0), the position error will not be monitored; thus, the Maximum
Position Error Exceeded function will not be usable.

<a>H Output On Position : Output activates when the specified axis is at a specified position (servo
axes can use encoder position only; stepper axes can use commanded position or encoder
position, depending on the ENCCNT setting for that axis). Applicable only to the onboard outputs
found on the “TRIGGERS/OUTPUTS” connectors. Output On Position function parameters are
configured with the OUTPn commands.

Example:
1OUTFNC1-3B ; Define output #1 on I/O brick 1 as axis 3 moving/not moving
1OUTFNC2-D ; Define output #2 on I/O brick 1 to go active when any of

; the limits are hit on any axis

OUTLVL Output Active Level
Type Output
Syntax <!>OUTLVL...
Units n/a
Range b = 0 (active low), 1 (active high) or X (don't change)
Default 0
Response OUTLVL: *OUTLVL0000_0000 (onboard outputs)

1OUTLVL: *1OUTLVL0000_0000_0000_0000_0000_0000_0000_0000
1OUTLVL.3 *0

See Also OUT, OUTEN, OUTFNC, OUTP, OUTPLC, OUTTW, POUT, TOUT

Product Rev

6K 5.0

The Output Active Level (OUTLVL) command defines the active state of each programmable output. The
default state is active low. Refer to the 6K Series product Installation Guide for programmable output
schematics. The OUTLVL setting is NOT saved in battery-backed RAM; therefore, on power up or reset, the
OUTLVL setting will default to the factory default setting (thus, the OUTLVL command is a good candidate
for inclusion in your STARTP program).

The number of onboard and external outputs varies by the product and configuration of I/O bricks used. Refer to
page 6 for details.

Using Outputs on Expansion I/O Bricks:

• Sinking vs. Sourcing Outputs. On power up, the 6K controller auto-detects the state of the jumper for
each output SIM on each external I/O brick, and automatically changes the OUTLVL setting
accordingly. If sinking outputs are detected (factory default setting), OUTLVL is set to active low; if
sourcing outputs are detected, OUTLVL is set to active high. For details on the jumper, refer to you
product’s Installation Guide.

• Disconnect I/O Brick. If the I/O brick is disconnected (or if it loses power), the controller will
perform a kill (all tasks) and set error bit #18. The controller will remember the brick configuration
(volatile memory) in effect at the time the disconnection occurred. When you reconnect the I/O brick,
the controller checks to see if anything changed (SIM by SIM) from the state when it was
disconnected. If an existing SIM slot is changed (different SIM, vacant SIM slot, or jumper setting),
the controller will set the SIM to factory default INEN and OUTLVL settings. If a new SIM is installed
where there was none before, the new SIM is auto-configured to factory defaults.

When an output is defined to be active low, an OUT1 command will cause a output to be pulled to ground.
When an output is defined to be active high, an OUT1 command will cause a output to source current from
the power supply.

Example:
OUTLVL1x0 ; Configure onboard output 1 to be active high, output 2 unchanged,

; and output 3 as active low

180 6K Series Command Reference

OUTP Output on Position — Axis Specific
Type Output
Syntax <!>OUTPn,,<r>,<i>
Units n = axis/output identifier letter

1st & 2 nd b = enable/modal bits;
r = scalable distance
i = time (ms)

Range n = A-H (A for output 1, axis 1, B for output 2, axis 2, etc.)
1st b = 1 (enable output on position) or 0 (disable)
2nd b = 1 (incremental position) or 0 (absolute position)
r = -999,999,999 to +999,999,999
i = 0-65535

Default 0,0,0,0
Response OUTPA: *OUTPA0,0,+0,0

See Also AXSDEF, ENCCNT, [OUT], OUT, OUTFNC, PSET, SFB

Product Rev

6K 5.0

Use the Output on Position (OUTPn) command to configure the respective onboard output (located on the
“TRIGGERS/OUTPUTS” connectors) to activate based on the specified position of the respective axis.
Onboard output 1 corresponds to axis 1, output 2 to axis 2, and so on. The position referenced is dependent
upon whether the axis is configured for servo or stepper (see AXSDEF command):

• Servo Axes: The referenced position is the encoder position (analog input position cannot be used).
Therefore, to use this feature, encoder feedback must be selected with the SFB command before the
OUTPn command is executed. If the SFB command is changed, the output-on-position function is
disabled until a new OUTPn command re-enables the function.

• Stepper Axes: The referenced position depends on the ENCCNT setting at the time the OUTPn
command is executed. If ENCCNT0 (factory default), the commanded position is used, if ENCCNT1,
the encoder position is used.

To use the OUTPn command, you must first use the OUTFNCi-H command to configure the onboard output
to function as an output on position output. (The “i ” in the OUTFNCi-H command represents the number of
the onboard output in the product's output bit pattern — see page 6 for output bit patterns for each product.)
Refer to the programming example below.

Syntax:
OUTP n , , <r>, <i>

Axis/Output Specifier:

A ... Turn on output 1 based on axis #1's position
B ... Turn on output 2 based on axis #2's position
C ... Turn on output 3 based on axis #3's position
D ... Turn on output 4 based on axis #4's position
E ... Turn on output 5 based on axis #5's position
F ... Turn on output 6 based on axis #6's position
G ... Turn on output 7 based on axis #7's position
H ... Turn on output 8 based on axis #8's position

Enable Bit:

1 ... Enable the output-on-position function
0 ... Disable the output-on-position function

Servo Axes: If an SFB command is executed,
the function is disabled.

Increment or Absolute Position Comparison:

1 ... Set position comparison to incremental
(measured from the last start-motion
command, such as GO, GOL, GOWHEN, etc.)

0 ... Set position comparison to absolute

Position:

Scalable distance (distance is either
incremental or absolute, depending on the
second data field).

Servo Axes:
Only the encoder position can be used.

Stepper Axes:
· If ENCCNT0, the commanded position is used.
· If ENCCNT1, the encoder position is used.

Time (milliseconds):

Time (milliseconds) the output is to stay active.
The output activates when the specified
position (<r>) is reached or exceeded, and
stays active for the specified time.

If this field is set to zero, the
output will stay active for as long as the actual
distance equals or exceeds the position
comparison distance (this is possible only for
an absolute position comparison).

NOTE

The output activates only during motion; therefore, issuing a PSET command to set the
absolute position counter to activate the output on position will not turn on the output
until the next motion occurs.

Command Descriptions 181

Example (servo axes):

AXSDEF10 ; Define axis 1 as servo, axis 2 as stepper
SFB1 ; Select encoder feedback for axis 1
OUTFNC1-H ; Set onboard output #1 as an "output on position" output
OUTFNC2-H ; Set onboard output #2 as an "output on position" output
OUTPA1,0,+50000,50 ; Turn on onboard output #1 for 50 ms when the encoder

; position of axis #1 is > or = absolute position +50,000
OUTPB1,1,+30000,50 ; Turn on onboard output #2 for 50 ms when the axis #2's

; commanded position reaches > or = incremental position
; 30,000 (since the last GO)

OUTPLC Establish PLC Strobe Outputs
Type Output
Syntax <!>OUTPLC<i>,<i-i>,<i>,<i>
Units See below
Range See below
Default 1,0-0,0,0
Response OUTPLC1: *0-0,0,0 (onboard outputs referenced)

1OUTPLC1: *0-0,0,0 (outputs on I/O brick 1 referenced)

See Also INPLC, OUT, OUTEN, OUTFNC, OUTLVL, OUTTW, [TW]

Product Rev

6K 5.0

The Establish PLC Strobe Outputs (OUTPLC) command with its corresponding INPLC command configure
the applicable inputs and outputs to read data from a parallel I/O device such as a PLC (Programmable
Logic Controller), or a passive thumbwheel module. The actual data transfer occurs with the TW command.
Refer to the TW command for a description of the data transfer process.

The OUTPLC command has four fields (<i>,<i-i>,<i>,<i>):

Data Field Description

Field 1: <i> Set #: There are 4 possible OUTPLC sets (1-4). This field identifies which set to use.

Field 2: <i-i> Strobe Output #s : Data reads with the TW command are strobed by the outputs selected
in this field. The first number is the first output, and the second number is the last output.
The outputs must be consecutive. The number of outputs should equal half the number of
the maximum number of BCD digits required. If 6 digits are being read, then three outputs
are needed as each output strobe selects two BCD digits. Refer to page 6 for help in
identifying which output bits are available to place in this field.

Field 3: <i> TW Command Pending : This field identifies an output that becomes active on a TW
command and then turns off on completion of the TW command. This output can signal a
device that a TW command is pending. A zero in this field will not activate any output.

Field 4: <i> Strobe Time : This field identifies the length of time an output will stay active in order to
read the BCD digits. The strobe time (in milliseconds) should be greater than the PLC
scan time, if a PLC is being used, or set greater than the minimal debounce time if using
thumbwheels. Range = 1 - 5000 milliseconds.

To disable a specific PLC set, enter OUTPLCn,Ø-Ø,Ø,Ø where n is the PLC set (1-4).

Example:
INPLC2,1-8,9,10 ; Set INPLC set 2 as BCD digits on onboard inputs 1-8,

; with input 9 as the sign bit, and input 10 as the data valid
OUTPLC2,1-4,5,50 ; Set OUTPLC set 2 as output strobes on onboard outputs 1-4,

; with output 5 as the command pending bit, and strobe time
; of 50 milliseconds

A(TW6) ; Read data into axis 1 acceleration using INPLC set 2
; and OUTPLC set 2 as the data configuration

182 6K Series Command Reference

OUTTW Establish Thumbwheel Strobe Outputs
Type Output
Syntax <!>OUTTW<i>,<i-i>,<i>,<i>
Units See below
Range See below
Default 1,0-0,0,0
Response OUTTW1: *0-0,0,0 (onboard outputs referenced)

1OUTTW1: *0-0,0,0 (outputs on I/O brick 1 referenced)

See Also INSTW, OUT, OUTEN, OUTFNC, OUTLVL, OUTPLC, [TW]

Product Rev

6K 5.0

The Establish Thumbwheel Strobe Outputs (OUTTW) command with its corresponding INSTW command
configure the applicable inputs and outputs to read data from an active thumbwheel device. The actual data
transfer occurs with the TW command. Refer to the TW command for a description of the data transfer
process.

The OUTTW command has four fields (<i>,<i-i>,<i>,<i>):

Data Field Description

Field 1: <i> Set #: There are 4 possible OUTTW sets (1-4). This field identifies which set to use.

Field 2: <i-i> Strobe Output #s : Data reads with the TW command are strobed by the outputs selected
in this field. The first number is the first output, and the second number is the last output.
The outputs must be consecutive. The number of outputs should be compatible to the
thumbwheel device. Refer to page 6 for help in identifying which output bits are available
to place in this field.

Field 3: <i> Thumbwheel Enable Output : This field identifies an output that becomes active on a TW
command and then turns off on completion of the TW command. This output can enable a
thumbwheel module to respond, thus allowing multiple thumbwheels to be wired to the
inputs and outputs. A zero in this field will not activate any output.

Field 4: <i> Strobe Time : This field identifies the length of time an output will stay active to read the
BCD digits. The strobe time (in milliseconds) should be set to a minimal debounce time.
Range = 1-5000 milliseconds.

Example:
INSTW2,1-4,5 ; Set INSTW set 2 as BCD digits on onboard inputs 1-4, with

; input 5 as the sign bit
OUTTW2,1-3,4,50 ; Set OUTTW set 2 as output strobes on onboard outputs 1-3,

; with onboard output 4 as the output enable bit, and
; strobe time of 50 milliseconds

A(TW2) ; Read data into axis 1 acceleration using INSTW set 2 and
; OUTTW set 2 as the data configuration

Command Descriptions 183

PA Path Acceleration
Type Path Contouring or Motion (Linear Interpolated)
Syntax <!>PA<r>
Units r = units/sec/sec (scalable by SCLD)
Range 0.00001-39,999,998 (depending on the scaling factor)
Default 10.0000
Response PA: *PA10.0000

See Also GOL, PAA, PAD, PADA, SCLD, SCALE

Product Rev

6K 5.0

The Path Acceleration (PA) command specifies the path acceleration to be used with linearly interpolated
moves (GOL), and all contouring moves (PLIN , PARCM, PARCOM, PARCOP, PARCP). For both the linear
interpolated and the contouring moves, the path acceleration refers to the acceleration experienced by the load
as motion gains speed along the path. For linearly interpolated moves, the acceleration of each individual axis
is dependent on the distance it contributes to the total path traveled by the load. In contouring paths, the
acceleration of each individual axis is dependent on the direction of travel in the X-Y plane. NOTE: The PA
value can be altered between path segments, but not within a path segment.

Contouring and linear interpolation are discussed in detail in the Custom Profiling chapter of the
Programmer's Guide.

UNITS OF MEASURE and SCALING : refer to page 16.

The path acceleration remains set until you change it with a subsequent path acceleration command.
Accelerations outside the valid range are flagged as an error, with a message *INVALID DATA-FIELD x ,
where x is the field number. When an invalid acceleration is entered the previous acceleration value is
retained.

If the path deceleration (PAD) command has not been entered, the path acceleration (PA) command will set the
path deceleration rate. Once the path deceleration (PAD) command has been entered, the path acceleration
(PA) command no longer affects path deceleration.

Example:
PV5 ; Set path velocity to 5 units/sec
PA50 ; Set path acceleration to 50 units/sec/sec
PAD100 ; Set path deceleration to 100 units/sec/sec
DEF prog1 ; Begin definition of path named prog1
PAXES1,2 ; Set axes 1 and 2 as the X and Y contouring axes
PAB0 ; Set to incremental coordinates
PLIN1,1 ; Specify X-Y endpoint position to create a 45 degree

; angle line segment
END ; End definition of path prog1
PCOMP prog1 ; Compile path prog1
PRUN prog1 ; Execute path prog1

PAA Path Average Acceleration
Type Motion (S-Curve); Motion (Linear Interpolated)
Syntax <!>PAA<r>
Units r = units/sec/sec (scalable by SCLD)
Range 0.00001-39,999,998 (depending on the scaling factor)
Default 10.00 (trapezoidal profiling is default, where PAA tracks PA)
Response PAA: *PAA10.0000

See Also DRES, PA, PAD, PADA, SCLD, SCALE

Product Rev

6K 5.0

The Path Average Acceleration (PAA) command allows you to specify the average acceleration for an S-curve
path profile. S-curve profiling provides smoother motion control by reducing the rate of change in
acceleration and deceleration; this accel/decel rate of change is known as jerk. S-curve profiling improves
position tracking performance in linear interpolation applications (not contouring). S-curve profiling is not
available for contouring applications. Refer to page 13 for details on S-curve profiling.

184 6K Series Command Reference

NOTE: Path scaling (SCLD) affects PAA the same as it does for PA. Refer to page 16 for details on scaling.

Example:
PV5 ; Set path velocity to 5 units/sec
PA50 ; Set path acceleration to 50 units/sec/sec
PAA40 ; Set path s-curve (average) acceleration to 40 units/sec/sec
PAD100 ; Set path deceleration to 100 units/sec/sec
PADA70 ; Set path s-curve (average) deceleration to 70 units/sec/sec
DEF prog1 ; Begin definition of path named prog1
D10,5,2,11 ; Set distance values, axes 1-4
GOL1111 ; Initiate linear interpolation motion
END ; End definition of path prog1

PAB Path Absolute
Type Path Contouring
Syntax <!>PAB
Units n/a
Range b = 0 (incremental) or 1 (absolute)
Default 0
Response No response - Must be defining a path (DEF)

See Also PL, PLC, SCLD, PWC, SCALE

Product Rev

6K 5.0

The Path Absolute (PAB) command is used to indicate whether the subsequent segment endpoints are specified in
either incremental (Ø) or absolute (1) coordinates. Segment endpoint position specifications may be either absolute
with respect to the user-defined coordinate system, or incremental, relative to the start of each individual segment.
At any point along a path definition, coordinates may be switched from incremental to absolute.

The absolute coordinate system may be either the work coordinate system or the local coordinate system (see PL).

PAD Path Deceleration
Type Path Contouring or Motion (Linear Interpolated)
Syntax <!>PAD<r>
Units r = units/sec/sec (scalable by SCLD)
Range 0.00001-39,999,998 (depending on the scaling factor)
Default 10.0000 (PAD tracks PA)
Response PAD: *PAD10.0000

See Also GOL, PA, PAA, PADA, SCLD, SCALE

Product Rev

6K 5.0

The Path Deceleration (PAD) command specifies the path deceleration to be used with linearly interpolated
moves (GOL), and all contouring moves (PLIN , PARCM, PARCOM, PARCOP, PARCP). For both the linear
interpolated and the contouring moves, the path deceleration refers to the deceleration experienced by the load
as motion slows along the path. For linearly interpolated moves, the deceleration of each individual axis is
dependent on the distance it contributes to the total path traveled by the load. In contouring paths, the
deceleration of each individual axis is dependent on the direction of travel in the X-Y plane.

UNITS OF MEASURE and SCALING : refer to page 16.

The path deceleration remains set until you change it with a subsequent path deceleration command.
Decelerations outside the valid range are flagged as an error, with a message *INVALID DATA-FIELD x , where x
is the field number. When an invalid deceleration is entered the previous deceleration value is retained.

If the path deceleration (PAD) command has not been entered, the path acceleration (PA) command will set the
path deceleration rate. Once the path deceleration (PAD) command has been entered, the path acceleration
(PA) command no longer affects path deceleration. If PAD is set to zero (PADØ), then the path deceleration will
once again track whatever the PA command is set to.

Example: Refer to the path acceleration (PA) command example.

Command Descriptions 185

PADA Path Average Deceleration
Type Motion (S-Curve); Motion (Linear Interpolated)
Syntax <!>PADA<r>
Units r = units/sec/sec (scalable by SCLD)
Range 0.00001-39,999,998 (depending on the scaling factor)
Default 10.00 (PADA tracks PAA)
Response PADA: *PADA10.0000

See Also DRES, PA, PAA, PAD, SCLD, SCALE

Product Rev

6K 5.0

Use the Path Average Deceleration (PADA) command to specify the average deceleration for an S-curve path
profile. S-curve profiling provides smoother motion control by reducing the rate of change in acceleration and
deceleration; this accel/decel rate of change is known as jerk. S-curve profiling can improve position tracking
performance in linear interpolation applications (not contouring). S-curve profiling is not available for
contouring applications. Refer to page 13 for details on S-curve profiling.

NOTE: Path scaling (SCLD) affects PADA the same as it does for PAD. Refer to page 16 for details on scaling.

Example: Refer to the path average acceleration (PAA) command example.

[PANI] Position of ANI Inputs
Type Assignment or comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [ANI], ANIRNG, [FB], [CA], CMDDIR, PSET, SCALE, SCLD,
SFB, TANI, TPANI, TFB

Product Rev

6K 5.0

This command is available only to servo axes, and only if you have an analog input SIM in an extended
I/O brick.

The PANI operator is used to assign the analog input’s position information to a variable, or to make a
comparison against another value. The PANI value represents the analog input position after the affects of
distance scaling (SCLD), offset (PSET), and commanded direction polarity (CMDDIR).

The TPANI and PANI commands are designed for applications in which analog input is scaled and/or used as
position feedback. If you are using analog input to monitor an analog signal, the TANI and ANI commands
would be more appropriate (TANI and ANI values are measured in volts and are unaffected by scaling, offset,
or command direction polarity).

The PANI value is represented in analog-to-digital converter (ADC) units if scaling is disabled (SCALEØ). The
ADC has a 12-bit resolution, giving a range of +2047 to -2048 counts when using the full ±10V range of the
analog input (205 counts/volt). If scaling is enabled (SCALE1), an SCLD scale factor of 205 (the default value
when analog input feedback is selected) allows units of volts to be used.

NOTE: If you change the voltage range of the analog input (with the ANIRNG command), the resolution of the
PANI response will change accordingly. The default is ±10V (+2047 to -2048 counts).

Syntax: VARn=PANI.i where “n” is the variable number, “” is the number of the I/O brick, and “i ”
is I/O brick address where the analog input resides; or PANI can be used in an expression such as
IF(1PANI.10=2.3) . If no brick identifier () is provided, it defaults to 1. To understand the
I/O brick addressing convention, refer to page 6.

186 6K Series Command Reference

Example:
SCLD205 ; Set distance scaling to accommodate values in volts

; (205 counts/volt)
SCALE1 ; Enable scaling
DEL proge ; Delete program called proge
DEF proge ; Begin definition of program called proge
VAR4=1PANI.10 ; Position of the 2 nd analog input on SIM2 of I/O brick 1

; is assigned to variable 4
IF(1PANI.9<8.2) ; If position of 1 st analog input on SIM2 of I/O brick 1

; is < 8.2 volts, do the commands between IF and NIF
TREV ; Transfer revision level
NIF ; End if statement
END ; End definition of proge

PARCM Radius Specified CCW Arc Segment
Type Path Contouring
Syntax <!>PARCM<r>,<r>,<r>
Units r = units (scalable by the SCLD value)
Range 0.00000 - ±999,999,999
Default n/a
Response No response - Must be defining a path (DEF)

See Also PARCP, PARCOM, PARCOP, PRTOL, SCLD, SCALE

Product Rev

6K 5.0

The Radius Specified CCW Arc Segment (PARCM) command is used to specify the endpoints and the radius of
a counter-clockwise arc segment. The placement, length, radius of curvature, and orientation of the arc are
completely specified by the endpoint and radius specifications of the arc segment and the endpoint of the
previous segment (current position). The direction of rotation in the X-Y plane will be counter-clockwise.

A complete circle cannot be specified with a PARCM command, because the center is arbitrary. Use the
PARCOM command for circles.

Command Syntax: PARCM<Xend>,<Yend>,<Radius>

Segment endpoint position specifications may be either absolute (PAB1) with respect to user defined segment
start coordinates, or incremental (PABØ), relative to the start of each individual segment. The first two
numbers following the PARCM command specify the X endpoint and the Y endpoint, respectively.

Radius specifications are signed values. A positive radius specifies an arc which is 180 degrees or less. A
negative radius specifies an arc which is 180 degrees or more. The last number of the PARCM command
specifies the radius.

UNITS OF MEASURE and SCALING : refer to page 16 or to the SCLD description.

Example
PV5 ; Set path velocity to 5 units/sec
PA50 ; Set path acceleration to 50 units/sec/sec
PAD100 ; Set path deceleration to 100 units/sec/sec
PSET0,0 ; Set absolute position to 0,0
DEF prog1 ; Begin definition of path named prog1
PAXES1,2 ; Set axes 1 and 2 as the X and Y contouring axes
PAB0 ; Set to incremental coordinates
POUT1001 ; Output pattern during first arc: onboard outputs 1 & 4 are

; on and outputs 2 & 3 are off
PARCM5,5,5 ; Specify incremental X-Y endpoint position and radius arc

; <180 degrees for 1/4 circle counter-clockwise arc
POUT1100 ; Output pattern during second arc: onboard outputs 1 & 2 are

; on and outputs 3 & 4 are off
PARCP5,-5,-5 ; Specify incremental X-Y endpoint position and radius arc

; >180 degrees for 3/4 circle clockwise arc
END ; End definition of path prog1
PCOMP prog1 ; Compile path prog1
PRUN prog1 ; Execute path prog1
OUT0000 ; Turn off the first four onboard outputs

Command Descriptions 187

PARCOM Origin Specified CCW Arc Segment
Type Path Contouring
Syntax <!>PARCOM<r>,<r>,<r>,<r>
Units r = units (scalable with the SCLD value)
Range 0.00000 - ±999,999,999
Default n/a
Response No response - Must be defining a path (DEF)

See Also PARCOP, PARCM, PARCP, PRTOL, SCLD, SCALE

Product Rev

6K 5.0

The Origin Specified CCW Arc Segment (PARCOM) command is used to specify the coordinates necessary to
create a counter-clockwise arc segment. The placement, length, radius of curvature, and orientation of the arc
are completely specified by the endpoint and center specifications of the arc segment and the endpoint of the
previous segment (current position). The direction of rotation in the X-Y plane will be counter-clockwise.

Command Syntax: PARCOM<Xend>,<Yend>,<Xcenter>,<Ycenter>

Segment endpoint position specifications may be either absolute (PAB1) with respect to user defined segment
start coordinates, or incremental (PABØ), relative to the start of each individual segment. The first two
numbers following the PARCOM command specify the X endpoint and the Y endpoint, respectively.

Center position specifications are always incremental, relative to the start of the arc segment. The last two
numbers following the PARCOM command specify the X center point and Y center point coordinates,
respectively.

UNITS OF MEASURE and SCALING : refer to page 16 or to the SCLD description.

Example:
PV5 ; Set path velocity to 5 units/sec
PA50 ; Set path acceleration to 50 units/sec/sec
PAD100 ; Set path deceleration to 100 units/sec/sec
PSET0,0 ; Set absolute position to 0,0
DEF prog1 ; Begin definition of path named prog1
PAXES1,2 ; Set axes 1 and 2 as the X and Y contouring axes
PAB0 ; Set to incremental coordinates
POUT1001 ; Output pattern during first arc: onboard outputs 1 & 4 are

; on and outputs 2 & 3 are off
PARCOM5,5,0,5 ; Specify incremental X-Y endpoint position and X-Y center

; position for quarter circle counter-clockwise arc
POUT1100 ; Output pattern during second arc: onboard outputs 1 & 2 are

; on and outputs 3 & 4 are off
PARCOP0,0,5,0 ; Specify incremental X-Y endpoint position and X-Y center

; position for full circle clockwise arc
END ; End definition of path prog1
PCOMP prog1 ; Compile path prog1
PRUN prog1 ; Execute path prog1
OUT0000 ; Turn off the first four onboard outputs

188 6K Series Command Reference

PARCOP Origin Specified CW Arc Segment
Type Path Contouring
Syntax <!>PARCOP<r>,<r>,<r>,<r>
Units r = units (scalable by the SCLD value)
Range 0.00000 - ±999,999,999
Default n/a
Response No response - Must be defining a path (DEF)

See Also PARCOM, PARCM, PARCP, PRTOL, SCLD, SCALE

Product Rev

6K 5.0

The Origin Specified CW Arc Segment (PARCOP) command is used to specify the coordinates necessary to
create a clockwise arc segment. The placement, length, radius of curvature, and orientation of the arc are
completely specified by the endpoint and center specifications of the arc segment and the endpoint of the
previous segment (current position). The direction of rotation in the X-Y plane will be clockwise.

Command Syntax: PARCOP<Xend>,<Yend>,<Xcenter>,<Ycenter>

Segment endpoint position specifications may be either absolute (PAB1) with respect to user defined segment
start coordinates, or incremental (PABØ), relative to the start of each individual segment. The first two
numbers following the PARCOP command specify the X endpoint and the Y endpoint, respectively.

Center position specifications are always incremental, relative to the start of the arc segment. The last two
numbers following the PARCOP command specify the X center point and Y center point coordinates,
respectively.

UNITS OF MEASURE and SCALING : refer to page 16 or to the SCLD description.

Example: Refer to the PARCOM command example.

PARCP Radius Specified CW Arc Segment
Type Path Contouring
Syntax <!>PARCP<r>,<r>,<r>
Units r = units (scalable by the SCLD value)
Range 0.00000 - ±999,999,999
Default n/a
Response No response - Must be defining a path (DEF)

See Also PARCM, PARCOM, PARCOP, PRTOL, SCLD, SCALE

Product Rev

6K 5.0

The Radius Specified CW Arc Segment (PARCP) command is used to specify the endpoints and the radius of a
clockwise arc segment. The placement, length, radius of curvature, and orientation of the arc are completely
specified by the endpoint and radius specifications of the arc segment and the endpoint of the previous
segment (current position). The direction of rotation in the X-Y plane will be clockwise.

A complete circle cannot be specified with a PARCP command, because the center is arbitrary. Use the
PARCOP command for circles.

Command Syntax: PARCP<Xend>,<Yend>,<Radius>

Segment endpoint position specifications may be either absolute (PAB1)with respect to user defined segment
start coordinates, or incremental (PABØ), relative to the start of each individual segment. The first two
numbers following the PARCP command specify the X endpoint and the Y endpoint, respectively.

Radius specifications are signed values. A positive radius specifies an arc which is 180 degrees or less. A
negative radius specifies an arc which is 180 degrees or more. The last number of the PARCP command
specifies the radius.

UNITS OF MEASURE and SCALING : refer to page 16 or to the SCLD description.

Example: Refer to the PARCM command example.

Command Descriptions 189

PAXES Set Contouring Axes
Type Path Contouring
Syntax <!>PAXES<i>,<i>,<i>,<i>
Units Each <i>: X axis, Y axis, Tangent axis, Proportional axis
Range i = 1-8 (product dependent)
Default 1,2,0,0
Response No response - Must be defining a path (DEF)

See Also DEF, DRES, END, ERES, PCOMP, PPRO, PRUN, SCLD, TSKAX

Product Rev

6K 5.0

The Set Contouring Axes (PAXES) command defines the axes to be used in the current path definition (syntax:
PAXES<Xaxis>,<Yaxis>,<Tangent>,<Proportional>). The X and Y axes must be specified, but the Tangent
and Proportional axes are optional.

If no axis number is specified for the Tangent or Proportional axes, it signifies that the Tangent or
Proportional axes are not included in that path definition. The axis specification for the entire path is done
with this command. The PAXES command should be given prior to any contour segments.

NOTES

• For products that control only 2 axes of motion, the Tangent and Proportional axes are not available.
• When using scaling (SCALE1), the units used for path distance, acceleration, and velocity is determined

by the SCLD value. For example, suppose you have 2 servo axes (axes 1 & 2) involved in contouring,
both axes use encoder feedback with a resolution of 4000 counts/rev, axis 1 uses a 10:1 (10 turns per
inch) leadscrew and axis 2 uses a 5:1 (5 turns per inch) lead screw, and you want to program in inches.
For this application you would use the SCLD40000,20000 command to establish path motion units in
inches: distance is inches, acceleration is inches/sec/sec, and velocity is inches/sec.

• When not using scaling (SCALE0), path motion units are based on the resolution (DRES for steppers,
ERES for servos) of axis 1. If multi-tasking is used, path motion units are based on the resolution of the
first (lowest number) axis associated with the task (TSKAX).

Example: (see PCOMP)

[PC] Position Commanded
Type Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also ERES, [FB], GOWHEN, [PCC], [PE], [PER], PSET, SCALE,
SCLD, SMPER, TAS, TFB, TPC, TPCC, TPE, TPER

Product Rev

6K 5.0

Use PC operator to assign the current commanded position (scalable by SCLD) of each axis to a variable, or to
make a comparison against another value. If you issue a PSET command, the commanded position value will
be offset by the PSET command value.

Servo Axes: The PC value is measured in encoder or analog input (ANI) counts. The commanded position
(PC) and the actual position (FB) are used in the control algorithm to calculate the position
error (PC - FB = PER) and thereby determine the corrective control signal.

Stepper Axes: The PC value is measured in commanded counts (“motor counts”).

UNITS OF MEASURE and SCALING : refer to page 16.

Syntax: VARn=aPC where “n” is the variable number, and “a” is the axis, or PC can be used in an expression
such as IF(1PC>5Ø). The PC command must be used with an axis specifier or it will default to
axis 1 (e.g., 1PC, 2PC, etc.).

Example:
VAR1=1PC ; Commanded position for axis 1 is assigned to variable 1
IF(2PC<50) ; If the commanded position for axis 2 is <50, do the IF statement
VAR2=2PC+500 ; Commanded position for axis 2 plus 500 is assigned to variable 2
NIF ; End IF statement

190 6K Series Command Reference

[PCC] Captured Commanded Position
Type Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also CMDDIR, ENCCNT, INFNC, [PC], [PCMS], PSET, SCALE, SCLD,
SFB, [TRIG], TRGLOT, TPC, TPCC, TTRIG

Product Rev

6K 5.0

Use the PCC operator to assign the captured commanded position of a specific axis to a variable, or to make a
comparison against another value.

Syntax : VARn=aPCCc where “n” is the variable number, “a” is the axis, and “c” designates trigger A or B for the axis, or
M for the MASTER TRIG input (see table below); or PCC can be used in an expression such as IF(1PCCB>2345Ø) . The
PCC operator must be used with an axis specifier or it will default to axis 1 (e.g., 1PCCA, 2PCCB, 5PCCM, etc.).

Trigger Input (Axis 1-4
“ TRIGGERS/OUTPUTS” connector) *

Dedicated
Axis

PCC
Syntax

Trigger Input (Axis 5-8
“ TRIGGERS/OUTPUTS” connector) *

Dedicated
Axis

PCC
Syntax

Pin 23, Trigger 1A 1 1PCCA Pin 23, Trigger 5A 5 5PCCA
Pin 21, Trigger 1B 1 1PCCB Pin 21, Trigger 5B 5 5PCCB
Pin 19, Trigger 2A 2 2PCCA Pin 19, Trigger 6A 6 6PCCA
Pin 17, Trigger 2B 2 2PCCB Pin 17, Trigger 6B 6 6PCCB
Pin 15, Trigger 3A 3 3PCCA Pin 15, Trigger 7A 7 7PCCA
Pin 13, Trigger 3B 3 3PCCB Pin 13, Trigger 7B 7 7PCCB
Pin 11, Trigger 4A 4 4PCCA Pin 11, Trigger 8A 8 8PCCA
Pin 9, Trigger 4B 4 4PCCB Pin 9, Trigger 8B 8 8PCCB

* The number of trigger inputs available varies by product (refer to your product’s Installation Guide).

To use an axis position captured with the MASTER TRIG input, use aPCCM, where “a” can be any axis number.

About Position Capture: The commanded position can be captured only by a trigger input that is defined as
“trigger interrupt” input with the INFNCi-H command (see INFNC for details). Each trigger input, when
configured as a “trigger interrupt” input, is dedicated to capture the position of a specific axis (see table
above). When a “trigger interrupt” input is activated, the commanded position of the dedicated axis is
captured and the position is available through the use of the PCC operator and the TPCC display command.

Note for Stepper Axes: By default, stepper axes capture only the commanded position. However, if the axis
has Encoder Capture Mode enabled with the ENCCNT command, only the encoder position is captured.

Position Capture Status, Longevity of Captured Position: Use the TTRIG and TRIG commands to ascertain
if a trigger interrupt input has been activated. TTRIG displays the status as a binary report, and TRIG is an
assignment/comparison operator for using the status information in a conditional expression (e.g., in an IF
statement). Once the captured commanded position value is assigned/compared with the PCC operator, the
TTRIG/TRIG status bit for that trigger input is cleared; but the position information remains available until it is
overwritten by a subsequent position capture from the same trigger input.

Position Capture Accuracy: The commanded position capture accuracy is ±1 count.

Scaling and Position Offset: If scaling is enabled (SCALE1), the commanded position is scaled by the
distance scaling factor (SCLD). If scaling is not enabled (SCALEØ), the value assigned will be actual
commanded counts. If you issue a PSET (establish absolute position reference) command, any previously
captured commanded positions will be offset by the PSET command value.

Example:
INFNC1-H ; Assign trigger input 1A as trigger interrupt input for axis 1
INFNC3-H ; Assign trigger input 2A as trigger interrupt input for axis 2
VAR1=1PCCA ; Assign captured commanded position of axis 1 to variable 1

; (position was captured when trigger input 1A became active)
IF(2PCCA<40) ; If the captured commanded position on axis 2

; (captured when trigger input 2A became active) is
; less than 40, do the IF statement

VAR2=1PCCA+10 ; Add 10 to the captured commanded position on axis 1
; (captured when trigger input 1A became active) and
; assign the sum to variable #2

NIF ; End IF statement

Command Descriptions 191

[PCE] Position of Captured Encoder
Type Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also CMDDIR, ENCCNT, ENCPOL, INFNC, [PCMS], [PE], PSET, SCALE,
SCLD, SFB, TPCE, [TRIG], TRGLOT, TTRIG

Product Rev

6K 5.0

Use the PCE operator to assign the captured encoder position of a specific axis to a variable, or to make a
comparison against another value.

Syntax : VARn=aPCEc where “n” is the variable number, “a” is the axis, and “c” designates trigger A or B for the axis, or
M for the MASTER TRIG input (see table below); or PCE can be used in an expression such as IF(1PCEB>2345Ø) . The
PCE operator must be used with an axis specifier or it will default to axis 1 (e.g., 1PCEA, 2PCEB, 5PCEM, etc.).

Trigger Input (Axis 1-4
“ TRIGGERS/OUTPUTS” connector) *

Dedicated
Axis

PCE
Syntax

Trigger Input (Axis 5-8
“ TRIGGERS/OUTPUTS” connector) *

Dedicated
Axis

PCE
Syntax

Pin 23, Trigger 1A 1 1PCEA Pin 23, Trigger 5A 5 5PCEA
Pin 21, Trigger 1B 1 1PCEB Pin 21, Trigger 5B 5 5PCEB
Pin 19, Trigger 2A 2 2PCEA Pin 19, Trigger 6A 6 6PCEA
Pin 17, Trigger 2B 2 2PCEB Pin 17, Trigger 6B 6 6PCEB
Pin 15, Trigger 3A 3 3PCEA Pin 15, Trigger 7A 7 7PCEA
Pin 13, Trigger 3B 3 3PCEB Pin 13, Trigger 7B 7 7PCEB
Pin 11, Trigger 4A 4 4PCEA Pin 11, Trigger 8A 8 8PCEA
Pin 9, Trigger 4B 4 4PCEB Pin 9, Trigger 8B 8 8PCEB

* The number of trigger inputs available varies by product (refer to your product’s Installation Guide).

To use an axis position captured with the MASTER TRIG input, use aPCEM, where “a” can be any axis number.

About Position Capture: The encoder position can be captured only by a trigger input that is defined as
“trigger interrupt” input with the INFNCi-H command (see INFNC command). Each trigger input, when
configured as a “trigger interrupt” input, is dedicated to capture the position of a specific axis (see table
above). When a “trigger interrupt” input is activated, the encoder position of the dedicated axis is captured
and the position is available through the use of the PCE operator and the TPCE display command. Stepper
Axes: By default, stepper axes capture only the commanded position. To capture the encoder position, the
axis must be in the Encoder Capture Mode (see ENCCNT command).

Position Capture Status, Longevity of Captured Position: Use the TTRIG and TRIG commands to ascertain
if a trigger interrupt input has been activated. TTRIG displays the status as a binary report, and TRIG is an
assignment/comparison operator for using the status information in a conditional expression (e.g., in an IF
statement). Once the captured encoder position value is assigned/compared with the PCE operator, the
TTRIG/TRIG status bit for that trigger input is cleared; but the position information remains available until it is
overwritten by a subsequent position capture from the same trigger input.

Position Capture Accuracy: The encoder position capture accuracy is ±1 encoder count.

Scaling and Position Offset: If scaling is enabled (SCALE1), the encoder position is scaled by the distance
scaling factor (SCLD). If scaling is not enabled (SCALEØ), the value assigned will be actual encoder counts. If
you issue a PSET (establish absolute position reference) command, any previously captured encoder positions
will be offset by the PSET command value.

Example:
INFNC1-H ; Assign trigger input 1A as trigger interrupt input for axis 1
INFNC3-H ; Assign trigger input 2A as trigger interrupt input for axis 2
VAR1=1PCEA ; Assign captured encoder position of axis 1 to variable 1

; (position was captured when trigger input 1A became active)
IF(2PCEA<4000) ; If the captured encoder position on axis 2

; (captured when trigger input 2A became active) is
; less than 4000, do the IF statement

VAR2=1PCEA+10 ; Add 10 to the captured encoder position on axis 1
; (captured when trigger input 1A became active) and
; assign the sum to variable #2

NIF ; End IF statement

192 6K Series Command Reference

[PCME] Position of Captured Master Encoder
Type Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also INFNC, MEPOL, MESND, [PME], [PCMS], PMECLR, PMESET, TPCME,
TPME, TPCMS

Product Rev

6K 5.0

Use the PCME operator to assign the captured master encoder position to a variable, or to make a comparison
against another value. The master encoder is connected to the connector labeled “Master Encoder.”

Syntax: VARn=PCME where “n” is the variable number; or PCME can be used in an expression such as
IF(PCME>2345Ø) .

About Position Capture: The master encoder position can be captured only by the Master Trigger input
(labeled “MASTER TRIG”), and only when that input is defined as a “trigger interrupt” input with the
INFNC17-H command (see INFNC command). When the “trigger interrupt” input is activated (active edge),
the master encoder position is captured and the position is available through the use of the PCME operator and
the TPCME display command.

Position Capture Status, Longevity of Captured Position: Use the TTRIG and TRIG commands to ascertain
if a trigger interrupt input has been activated. TTRIG displays the status as a binary report, and TRIG is an
assignment/comparison operator for using the status information in a conditional expression (e.g., in an IF
statement). Once the captured master encoder position value is assigned/compared with the PCME operator,
TTRIG/TRIG status bit #17 is cleared; but the position information remains available until it is overwritten by
a subsequent position capture from the master trigger input.

Position Capture Accuracy: The master encoder position capture accuracy is ±1 encoder count.

Scaling and Position Offset: The PCME value is always in master encoder counts; it is never scaled. If you
issue a PMESET (establish absolute position reference) command, any previously captured master encoder
positions will be offset by the PMESET command value.

Example:
INFNC17-H ; Assign master trigger as trigger interrupt input for the

; master encoder
VAR1=PCME ; Assign captured master encoder position to variable 1

; (position was captured when master trigger became active)
IF(PCME<4000) ; If the captured master encoder position

; (captured when master trigger input became active) is
; less than 4000, do the IF statement

VAR2=PCME+10 ; Add 10 to the captured master encoder position
; (captured when master trigger input became active) and
; assign the sum to variable #2

NIF ; End IF statement

Command Descriptions 193

[PCMS] Captured Master Cycle Position
Type Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also CMDDIR, ENCCNT, ENCPOL, FOLMAS, INFNC, [PCC], [PCE],
[PE], PSET, SCALE, SCLMAS, SFB, TPCMS, [TRIG], TRGLOT,
TTRIG

Product Rev

6K 5.0

Use the PCMS operator to assign the captured master cycle position for a specific follower axis to a variable, or
to make a comparison against another value.

PCMS (like PMAS) is unique among position assignment variables, because its value rolls over to zero each
time the entire master cycle length (FMCLEN) has been traveled. Thus, the captured PCMS value is essentially a
snap-shot of the position relative to the master cycle at the time of the capture.

The master must be assigned first (FOLMAS command) before this operator will be useful.

Syntax : VARn=aPCMSc where “n” is the variable number, “a” is the axis, and “c” designates trigger A or B for the axis, or
M for the MASTER TRIG input (see table below); or PCMS can be used in an expression such as IF(1PCMSB>2311) . The
PCMS operator must be used with an axis specifier or it will default to axis 1 (e.g., 1PCMSA, 2PCMSB, 5PCMSM, etc.).

Trigger Input (Axis 1-4
“ TRIGGERS/OUTPUTS” connector) *

Dedicated
Axis

PCMS
Syntax

Trigger Input (Axis 5-8
“ TRIGGERS/OUTPUTS” connector) *

Dedicated
Axis

PCMS
Syntax

Pin 23, Trigger 1A 1 1PCMSA Pin 23, Trigger 5A 5 5PCMSA

Pin 21, Trigger 1B 1 1PCMSB Pin 21, Trigger 5B 5 5PCMSB

Pin 19, Trigger 2A 2 2PCMSA Pin 19, Trigger 6A 6 6PCMSA

Pin 17, Trigger 2B 2 2PCMSB Pin 17, Trigger 6B 6 6PCMSB

Pin 15, Trigger 3A 3 3PCMSA Pin 15, Trigger 7A 7 7PCMSA

Pin 13, Trigger 3B 3 3PCMSB Pin 13, Trigger 7B 7 7PCMSB

Pin 11, Trigger 4A 4 4PCMSA Pin 11, Trigger 8A 8 8PCMSA
Pin 9, Trigger 4B 4 4PCMSB Pin 9, Trigger 8B 8 8PCMSB

* The number of trigger inputs available varies by product (refer to your product’s Installation Guide).

To use a position captured with the MASTER TRIG input, use aPCMSM, where “a” can be any axis number.

About Position Capture: The master cycle position can be captured only by a trigger input that is defined as
“trigger interrupt” input with the INFNCi-H command (see INFNC command). Each trigger input, when
configured as a “trigger interrupt” input, is dedicated to capture the position of a specific axis (see table above).
When a “trigger interrupt” input is activated, the master cycle position of the dedicated axis is captured and the
position is available through the use of the PCMS operator and the TPCMS display command.

Position Capture Status, Longevity of Captured Position: Use the TTRIG and TRIG commands to ascertain
if a trigger interrupt input has been activated. TTRIG displays the status as a binary report, and TRIG is an
assignment/comparison operator for using the status information in a conditional expression (e.g., in an IF
statement). Once the captured master cycle position value is assigned/compared with the PCMS operator, the
TTRIG/TRIG status bit for that trigger input is cleared; but the position information remains available until it is
overwritten by a subsequent position capture from the same trigger input.

Position Capture Accuracy: The master cycle position is interpolated; the capture accuracy is 50 µs
multiplied by the velocity of the axis at the time the trigger input was activated.

Scaling and Position Offset: If scaling is enabled (SCALE1), the master source position is scaled by the
distance scaling factor (SCLMAS). If scaling is not enabled (SCALEØ), the value assigned will be actual counts
from the commanded or encoder master source as selected with the FOLMAS command. If you issue a PSET
(establish absolute position reference) command, any previously captured master cycle positions will be offset
by the PSET command value.

194 6K Series Command Reference

PCOMP Compile a Profile or Program
Type Compiled Motion; Path Contouring; PLC Program
Syntax <!>PCOMP<t>
Units t = text (name of program/path)
Range Text name of 6 characters or less
Default n/a
Response n/a

See Also DEF, DRES, END, GOBUF, GOWHEN, MEMORY, PA, PAA, PAD, PADA,
PAB, PARCOM, PARCOP, PARCM, PARCP, PAXES, PEXE, PLOOP, PL,
PLC, PLCP, PLIN, PLN, POUTn, PRUN, SCLD, PUCOMP, PULSE, SCANP,
[SEG], [SS], TDIR, TMEM, TRGFN, TSEG, TSS

Product Rev

6K 5.0

Use the PCOMP command to compile multi-axis contours, compiled (GOBUF) profiles for individual axes, and
compiled PLCP programs for PLC Scan Mode. (For additional detail on contouring and compiled motion,
refer to the Custom Profiling chapter in the Programmer's Guide.)

“Programs” vs. “Compiled Profiles & Programs”:

• Programs are defined with the DEF and END commands, as demonstrated in the Program
Development Scenario in the Programmer's Guide.

• Compiled Profiles are defined like programs (using the DEF and END commands), but are compiled
with the PCOMP command and executed with the PRUN command. A compiled profile could be a
multi-axis contour (a series of arcs and lines), an individual axis profile (a series of GOBUF
commands), or a compound profile (combination of multi-axis contours and individual axis
profiles).

• Compiled PLC programs are defined with DEF PLCPi and END, compiled with PCOMP, and are
normally executed in the PLC Scan Mode with the SCANP.

Compiling and Storing Compiled Paths & Programs:

Your controller's memory has two partitions: one for storing programs (“program” memory) and one
for storing profiles & program segments compiled with the PCOMP command (“compiled” memory).
The allocation of memory to these two areas is controlled with the MEMORY command.

Programs intended to be compiled are stored in program memory. After they are compiled with the
PCOMP command, they remain in program memory and the segments (see segment command list
below) from the compiled profile are stored in compiled memory.

• Contouring segments: PARCM, PARCOM, PARCOP, PARCP, PLIN

• Compiled Motion segments: GOBUF, PLOOP, GOWHEN, TRGFN, POUTA, POUTB, POUTC, POUTD

• PLC Program segments: IF , ELSE, NIF , L, LN, OUT, EXE, PEXE, VARI, VARB

The TDIR command uses “COMPILED AS A PATH” to denote the programs compiled as a compiled
profile, and “COMPILED AS A PLC PROGRAM” to denote the programs compiled as a PLC programs.
TDIR also reports the amount of program storage available, as does the TSEG command. System
status bit #29 indicates that compiled memory is 75% full, and system status bit #30 indicates that
compiled memory is completely full. (Use TSSF, TSS and SS to work with system status bits.)

If a compile (PCOMP) fails, system status bit #31 (see TSSF, TSS and SS) will be set. This status bit is
cleared on power-up, reset, or after a successful compile. Possible causes for a failed compile are:

• Errors in profile design (e.g., change direction while at non-zero velocity; distance and velocity
equate to < 1 count/system update; preset move profile ends in non-zero velocity).

• Profile will cause a Following error (see TFSF, TFS and [FS] commands).
• Out of memory (see system status bit #30).
• Axis already in motion at the time of a PCOMP command.
• Loop programming errors (e.g., no matching PLOOP or PLN; more than four embedded

PLOOP/END loops).
• PLCP program contains invalid commands or command parameters.

Command Descriptions 195

Conditions That Require a Re-Compile (Contouring and Compiled Motion only):

• If it is desired to change a compiled path's velocity, acceleration, or deceleration, the values must
be changed and then the path must be re-compiled.

• If the scaling factors are changed, the program must be downloaded again.

• Compiled Motion ONLY: After compiling (PCOMP) and running (PRUN) a compiled profile, the
profile segments will be deleted from compiled memory if you cycle power or issue a RESET
command.

COMPILED MOTION

When using compiled loops (PLOOP and PLN), the last segment within the loop must end at zero velocity or
there must be a final GOBUF segment placed outside the loop. Otherwise an error will result when the
profile is compiled. The error is “ERROR: MOTION ENDS IN NON-ZERO VELOCITY-AXIS n ”.

PLC PROGRAM EXAMPLE : see PLCP command description.

CONTOURING EXAMPLE
DEF prog1 ; Begin definition of program named prog1
PAXES1,2,3,4 ; Set axes 1, 2, 3, & 4 as the X, Y, Tangent, &

; Proportional axes, respectively
PPRO2.25 ; Proportional axis path ratio = 2.25
; ***
; * Put *
; * MULTIPLE MOTION SEGMENT DEFINITIONS *
; * Here *
; ***
END ; End definition of path prog1
PCOMP prog1 ; Compile path prog1
PRUN prog1 ; Execute path prog1

COMPILED MOTION EXAMPLE (see profile below)
DEF prog2 ; Begin definition of program named prog2
A10,10 ; Set A, V, and D values for axes 1 and 2
V2,2
D2000,2000
GOBUF11 ; First segment of motion for axes 1 and 2
V4,4 ; New A,V, and D values
AD50,50
D1000,1000
GOBUF11 ; Second segment
END ; End definition of prog2
PCOMP prog2 ; Compile prog2
PRUN prog2 ; Execute prog2

1000 2000 3000

4

2

velocity

distance

196 6K Series Command Reference

[PE] Position of Encoder
Type Assignment or Comparison
Syntax See below
Units Encoder counts, or scaled by SCLD
Range n/a
Default n/a
Response n/a

See Also CMDDIR, ENCCNT, ENCPOL, ENCSND, [FB], GOWHEN, INFNC, [PC],
[PCE], [PER], PESET, PSET, SCALE, SCLD, SFB, TFB, TPE

Product Rev

6K 5.0

The Position of Encoder (PE) operator is used to assign one of the encoder register values to a variable, or to
make a comparison against another value. If the encoder has been configured to receive step and direction input
(ENCSND), the PE operator will report the position as counted from the step and direction signal.

Stepper axes: If the ENCCNT1 mode is enabled PE reports the encoder position, but in ENCCNT0 mode (the
factory default setting) the PE report represents the commanded position.

UNITS OF MEASURE and SCALING : refer to page 16 or to the SCLD command.

If you issue a PSET command, the encoder position value will be offset by the PSET command value. If you
are using a stepper axis in the ENCCNT1 mode, use the PESET command instead.

Syntax: VARn=aPE where “n” is the variable number, and “a” is the axis, or PE can be used in an
expression such as IF(1PE>2345Ø) . The PE command must be used with an axis specifier or it
will default to axis 1 (e.g., 1PE, 2PE, etc.).

Example:
VAR1=1PE ; Encoder position for axis 1 is assigned to variable 1
IF(2PE<4000) ; If the encoder count for axis 2 is less than 4000,

; do the IF statement
VAR2=3PE+4000 ; Encoder position for axis 3 plus 4000 is assigned

; to variable 2
NIF ; End IF statement

[PER] Position Error
Type Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also CMDDIR, DRES, ENCPOL, ERES, SCLD, SFB, SMPER, TAS, TPER, TPE,
TPC

Product Rev

6K 5.0

(applicable to servo
axes only)

The Position Error (PER) operator is used to assign the current position error of each axis to a variable, or to
make a comparison against another value. The value assigned to the variable or the value against which the
comparison is made is measured in feedback device counts and is scaled by the distance scaling factor (SCLD),
if scaling is enabled with the SCALE1 command.

The position error is the difference between the commanded position and the actual position read by the
feedback device. This error is calculated every sample period and can be displayed at any time using the TPER
command.

Syntax: VARn=aPER where “n” is the variable number, and “a” is the axis, or PER can be used in an
expression such as IF(1PER>5Ø) . The PER command must be used with an axis specifier or it
will default to axis 1 (e.g., 1PER, 2PER, etc.).

Example:
VAR1=1PER ; Position error for axis 1 is assigned to variable 1
IF(2PER>2000) ; If the position error for axis 2 is >2000 encoder counts,

; do the IF statement (enable output #4)
OUTXXX1 ; Enable onboard output #4
NIF ; End IF statement

Command Descriptions 197

PESET Encoder Absolute Position Reference - Stepper Axes
Type Motion
Syntax <!><@>PESET<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units (absolute position of encoder)
Range ±999,999,999.99999
Default n/a
Response n/a

See Also AXSDEF, ENCCNT, ENCPOL, INFNC, [PCE], [PE], PMESET, PSET,
SCALE, SCLD, TPCE, TPE

Product Rev

6K 5.0

(applicable to stepper
axes only)

Use the PESET command to offset the current absolute encoder position to establish an absolute position
reference for the encoder reports (TPE, PE, TPCE, PCE). NOTE: PESET can only be used for axes that are
defined as stepper axes with the AXSDEF command. All PESET values entered are in encoder steps, scalable by
the SCLD value if scaling is enabled.

NOTE: If you issue a PESET command, any previously captured encoder positions (INFNCi-H or LIMFNCi- H
function) will be offset by the PESET value.

Example:
AXSDEF0000 ; Define axes 1-4 as stepper axes
ENCCNT1111 ; Place axes 1-4 in the encoder count referencing mode
PESET0,0,0,1000 ; Set absolute position on axes 1, 2, and 3 to zero,

; and axis 4 to 1000 units
TPE ; Display the new positions. The new encoder position

; report should be: *TPE0,0,0,1000

PEXE Execute a Compiled Program
Type PLC Mode Compiled Program Execution
Syntax i%PEXEt
Units i = Task Number

t = Program Name (6 characters or less)
Range i = 1-10
Default n/a
Response n/a

See Also EXE, GOBUF, PCOMP, PLCP, SCANP

Product Rev

6K 5.0

Use the PEXE command to start a compiled PLCP program, compiled contouring path, or compiled GOBUF
profile from within a compiled PLCP program. The PEXE command specifies the name of the compiled
program, and the task in which it will be launched. The program named in the PEXE command need not be
defined or compiled at the time the PLCP program is compiled; however, the program must be defined and
compiled before the SCANP or PRUN is issued. If no task number is assigned with a % prefix, then the task in
which the PLCP program is compiled (PCOMP) will be the task that runs the compiled program. Note, however,
that the PEXE program cannot be executed in the Task Supervisor (task 0).

The PLCP program will ignore the PEXE command if a currently running program is detected within the
specified task; therefore, the PEXE command can essentially only be used to initiate a new task with the
program it is launching. Like the INSELP command, the program launched by the PEXE command will not
interrupt a currently running program, nor will it interrupt a WAIT or T command. Also, if launching a
compiled contouring path or GOBUF profile, the PEXE will not interrupt motion already in progress.

CAUTION : Using the SCANP command to run a PLCP program in Scan mode will cause the PLCP program to
execute as often as every system update period (2 ms). A PEXE command used within a PLCP program
running in Scan mode could therefore attempt to launch a program in the specified task as often as every 2 ms.
This may not allow enough time for the program launched in the specified task by the PEXE command to
complete before the same PEXE command is issued again. As stated, the PLCP program will ignore the PEXE
command if a currently running program is detected or motion is in progress on the participating axes, so
timing must be considered when launching programs with the PEXE command.

To execute a non-compiled program from within a compiled PLCP program, use the EXE command.

Example:
DEF PLCP1 ; Define PLC program PLCP1
1%PEXE PLCP2 ; Launch compiled program PLCP2 in task 1
END
DEF PLCP2 ; Define PLC program PLCP2
OUT(VARB1) ; Modify outputs
END

198 6K Series Command Reference

PCOMP PLCP1 ; Compile PLCP1
PCOMP PLCP2 ; Compile PLCP2
SCANP PLCP1 ; Scan with program PLCP1
VARB1=h0000 ; Set VARB1
TOUT ; Check outputs (response is *TOUT0000_0000_0000_0000)
VARB1=b1010 ; Reassign VARB1
TOUT ; Check outputs again (response is *TOUT1010_0000_0000_0000)

[PI] PI (ππππ)
Type Operator (Trigonometric)
Syntax See examples below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [=], [+], [-], [*], [/], [&], [|], [^], [~], [ATAN],
[COS], IF, [SIN], [SQRT], [TAN], VAR

Product Rev

6K 5.0

The (PI) command is assigned the value 3.14159265. There are 2π radians in 360°. This command is useful
for doing trigonometric functions in radian units (RADIAN command).
Example:
VAR1=PI ; 3.14159265 is assigned to variable 1
VAR2=2 * PI ; 2 pi is assigned to variable 2

PL Define Path Local Mode
Type Path Contouring
Syntax <!>PL
Units n/a
Range b = 0 (work coordinates) or 1 (local coordinates)
Default 0
Response No response - Must be defining a path (DEF)

See Also PAB, PLC, PWC

Product Rev

6K 5.0

The Define Path Local Mode (PL) command is used to specify the use of either the Local coordinate system or
the Work coordinate system. Endpoints are allowed to be specified as absolute positions, and these positions
may either be in the Work or the Local coordinate system. Programming may switch between Local and Work
coordinates before any segment or group of segments.

When switching to Local coordinates, the starting coordinates of the next segment in the Local coordinate
system must be specified with the PLC command before the PL1 command is issued.

When using the Work coordinate system (PLØ), the starting coordinates of the next segment in the Work
coordinate system may be specified with the PWC command for the purpose of shifting the Work coordinate
system. If the PWC command is not given, the previous Work coordinate system is used.

Example:
PV5 ; Set path velocity to 5 units/sec
PA50 ; Set path acceleration to 50 units/sec/sec
PAD100 ; Set path deceleration to 100 units/sec/sec
DEF prog1 ; Begin definition of path named prog1
PAXES1,2 ; Set axes 1 and 2 as the X and Y contouring axes
PAB1 ; Set to absolute coordinates
PWC0,0 ; Specify X and Y data, work coordinates
PL0 ; Specify work coordinate system
PLIN1,1 ; Specify X-Y endpoint position to create a 45 degree angle line segment
PLC0,0 ; Specify X and Y data, local coordinates
PL1 ; Specify local coordinate system
PARCOP0,0,5,0 ; Specify incremental X-Y endpoint position and X-Y center

; position for full circle clockwise arc
PLIN0,11 ; Specify X-Y endpoint position to create a 90 degree angle line segment
PLC0,0 ; Specify X and Y data, local coordinates
PL1 ; Specify local coordinate system
PARCOP0,0,5,0 ; Specify incremental X-Y endpoint position and X-Y center

; position for full circle clockwise arc
PL0 ; Specify work coordinate system
PLIN0,0 ; Specify X-Y endpoint position to create a line segment back to 0,0
END ; End definition of path prog1
PCOMP prog1 ; Compile path prog1
PRUN prog1 ; Execute path prog1

Command Descriptions 199

PLC Define Path Local Coordinates
Type Path Contouring
Syntax <!>PLC<r>,<r>
Units 1st r = X coordinate units (scalable by the SCLD value)

2nd r = Y coordinate units (scalable by the SCLD value)
Range 0.00000 - ±999,999,999
Default n/a
Response No response - Must be defining a path (DEF)

See Also PAB, PL, SCLD, PWC, SCALE

Product Rev

6K 5.0

The Define Path Local Coordinates (PLC) command is used to specify the Local X -Y coordinate data required
for subsequent segment definition in the Local coordinate system. This command places the X -Y coordinate
value of the Local coordinate system at the beginning of the next segment. (The first <r> is the X coordinate, the
second <r> is the Y coordinate.) This command must be used before the PL1 command is given.

UNITS OF MEASURE and SCALING : refer to page 16 or to the SCLD description.

Example: Refer to Define Path Local Mode (PL) command example.

PLCP Compiled PLC Program
Type PLC Scan Program
Syntax <!>PLCPi
Units i = number of PLC program
Range 1-99
Default n/a
Response n/a

See Also DEF, ELSE, EXE, IF, L, LN, MEMORY, NIF, OUT, PCOMP, PEXE,
PRUN, PUCOMP, SCANP, TSCAN, VARI, VARB

Product Rev

6K 5.0

PLCP is not a command; it is used to identify a PLCP program to be defined (e.g., DEF PLCP2), compiled
(e.g., PCOMP PLCP2), and executed (e.g., SCANP PLCP2 or PRUN PLCP2). Up to 99 PLCP programs may be
defined, identified as PLCP1, PLCP2, PLCP3, and so on. The purpose of PLCP programs is to facilitate fast
I/O scanning.

The process of creating and executing a PLCP program is:

1. Define the PLCP program (DEF PLCPi statement, followed by commands from the list below, followed
by END). Only these commands are allowed in a PLCP program:

• IF , ELSE, and NIF (conditional branching) — see note below for limitations
• L and LN (loops)
• OUT (turn on a digital output)
• EXE (execute a program in a specific task — e.g., 2%EXE MOVE)
• PEXE (execute a program in a specific task — e.g., 3%PEXE PLCP4)
• VARI (integer variables).
• VARB (binary variables). Bitwise operations are limited to Boolean And (&), Boolean Inclusive Or

(|), and Boolean Exclusive Or (^).

2. Compile the PLCP program (PCOMP PLCPi). A compiled program runs much faster than a standard
program.

3. Execute the PLCP program (SCANP PLCPi). When the PLCP program is launched with the SCANP
command, it is executed in the “PLC Scan Mode”. The advantage of the PLC Scan Mode is that the
PLCP program is executed within a dedicated 0.5 ms time slot during every 2 ms system update period.
This gives the PLCP program faster throughput for monitoring and manipulating I/O. For more
information on how the PLCP program is executed with SCANP, refer to the SCANP command
description.

An alternative execution method is to use the PRUN command (PRUN PLCPi). This method is similar to
the SCANP PLCPi method, but will only run through the PLCP program once.

200 6K Series Command Reference

Memory Requirements: Most commands allowed in a PLCP program consume one segment of compiled
memory after the program is compiled with PCOMP; the exceptions are VARI and VARB (each consume 2
segments) and IF statements. Each IF conditional evaluation compounded with either an AND or an OR
operator consumes an additional segment (e.g., IF(IN.1=b1 AND 1AS.1=b0) consumes three segments of
compiled memory). The number of compounds is limited only by the memory available.

Conditional Expressions:

• Order of Evaluation. Because only
one level of parenthesis is allowed,
the order of evaluation of IF
conditionals is from left to right.
Refer to the flowchart for the
evaluation logic.

• Conditional expressions in a PLC
program use the non-scaled integer
(“raw”) operand values. Examples
of the “raw” operand values are:

NO

Evaluate

Compound = AND?Compound = OR?

FALSE

YES YES

TRUE

Get Next Conditional

Statement
Evaluates FALSE

NO

Statement
Evaluates TRUE

− The PE operator reports encoder counts not scaled by SCLD and not scaled by ERES.

− The ANI operator reports ADC counts from an analog input, not scaled by SCLD. Assuming the
default ANIRNG4 setting (+/-10V voltage range), 205 ADC counts = 1 volt.

− The DAC operator reports DAC counts (commanded position) not scaled by SCLD.

The only operands that are not allowed are: SIN , COS, TAN, ATAN, VCVT, SQRT, VAR, TW, READ, DREAD,
DREADF, DAT, DPTR, and PI .

Programming Example: Refer to the detailed, illustrated example in the SCANP command description.

PLIN Move in a Line
Type Path Contouring
Syntax <!><@>PLIN<r>,<r>
Units 1st r = X endpoint coordinate (scalable by the SCLD value)

2nd r = Y endpoint coordinate (scalable by the SCLD value)
Range 0.00000 - ±999,999,999
Default n/a
Response No response - Must be defining a path (DEF)

See Also PAB, PL, PLC, SCLD, PWC, SCALE

Product Rev

6K 5.0

The Define Line Segment (PLIN) command is used to specify a line segment. The placement, length, and
orientation of the line are completely specified by the endpoint of the line segment and the endpoint of the
previous segment (current position). Segment endpoint position specifications may be either absolute (PAB1)
with respect to the user defined coordinate system, or incremental (PABØ), relative to the start of each
individual segment.

When the PLIN command is received, the first value is taken as the X endpoint coordinate and the second
value is taken as the Y endpoint coordinate.

UNITS OF MEASURE and SCALING : refer to page 16 or to the SCLD description.

Example: Refer to Define Path Local Mode (PL) command example.

Command Descriptions 201

PLN Loop End, Compiled Motion
Type Compiled Motion
Syntax <@>PLN
Units n/a
Range b = 1 (end loop), 0 or X (don’t end loop)
Default n/a
Response No response; instead ends loop for compiled motion

See Also GOBUF, PCOMP, PLOOP, PRUN, PUCOMP

Product Rev

6K 5.0

The Loop End, Compiled Motion (PLN) command specifies the end of an axis-specific compiled motion
profile loop, as initiated with the PLOOP command.

Programming Example: see PLOOP.

PLOOP Loop Start, Compiled Motion
Type Compiled Motion
Syntax <@>PLOOP<i>,<i>,<i>,<i>,<i>,<i>,<i>,<i>
Units i = designated number of loops for specified axis
Range 0-2,147,483,647 (2 31-1)

0 = infinite loop
Default n/a
Response No response; instead starts loop for compiled motion

See Also GOBUF, PCOMP, PLN, PRUN, PUCOMP

Product Rev

6K 5.0

The PLOOP command specifies the beginning of an axis-specific profile loop. All subsequent segments defined
before the PLN command are included within that loop. The number in a given axis field specifies the number
of loops to be executed for that axis. If that number is a zero or blank, then the loop will be executed infinitely.
The PLOOP command can be nested up to four levels deep within a program.

When using compiled loops (PLOOP and PLN), the last segment within the loop must end at zero velocity or
there must be a final GOBUF segment placed outside (after) the loop. Otherwise an error will result when the
profile is compiled. The error is “ERROR: MOTION ENDS IN NON-ZERO VELOCITY-AXIS n ”.

The PLOOP command will consume one segment of compiled space.

Example:
DEF prog1 ; Begin definition of prog1
V1 ; Set velocity to 1 unit/sec
D1000 ; Set distance to 1000 units
GOBUF1 ; Segment of motion sent to buffer

PLOOP3 ; Start loop of the subsequent move profile

V10 ; Set velocity to 10 units/sec
D25000 ; Set distance to 25000 units
GOBUF1 ; First segment within loop sent to buffer

V2 ; Set velocity to 2 units/sec
D1000 ; Set distance to 1000 units
GOBUF1 ; Second segment of motion within loop sent to buffer

V1 ; Set velocity to 1 unit/sec
D25000 ; Set distance to 25000 units
GOBUF1 ; Third segment within loop sent to buffer

PLN1 ; Close loop

V.5 ; Set velocity to 0.5 units/sec
D100 ; Set distance to 100 units
GOBUF1 ; Segment of motion sent to buffer (outside loop)

END ; End definition of prog1

PCOMP prog1 ; Compile prog1
PRUN prog1 ; Execute prog1

202 6K Series Command Reference

[PMAS] Current Master Cycle Position
Type Following and Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also FMCNEW, FMCP, FOLMAS, FOLMD, [FS], GOWHEN, [PCMS], SCALE,
SCLMAS, TPMAS, TFS

Product Rev

6K 5.0

The PMAS operator is used to assign the master position register value to a variable, or to make a comparison
against another value. This value may be used for subsequent decision making, or for recording the cycle
position corresponding to some other event.

PMAS is unique among position assignment variables, because its value rolls over to zero each time the entire
master cycle length (FMCLEN value) has been traveled. If it is desired to WAIT or GOWHEN on a master cycle
position of the next master cycle, one master cycle length (value of FMCLEN) should be added to the master
cycle position specified in the argument. This allows commands that sequence follower events through a
master cycle to be placed in a loop. The WAIT or GOWHEN command at the top of the loop could execute, even
though the actual master travel had not finished the previous cycle. This is done to allow a PMAS value which
is equal to the master cycle length to be specified and reliably detected. When using PMAS with IF , UNTIL , or
WHILE arguments, the instantaneous PMAS value is used. Be careful to avoid specifying PMAS values that are
nearly equal to the master cycle length (FMCLEN), because rollover may occur before a PMAS sample is read.

The master must be assigned first (FOLMAS command) before this command will be useful.

If scaling is enabled (SCALE1), the PMAS value is scaled by the master scaling factor (SCLMAS). If scaling is
disabled (SCALEØ), the PMAS value is in counts.

Syntax: VARn=aPMAS where “n” is the variable number and “a” is the axis number, or PMAS can be used in
an expression such as IF(2PMAS>2345Ø) . The PMAS command must be used with an axis
specifier, or it will default to axis 1 (e.g., VAR1=1PMAS, IF(2PMAS>5ØØ) , etc.).

Example: (refer also to FOLEN example #2)
IF(2PMAS>4.3) ; If the master for axis 2 has traveled more than 4.3

; master user units then do the IF statement
OUT.2=b1 ; Set onboard output #2 to 1
NIF ; End of IF statement
VAR14=1PMAS ; Set VAR14 to axis 1's master cycle position

Command Descriptions 203

[PME] Position of Master Encoder
Type Assignment or Comparison
Syntax See below
Units Master Encoder counts
Range n/a
Default n/a
Response n/a

See Also MEPOL, MESND, [PCME], [PE], PMECLR, PMESET, TPCME,
TPME

Product Rev

6K 5.0

Use the PME operator to assign the current master encoder position to a variable, or to make a comparison
against another value. The master encoder is connected to the connector labeled “Master Encoder”. If you
issue a PMESET command, the encoder position value will be offset by the PMESET command value. The PME
value is always in encoder counts, it is never scaled.

Syntax: VARn=PME where “n” is the variable number, or PME can be used in an expression such as
IF(PME>16ØØØ).

Example:
VAR1=PME ; Master encoder position is assigned to variable 1
IF(PME<4000) ; If the master encoder count is less than 4000,

; do the IF statement
VAR2=PME+4000 ; Master encoder position plus 4000 is assigned to variable 2
NIF ; End IF statement

PMECLR Clear Master Encoder Absolute Position Reference
Type Motion
Syntax <!>PMECLR<r>
Units r = master encoder counts (not scalable)
Range ±999,999,999.99999
Default n/a
Response n/a

See Also MEPOL, MESND, [PCME], [PME], PMESET, PSET, TPCME, TPME

Product Rev

6K 5.0

Use the PMECLR command to remove any offset on the master encoder position reports (offset to master
encoder position is established with the PMESET command).

Example:
TPME ; Report master encoder position. For the sake of this example,

; let's say the response is *TPME10000 (master encoder is at
; absolute position 10,000).

PMESET20000 ; Change relative position of master encoder with offset
TPME ; Report new master encoder position with offset. New position

; response should now be: *TPME20000 (what was considered
; position 10,000 is now considered position 20,000).

PMECLR ; Clear any offset applied to the master encoder position
TPME ; Report master encoder position with no offsets.

; Response should be: *TPME10000.

PMESET Establish Master Encoder Absolute Position Reference
Type Motion
Syntax <!>PMESET<r>
Units r = master encoder counts (not scalable)
Range ±999,999,999.99999
Default n/a
Response n/a

See Also MEPOL, MESND, [PCME], [PME], PMECLR, PSET, TPCME, TPME

Product Rev

6K 5.0

Use the PMESET command to offset the current absolute position of the master encoder (connected to the
connector labeled “Master Encoder”) to establish an absolute position reference. To remove the offset, issue
the PMECLR command.

204 6K Series Command Reference

All PMESET values entered are in master encoder counts; this value is never scaled.

Example:
TPME ; Report master encoder position. For the sake of this example,

; let's say the response is *TPME10000 (master encoder is at
; absolute position 10,000).

PMESET20000 ; Change relative position of master encoder with offset
TPME ; Report new master encoder position with offset. New position

; response should now be: *TPME20000 (what was considered
; position 10,000 is now considered position 20,000).

PMECLR ; Clear any offset applied to the master encoder position
TPME ; Report master encoder position with no offsets.

; Response should be: *TPME10000.

PORT Designate Destination Communication (“COM”) Port
Type Communication Interface
Syntax <!>PORT<i>
Units i = port number
Range 1 (COM1), 2 (COM2)

NOTE: “COM1” is the “RS-232” or “ETHERNET” connector.
 “COM2” is the “RS-232/485” connector.

Default 1
Response n/a

See Also], [, BOT, DRPCHK, E, EOL, EOT, ERRDEF, ERRLVL, ERROK, ERRBAD,
LOCK, [READ], WRITE, XONXOFF

Product Rev

6K 5.0

The Designate Destination Port (PORT) command is used to determine which COM port is affected by the
DRPCHK, E, ECHO, BOT, EOL, EOT, ERROK, ERRBAD, ERRDEF, ERRLVL, and XONOFF commands. It also
specifies the port to which responses and prompts from stored programs should be sent.

The PORT command also selects the target port through which the WRITE and READ commands transmit
ASCII text strings. The DWRITE command (as well as all other RP240 commands) will affect the RP240
regardless of the PORT command setting. If no RP240 is detected, the commands are sent to the COM2 port.
DWRITE text strings are always terminated with a carriage return.

Example (The PORT command can be used to designate EOT parameters for both ports. Assume that port COM1 is
being used to communicate to the controller.)

PORT1 ; Select COM1 for EOT setup
EOT45,49,10 ; EOT for COM1 is -1<lf>
TPE ; Send "Transfer Position of Encoder" response to COM1

; using EOT 45,49,10
PORT2 ; Select COM2 for EOT setup
EOT45,50,10 ; EOT for COM2 is -2<lf>
TPC ; Send "Transfer Commanded Position" response to COM2

; using EOT 45,50,10

Example (The PORT command specifies both port setups and response destinations in a stored program.)
DEF qwe ; Begin definition of qwe
PORT1
EOT45,49,10 ; EOT for COM1 is -1<lf>
TPE ; Send "Transfer Position of Encoder" response to COM1

; using EOT 45,49,10
PORT2
EOT45,50,10 ; EOT for COM2 is -2<lf>
TPC ; Send "Transfer Commanded Position" response to COM2

; using EOT 45,50,10
END ; End definition of qwe

Command Descriptions 205

POUT Compiled Output
Type Path Contouring; Compiled Motion
Syntax <!>POUT<n> ...
Units n = axis identifier letter (for compiled motion only);

b = enable bit specific outputs (see page 6)
Range n = A-H for axes 1-8, respectively (for compiled motion only);

b = 0 (off), 1 (on), or X (don't change)
Default 0
Response n/a

See Also GOBUF, OUT, OUTEN, OUTFNC, OUTLVL, PCOMP, PRUN, PUCOMP

Product Rev

6K 5.0

Use the POUT command to control outputs during Contouring Motion or Compiled Motion. The syntax for the
POUT command depends on whether you are using it for Contouring or Compiled Motion:

Contouring: POUT Compiled Motion: POUTA (apply output pattern to the profile for axis #1)
POUTB (apply output pattern to the profile for axis #2)
POUTC (apply output pattern to the profile for axis #3)
POUTD (apply output pattern to the profile for axis #4)
POUTE (apply output pattern to the profile for axis #5)
POUTF (apply output pattern to the profile for axis #6)
POUTG (apply output pattern to the profile for axis #7)
POUTH (apply output pattern to the profile for axis #8)

You may use the POUT command to control any of the onboard outputs, as well as any outputs on external I/O
bricks, as long as they are left in the default function (OUTFNCi-A). Refer to page 6 to understand how to
address the outputs (onboard and on optional expansion I/O bricks) available on your 6K product.

If you attempt to change the state of an output that is not defined as an OUTFNCi-A (general-purpose) output,
the controller will respond with an error message (“OUTPUT BIT USED AS OUTFNC”) and the POUT
command will not be executed (but command processing will continue).

If you wish to set only one output value, instead of all outputs, use the bit select (.) operator, followed by the
number of the specified output. Contouring example: 2POUT.12-1 turns on only output 12 on I/O brick 2.
Compiled Motion example: 2POUTA.12-1 turns on only output 12 on I/O brick 2 for the axis 1 profile.

The POUT command consumes one segment of compiled memory.

The programmable outputs are sampled once per “system update” (2 ms).

Contouring ONLY:

The POUT command specifies the programmable output bit pattern to be applied to the outputs at the
beginning of the next segment and remain throughout that segment. The POUT command may be issued
before any segment definition command, and will affect all subsequent segments until a new POUT
command is issued. A POUT command will not take affect if there is no segment definition command
following it. To change the programmable outputs at the end of a path, the standard output (OUT)
command must be used after the path is executed. These segment-defined output patterns are stored as
part of the compiled path definition.

CONTOURING EXAMPLE : Refer to the PARCOM command example.

COMPILED MOTION EXAMPLES : (see next page)

206 6K Series Command Reference

COMPILED MOTION EXAMPLES:
OUTFNC3-A ; Default output function for onboard output 3
OUTFNC6-A ; Default output function for onboard output 6
DEF P1 ; Define program P1
D1000,25000 ; Set distance to travel
GOBUF11 ; Motion segments for axes 1 and 2
POUTA.3-1 ; Turn on onboard output 3 when axis 1 travels to 1000 steps
D2000,50000 ; New distance commanded
GOBUF11 ; Motion segments for axes 1 and 2
POUTA.3-0 ; Turn off onboard output 3 when axis 1 travels 2000

; additional steps
POUTB.6-1 ; Turn on onboard output 6 when axis 2 travels to 75000 steps
D1000,25000 ; New distance commanded
GOBUF11 ; Motion segment for axes 1 and 2
POUTB.6-0 ; Turn off onboard output 6 when axis 2 travels 25000

; additional steps
END ; End program definition

PCOMP P1 ; Compiled program P1
PRUN P1 ; Execute program P1

When executing a Compiled Following profile, the POUTn statement is always executed as programmed.
Therefore, in order to make sure an output is on for a given motion segment no matter what direction the
master is traveling, you should use two POUTn statements (see example below).

POUTA.3-0 ; Turn off onboard output 3 for axis 1 - master going backwards
POUTA.3-1 ; Turn on onboard output 3 for axis 1 - master going forwards
GOBUF1 ; Motion segments for axes 1
POUTA.3-1 ; Turn on onboard output 3 for axis 1 - master going backwards
POUTA.3-0 ; Turn off onboard output 3 for axis 1 - master going forwards

If you desire to “pulse” an output (turn on for a given amount of time), then use the POUTn command along
with the GOWHEN(T=n) command. For example:

POUTA.1-1 ; Turn on onboard output 1
GOWHEN(T=120) ; Wait for 120 milliseconds
POUTA.1-0 ; Turn off onboard output 1

PPRO Path Proportional Axis
Type Path Contouring
Syntax <!>PPRO<r>
Units r = ratio value
Range ±0.001 - 1000.000
Default n/a
Response No response - Must be defining a path (DEF)

See Also PAXES

Product Rev

6K 5.0

The Path Proportional Axis (PPRO) command is used to specify the proportional axis to path travel ratio. The
proportional axis will keep a position that is proportional to the distance traveled along the X-Y path as the
path is executed. This allows the proportional axis to act as the Z axis in helical interpolation or to control the
motion of any object which moves with distance and velocity proportional to the path.

The PPRO command should be given prior to any contour segments during a path definition. A negative value
for the proportional axis ratio simply causes motion in the negative direction as path travel in the X-Y plane
gets larger.

Example: (see contouring programming example in the PRUN command description)

Command Descriptions 207

PRTOL Path Radius Tolerance
Type Path Contouring
Syntax <!>PRTOL<r>
Units r = allowable radius error (scalable by the SCLD value)
Range ±999,999,999.99999
Default 1
Response No response - Must be defining a path (DEF)

See Also PARCM, PARCOM, PARCOP, PARCP, SCLD, SCALE

Product Rev

6K 5.0

The Path Radius Tolerance (PRTOL) command is used to specify the allowable radius error that is encountered
when contouring.

The radius error is encountered in one of two ways. The first way is through use of the PARCM or PARCP
commands. This error is the difference between the radius value specified in the PARCM or PARCP command
and the minimum radius implied by the starting point and endpoint. If the radius provided in the command is
smaller than the minimum radius implied by the distance from starting to endpoints and the error is within the
radius tolerance then just enough is added to the radius to make a half circle.

A second way to encounter a radius tolerance error is with the PARCOM or PARCOP commands. This error is
the difference between the radius implied by the start point and center point and the radius implied by the end
point and center point. If the difference in the two radius values is within the radius tolerance specified, then
the center point is moved such that an arc can be traveled through the start point and endpoint. The PRTOL
command can be executed many times within a path definition allowing some arcs to be exactly known and
others to be approximated.

If the radius error exceeds the PRTOL value, an error message is sent.

UNITS OF MEASURE and SCALING : refer to page 16 or to the SCLD description.

Example:
PV5 ; Set path velocity to 5 units/sec
PA50 ; Set path acceleration to 50 units/sec/sec
PAD100 ; Set path deceleration to 100 units/sec/sec
DEF prog1 ; Begin definition of path named prog1
PAXES1,2 ; Set axes 1 and 2 as the X and Y contouring axes
PAB0 ; Set to incremental coordinates
PRTOL0.001 ; Allow 25 steps (0.001 x 25000) radius error
PARCM5,5,5 ; Specify incremental X-Y endpoint position and radius

; arc <180 degree for quarter circle counter-clockwise arc
PARCP5,-5,-5 ; Specify incremental X-Y endpoint position and radius

; arc >180 degree for three quarter circle clockwise arc
END ; End definition of path prog1
PCOMP prog1 ; Compile path prog1
PRUN prog1 ; Execute path prog1

208 6K Series Command Reference

PRUN Run a Compiled Profile
Type Compiled Motion; Path Contouring; PLC Program
Syntax <!>PRUN<t>
Units t = text (name of path program)
Range text name of 6 characters or less
Default n/a
Response n/a

See Also COMEXC, DEF, END, PCOMP, PUCOMP, GOBUF, PLCP, PLOOP, PLN,
SCANP

Product Rev

6K 5.0

Use the PRUN command to start execution of a previously compiled program (multi-axis contour, a GOBUF
profile, or a PLCP program). All the required information about the program or path whose name is specified
in the PRUN command has already been stored by the definition commands (DEF and END) and compiled by
the PCOMP command.

Executing compiled contouring and GOBUF profiles: If any of the axes included in the specified path or profile
are not ready, the path will not be executed. An axis is not ready if it is shutdown, moving, or in joystick
mode. When execution of a pre-compiled program begins, all included axes become busy until motion has
completed.

Executing PLC programs: When using PRUN to execute a PLCP program, the PLCP program is run only once
(as opposed to invoking a continual scan loop when executing PLCP programs with the SCANP command).

COMEXC1 mode must be enabled in order for command processing to continue once a motion invoking
command has been initiated with PRUN. If you use the PRUN command within a program while in COMEXC1
mode, it functions as a GO and returns control back to the original program after the embedded program’s
motion is started (control is returned to the first command immediately following the PRUN command). If in
COMEXCØ mode, command processing will not continue until the motion invoking command has completed its
movement.

CONTOURING EXAMPLE:
DEL prog1 ; Delete prog1
DEF prog1 ; Begin definition of path named prog1
PAXES1,2,3,4 ; Set axes 1,2,3,4 as the X, Y, Tangent, and

; Proportional axes respectively
PPRO2.25 ; Proportional axis path ratio = 2.25
; ***
; * Add multiple path segment *
; * definitions in this *
; * portion of the *
; * program *
; ***
END ; End definition of path prog1
PCOMP prog1 ; Compile path prog1
PRUN prog1 ; Execute path prog1

COMPILED MOTION EXAMPLE:
@D25000 ; Set distance parameter for all axes
DEL prog1 ; Delete prog1
DEF prog1 ; Define prog1
PLIN1000,1000 ; Line segment on axis 1 and 2
GOBUFxx11 ; Compiled motion on axis 3 and 4
END ; End definition of prog1
PCOMP prog1 ; Compile prog1
PRUN prog1 ; Execute prog1
TPC ; Check commanded position. A sample response would be:

; "*TPM1000,1000,25000,25000"

Command Descriptions 209

PS Pause Program Execution
Type Program Flow Control
Syntax <!>PS
Units n/a
Range n/a
Default n/a
Response n/a

See Also C, COMEXR, COMEXS, K, S, [SS], TSS

Product Rev

6K 5.0

The Pause Program Execution (PS) command pauses execution of commands in the command buffer. If a PS
command is executed, no commands after the PS will be executed until a !C command is received. However,
additional commands may still be placed in the command buffer.

The PS command does not pause motion. In order for motion to be paused, the S and the COMEXS commands
should be used.

Example:
PS ; Stop execution of command buffer until !C command
MA0XXX ; Incremental mode for axis 1
D10000 ; Set distance to 10000 units on axis 1
GO1000 ; Initiate motion on axis 1
D,20000 ; Set distance to 20000 units on axis 2
GO0100 ; Initiate motion on axis 2
; **
; * NOTE: *
; * No commands after the PS command will be executed until a !C *
; * command is received. *
; **

PSET Establish Absolute Position
Type Motion
Syntax <!><@>PSET<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units (absolute position)
Range ±999,999,999.99999
Default n/a
Response n/a

See Also CMDDIR, D, ENCPOL, [FB], GO, HOM, INFNC, MA, MC, [PANI],
[PC], [PCC], [PCE], [PCMS], [PE], PESET, PMESET,
SCALE, SCLD, SFB, TFB, TPANI, TPC, TPCC, TPCE, TPCMS, TPE

Product Rev

6K 5.0

Use the PSET command to offset the current absolute position to establish an absolute position reference. To
remove the offset, issue the PSET CLR command. All PSET values entered are in steps, unless scaling is
enabled (SCALE1), in which case (PSET) is multiplied by the distance scale factor (SCLD).

Steppers – without scaling: The PSET command will define the current commanded position to be the
absolute position entered. To set an absolute encoder position, use the PESET command.

Servos – without scaling: The PSET command defines a new absolute position reference. If the drive is
enabled (DRIVE), the current commanded position is used as the reference point. If the drive is
disabled, the current feedback device position (selected with the SFB command) is used as the
reference point.

SERVO AXES

The PSET offset value (per axis) is specific only to the feedback source (per axis) selected
with the last SFB command.

If your application requires switching between feedback sources for the same axis, then you
must select the feedback source with the appropriate SFB command and issue a PSET value
specific to that feedback source. (Each feedback source can have a separate offset.)

NOTE: If you issue a PSET command, any previously captured positions (INFNCi-H or LIMFNCi-H function)
will be offset by the PSET value.

210 6K Series Command Reference

If a software end-of-travel limit has been hit, the PSET command will not remove the error condition. The
error condition is removed by commanding motion in the opposite direction.

Example:
PSET0,0,0,1000 ; Set absolute position on axes 1, 2, and 3 to zero,

; and axis 4 to 1000 units

[PSHF] Net Position Shift
Type Following; Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also FOLEN, FOLMAS, FSHFC, FSHFD, SCALE, SCLD, TPSHF

Product Rev

6K 5.0

The PSHF operator is used to assign to a numeric variable the value of the net (absolute) follower axis position
shift that has occurred since that last FOLEN1 command. The position value will be the sum of all shifts
performed on that axis, or axes, including decelerations due to limits, kill, or stop. The shift value is set to
zero each time a new FOLEN1 command or a FOLMAS command (with a value other than zero) is issued.

If scaling in enabled (SCALE1), the PSHF value is scaled by the distance scaling factor (SCLD). If scaling is not
enabled, the value is in commanded counts.

Syntax: VARn=aPSHF where “n” is the variable number and “a” is the axis number, or PSHF can be used in
an expression such as IF(2PSHF>2345Ø) . The PSHF command must be used with an axis
specifier, or it will default to axis 1 (e.g., VAR1=1PSHF, IF(2PSHF>5ØØ) , etc.).

Example:
IF(2PSHF>4.3) ; If axis 2 has shifted more than 4.3 user units in the

; positive direction, then do the IF statement
OUT.2=b1 ; Turn on onboard output #2
NIF ; End of IF statement
VAR14=3PSHF ; Set VAR14 to follower axis 3's position shift

[PSLV] Current Commanded Position of Follower Axis
Type Following; Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also FMCNEW, FMCP, SCLD, SCALE, TPSLV

Product Rev

6K 5.0

Use the PSLV operator to assign the follower axis commanded position register value to a variable, or to make
a comparison against another value.

If scaling in enabled (SCALE1), the PSLV value is scaled by the distance scaling factor (SCLD). If scaling is not
enabled, the value is in commanded counts.

Syntax: VARn=aPSLV where “n” is the variable number and “a” is the axis number, or PSLV can be used in
an expression such as IF(2PSLV>2345Ø) . The PSLV command must be used with an axis
specifier, or it will default to axis 1 (e.g., VAR1=1PSLV, IF(2PSLV>5ØØ) , etc.).

Example:
IF(2PSLV>4.3) ; If axis 2 has traveled more than 4.3 user units then do

; the IF statement
OUT.2=b1 ; Turn on onboard output #2
NIF ; End of IF statement
VAR14=3PSLV ; Set VAR14 to follower axis #3's position

Command Descriptions 211

PTAN Path Tangent Axis Resolution
Type Path Contouring
Syntax <!>PTAN<i>
Units i = counts (commanded counts for stepper axes,

encoder or analog input counts for servo axes)
Range ± 1 - 999,999,999
Default 4000
Response No response - Must be defining a path (DEF)

See Also PAXES

Product Rev

6K 5.0

The Path Tangent Axis Resolution (PTAN) command is used to specify the Tangent axis resolution. The
Tangent axis will keep an angular position which changes linearly with the direction of travel implied by X
and Y. This allows the Tangent axis to control an object which must stay tangent (or normal) to the direction
of travel.

The Tangent axis resolution is the number of counts (motor steps for steppers; encoder or analog input counts)
in 360 degrees of arc. The Tangent axis resolution does not necessarily equal axis resolution (DRES for
steppers; ERES or analog input counts/volt for servos), but if the motor directly drove the rotating piece, then
these numbers would be the same.

The PTAN command should be given prior to any contour segments during a path definition. A negative value
for the Tangent axis resolution causes rotation in the negative direction as the angle in the X-Y plane gets
larger.

Example:
PV5 ; Set path velocity to 5 units/sec
PA50 ; Set path acceleration to 50 units/sec/sec
PAD100 ; Set path deceleration to 100 units/sec/sec
DEF prog1 ; Begin definition of path named prog1
PAXES1,2,3 ; Set axes 1 and 2 as the X and Y contouring axes,

; 3 as the tangent axis
PTAN25000 ; Specify Tangent axis resolution
PAB0 ; Set to incremental coordinates
POUT1001 ; Output pattern during first arc (onboard outputs)
PARCM5,5,5 ; Specify incremental X-Y endpoint position and radius

; arc <180 degree for quarter circle counter-clockwise arc
POUT1100 ; Output pattern during second arc (onboard outputs)
PARCP5,-5,-5 ; Specify incremental X-Y endpoint position and radius

; arc >180 degree for three quarter circle clockwise arc
END ; End definition of path prog1
PCOMP prog1 ; Compile path prog1
PRUN prog1 ; Execute path prog1
OUT0000 ; Turn off the first four onboard outputs

212 6K Series Command Reference

PUCOMP Un-Compile a Compiled Profile (includes Path Uncompile)
Type Compiled Motion; Path Contouring; PLC Program
Syntax <!>PUCOMP<t>
Units t = text (name of path)
Range Text name of 6 characters or less
Default n/a
Response n/a

See Also DEF, END, GOBUF, MEMORY, PCOMP, PLCP, PRUN, SCANP, TDIR, TMEM,
TSEG, GOBUF, PLOOP, PLN

Product Rev

6K 5.0

The Un-Compile (PUCOMP) command is used to delete a previously compiled (PCOMP) program from the
compiled memory. The PUCOMP command does not delete the program from program memory.

Example:
PUCOMP prog1 ; Delete compiled motion segments for prog1
DEL prog1 ; Delete prog1
DEF prog1 ; Begin definition of path named prog1
PAXES1,2,3,4 ; Set axes 1,2,3,4 as the X, Y, Tangent, and

; Proportional axes respectively
; ***
; * Add multiple path segment *
; * definitions in this *
; * portion of the *
; * program *
; ***
END ; End definition of path prog1
PCOMP prog1 ; Compile path prog1
PRUN prog1 ; Execute path prog1

PULSE Pulse Width
Type Controller Configuration
Syntax <!><@><a>PULSE<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = microseconds (µs)
Range 0.3, 0.5, 1.0, 2.0, 4.0, 8.0, or 16.0
Default 0.3
Response PULSE: *PULSE0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3

1PULSE: *1PULSE0.3

See Also AXSDEF, DRES, V

Product Rev

6K 5.0

(applicable to stepper
axes only)

The Pulse Width (PULSE) command sets the step output pulse width. The pulse width is described as the time
the pulse is active, or on. The value for the pulse width command is specified in microseconds.

When the pulse width is changed from the default value of 0.3 µs, the maximum velocity range is reduced. The
amount of reduction is directly proportional to the change in pulse width (see table below).

Pulse Width (PULSE) Setting Actual Pulse Width Maximum Velocity

DEFAULT → 0.3 µs 0.244 µs 2.048 MHz
0.5 µs 0.484 µs 1.024 MHz
1.0 µs 0.976 µs 512 KHz
2.0 µs 1.953 µs 256 KHz
4.0 µs 3.906 µs 128 KHz
8.0 µs 7.812 µs 64 KHz

16.0 µs 15.624 µs 32 KHz

Command Descriptions 213

PV Path Velocity
Type Path Contouring or Motion (Linear Interpolated)
Syntax <!>PV<r>
Units r = units/sec (scalable with SCLD)
Range Stepper Axes: 0.00000-2,048,000 (max. depends on SCLD & PULSE)

Servo Axes: 0.00000-6,500,000 (max. depends on SCLD)
Default 1.0000
Response PV: *PV1.0000

See Also GOL, SCLD, SCALE

Product Rev

6K 5.0

The Path Velocity (PV) command specifies the path velocity to be used in linearly interpolated moves (GOL),
and in all contouring moves. In linearly interpolated moves, a path may involve one to four axes, each with its
own distance of travel. In contouring paths, only the X and Y axis are included in the calculation of the path.

For both types of moves, the path velocity refers to the velocity of the load as motion proceeds along the path.
For linearly interpolated moves, the velocity of each individual axis is dependent on the distance it contributes
to the total path traveled by the load. In contouring paths, the velocity of each individual axis is dependent on
the direction of travel in the X- Y plane. NOTE: The PV value can be altered between path segments, but not
within a path segment.

UNITS OF MEASURE and SCALING : refer to page 16.

Example: Refer to Define Path Local Mode (PL) command example.

PWC Path Work Coordinates
Type Path Contouring
Syntax <!>PWC<r>,<r>
Units 1st r = X coordinate units (scalable by the SCLD value)

2nd r = Y coordinate units (scalable by the SCLD value)
Range ±999,999,999.99999
Default 0,0
Response No response - Must be defining a path (DEF)

See Also PAB, PL, PLC, SCLD, SCALE

Product Rev

6K 5.0

The Path Work Coordinates (PWC) command is used to specify the Work X -Y coordinate data required for
subsequent segment definition in the Work coordinate system. This command places the X -Y coordinate
value of the Work coordinate system at the beginning of the next segment. (The first <r> is the X coordinate,
the second <r> is the Y coordinate.)

This command may be used before the PLØ command is given for the purpose of shifting the Work coordinate
system. If the PWC command is not given before a PLØ command, but was previously set, the original work
coordinate system is used for the subsequent segments.

UNITS OF MEASURE and SCALING : refer to page 16 or to the SCLD description.

Example: Refer to Define Path Local Mode (PL) command example.

214 6K Series Command Reference

RADIAN Radian Enable
Type Operators (Trigonometric)
Syntax <!>RADIAN
Units n/a
Range b = 0 (Disable),1 (Enable) or X (don't care)
Default 0
Response RADIAN: *RADIAN0

See Also [ATAN], [COS], [PI], [SIN], [TAN], VAR

Product Rev

6K 5.0

This operator is used to switch between radians and degrees. The command RADIAN1 specifies units in
radians for SIN , COS, TAN, and ATAN. The command RADIANØ specifies units in degrees for SIN , COS, TAN,
and ATAN.

If a value is given in radians and a conversion is needed to degrees, use the formula: 360° = 2π radians.

Example:
RADIAN1 ; Set trigonometric functions to radian mode

RE Registration Enable
Type Registration
Syntax <!><@><a>RE
Units b = 0 (disable), 1 (enable), or X (don't care)
Range n/a
Default 0
Response RE: *RE0000_0000

1RE: *1RE0

See Also [AS], COMEXC, ENCCNT, [ER], INFNC, [PCC], [PCE],
[PCMS], REG, REGLOD, REGSS, TAS, TER, TPCC, TPCE, TPCMS,
TRGLOT, [TRIG], TTRIG

Product Rev

6K 5.0

The Registration Enable (RE) command enables the registration function for the specified axes.

When a registration input (a trigger input assigned the “Trigger Interrupt” function) is activated, the motion
profile currently being executed is replaced by a registration profile with its own distance (REG), acceleration
(A & AA), deceleration (AD & ADA), and velocity (V) values. The registration move may interrupt any preset,
continuous, or registration move in progress.

The registration move does not alter the rest of the program being executed when registration occurs, nor does
it affect commands being executed in the background if the controller is operating in the continuous command
execution mode (COMEXC1).

Registration moves will not be executed while the motor is not performing a move, while in the joystick mode
(JOY1), or while decelerating due to a stop, kill, soft limit, or hard limit.

How to Set up a Registration Move
1. Configure one of the trigger inputs (TRG-nA or TRG-nB per axis, or TRG-M) to function as a trigger

interrupt input; this is done with the INFNCi-H command, where i is the input bit number
representing the targeted trigger input.

2. Specify the distance of the registration move with the REG command. For servo axes, the distance
refers to the encoder position (not functional with ANI feedback). For stepper axes, the distance
refers to commanded position.

3. Enable the registration function with the RE command. Registration is performed only on the axis or
axes with the registration function enabled, and with a non-zero distance specified in the respective
axis-designation field of the REG command; the other axes will not be affected. Each trigger has a
distinct move defined for its dedicated axis.

NOTE: The registration move is executed using the A, AA, AD, ADA, and V values that were in effect
when the REG command was entered.

Command Descriptions 215

Registration Move Accuracy (see also Registration Move Status below)

The accuracy of the registration move distance specified with the REG command is ±1 count (servo axes:
encoder count; stepper axes: commanded count if ENCCNT0 or encoder count if ENCCNT1).

RULE OF THUMB: To prevent position overshoot, make sure the REG distance is greater than 4 ms
multiplied by the incoming velocity.

The lapse between activating the registration input and commencing the registration move (this does not
affect the move accuracy) is less than one position sample period (2 ms).

The REG distance will be scaled by the distance scale factor (SCLD value) if scaling is enabled (SCALE1).
See page 16 for details on scaling.

Preventing Unwanted Registration Moves (methods)
• Registration Input Debounce: Registration Input Debounce: By default, the registration inputs are

debounced for 24 ms before another input on the same trigger is recognized. (The debounce time is
the time required between a trigger's initial active transition and its secondary active transition.)
Therefore, the maximum rate that a registration input can initiate registration moves is 500 times per
second. If your application requires a shorter debounce time, you can change it with the TRGLOT
command.

• Registration Single-Shot: The REGSS command allows you to program the 6K controller to ignore
any registration commands after the first registration move has been initiated. Refer to the REGSS
command description for further details and an application example.

• Registration Lockout Distance: The REGLOD command specifies what distance an axis must travel
before any trigger assigned as a registration input will be recognized. Refer to the REGLOD command
description for further details and an application example.

Registration Move Status & Error Handling
Axis Status — Bit #28: This status bit is set when a registration move has been initiated by any
registration input (trigger). This status bit is cleared with the next GO command.

AS.28Assignment & comparison operator — use in a conditional expression.
TASF.........Full text description of each status bit. (see “Reg Move Commanded ” line item)
TAS...........Binary report of each status bit (bits 1-32 from left to right). See bit #28.

Axis Status — Bit #30: If, when the registration input is activated, the registration move profile cannot
be performed with the specified motion parameters, the 6K controller will kill the move in progress and
set axis status bit #30. This status bit is cleared with the next GO command.

AS.30Assignment & comparison operator — use in a conditional expression.
TASF.........Full text description of each status bit. (see “Preset Move Overshot ” line item)
TAS...........Binary report of each status bit (bits 1-32 from left to right). See bit #30.

Error Status — Bit #10: This status bit may be set if axis status bit #30 is set. The error status is
monitored and reported only if you enable error-checking bit #10 with the ERROR command (e.g.,
ERROR.10-1). NOTE: When the error occurs, the controller will branch to the error program (assigned
with the ERRORP command). This status bit is cleared with the next GO command.

ER.10Assignment & comparison operator — use in a conditional expression.
TERF.........Full text description of each status bit. (see “Preset Move Overshot ” line item)
TER...........Binary report of each status bit (bits 1-32 from left to right). See bit #10.

Trigger Status — Bits #1-17: Trigger status bits are set when a registration move has been initiated by
trigger inputs A or B for each axis, or with the TRIG-M (master trigger) input. This also indicates that
the positions of all axes has been captured. As soon as the captured information is transferred or
assigned/compared, the respective trigger status bit is cleared (set to Ø).

TRIG.........Assignment & comparison operator — use in a conditional expression.
TTRIG.......Binary report of each status bit (bits 1-17 from left to right). From left to right the bits

represent trigger A and B for axes 1-8, the 17th bit is master trigger M (the “MASTER

TRIG” input terminal) — see page 7.

216 6K Series Command Reference

Example:
In this example (using axis 1), two-tiered registration is achieved. While axis 1 is executing it's 50,000-unit move, trigger
input 1A is activated and executes registration move A to slow the load's movement. An open container of volatile liquid is
then placed on the conveyor belt. After picking up the liquid and while registration move A is still in progress, trigger input
1B is activated and executes registration move B to slow the load to gentle stop.

DEL REGI1 ; Delete program (assume program already resides in memory)
DEF REGI1 ; Begin program definition
INFNC1-H ; Define trigger input 1A (axis 1) as a trigger interrupt input
INFNC2-H ; Define trigger input 1B (axis 1) as a trigger interrupt input
A20 ; Set acceleration on axis 1 to 20 units/sec/sec
AD40 ; Set deceleration on axis 1 to 40 units/sec/sec
V1 ; Set velocity on axis 1 to 1 unit/sec
1REGA4000 ; Set trigger 1A's registration distance on axis 1 to 4000 units

; (registration A move will use the A, AD, & V values above)
A5 ; Set acceleration on axis 1 to 5 units/sec/sec
AD2 ; Set deceleration on axis 1 to 2 units/sec/sec
V.5 ; Set velocity on axis 1 to 0.5 units/sec
1REGB13000 ; Set trigger 1B's registration distance on axis 1 to 13,000 units

; (registration B move will use the A, AD, & V values above)
RE1 ; Enable registration on axis 1 only
A50 ; Set acceleration to 50 units/sec/sec on axis 1
AD50 ; Set deceleration to 50 units/sec/sec on axis 1
V10 ; Set velocity to 10 unit/sec on axis 1
D50000 ; Set distance to 50000 units on axis 1
GO1 ; Initiate motion on axis 1
END ; End program definition

Registration Profile:

v

D
0

1st Registration mark
(TRG-1A) occurs

2nd Registration mark
(TRG-1B) occurs

2

4

6

8

1 0

20 ,0 0 010 ,0 0 00

Pick up
container

here

Command Descriptions 217

[READ] Read a Value
Type Communication Interface or Assignment
Syntax ... READi ... (See below)
Units i = string variable number
Range 1-50
Default n/a
Response n/a

See Also ', PORT, [SS], TSS, VAR, VARS, WRITE

Product Rev

6K 5.0

The Read a Value (READ) command provides the user with an efficient way of storing numeric data read from
the input buffer into a variable. The READ command can be used as part of a numeric variable assignment
statement (e.g., VAR1=READ1) or in another command (A1Ø,(READ1),12,1). However, the READ command
cannot be used in an expression such as VAR5=1+READ1 or IF(READ1=1) .

Syntax: VARx=READi where x is the variable number and i is the string variable to be sent out to prompt the
user for the numeric information.

Syntax: Command(READi) where Command is any command that has a separate field (e.g., A, AD, V, D, etc.),
and i is the string variable number.

The number attached to the end of the READ command corresponds to the string variable to be sent out the
Ethernet port or the RS-232 or RS-485port, at the time this command is executed. The 6K Series controller
will then wait for numeric data to be sent to its input buffer. The numeric data must be preceded with an
immediate command identifier and a single quote (!'). The information read in can be either integer, or
real, and must be terminated by a command delimiter (: , <cr> , <lf>).

Rule of Thumb for command value substitutions: If the command syntax shows that the command field
requires a real number (denoted by <r>) or and integer value (denoted by <i>), you can use the READ
substitution (e.g., V2,(READ)).

Example:
VARS1="Enter the count >" ; Place message in string variable #1
VAR2=READ1 ; Prompt with string variable #1, and read data

; into variable #2
;
; The controller will send this message (string variable #1) to the screen:
; "Enter the count >"
; The user must enter the numeric data preceded by the characters !'.
; For example, !'82.5 assigns the value 82.5 to numeric variable 2

218 6K Series Command Reference

REG Registration Distance
Type Registration
Syntax <!><@>aREGc<r>
Units a = axis #

c = letter of trigger input
r = distance units (scalable by the SCLD value)
 servo axes: always encoder counts (ANI input not allowed)
 stepper axes: commanded counts

Range a = 1-8 (depending on product)
c = A or B
r = 0.00000 to 419,430,000.00000 (positive direction only)

Default 0 (do not make a registration move)
Response 1REGA: *1REGA0

See Also [AS], ENCCNT, [ER], [PCC], [PCE], [PCMS], RE,
REGLOD, REGSS, SCALE, SCLD, [SS], TAS, TER, TPCE, TRGLOT,
[TRIG], TTRIG

Product Rev

6K 5.0

The Registration Distance (REG) command specifies the distance the corresponding axis will travel after
receiving a registration input (trigger A or B). Example: 1REGA4000 sets up a 4000-count registration move
on axis 1 to be initiated when trigger input 1A is activated.

Servo Axes: REG value always represents encoder counts (registration cannot be used with analog input
feedback).

Stepper Axes:REG value represents commanded counts.

Trigger Input (Axis 1-4
“ TRIGGERS/OUTPUTS” connector) *

Dedicated
Axis

REG
Syntax

Trigger Input (Axis 5-8
“ TRIGGERS/OUTPUTS” connector) *

Dedicated
Axis

REG
Syntax

Pin 23, Trigger 1A 1 1REGA Pin 23, Trigger 5A 5 5REGA

Pin 21, Trigger 1B 1 1REGB Pin 21, Trigger 5B 5 5REGB

Pin 19, Trigger 2A 2 2REGA Pin 19, Trigger 6A 6 6REGA

Pin 17, Trigger 2B 2 2REGB Pin 17, Trigger 6B 6 6REGB

Pin 15, Trigger 3A 3 3REGA Pin 15, Trigger 7A 7 7REGA

Pin 13, Trigger 3B 3 3REGB Pin 13, Trigger 7B 7 7REGB

Pin 11, Trigger 4A 4 4REGA Pin 11, Trigger 8A 8 8REGA
Pin 9, Trigger 4B 4 4REGB Pin 9, Trigger 8B 8 8REGB

* The number of trigger inputs available varies by product (refer to your product’s Installation Guide).

The registration move is executed using the A, AA, AD, ADA, and V values that were in effect when the REG
command was entered.

RULE OF THUMB: To prevent position overshoot, make sure the REG distance is greater than 4 ms
multiplied by the incoming velocity.

The registration distance remains set until you change it with a subsequent REG command. Registration
distances outside the valid range are flagged as an error, returning the message *INVALID DATA-FIELD x ,
where x is the field number.

UNITS OF MEASURE and SCALING : refer to page 16.

For additional details on Registration (including programming examples), refer to the RE command
description and to the Registration section in the Programmer's Guide.

Command Descriptions 219

REGLOD Registration Lock-Out Distance
Type Registration
Syntax <!><@>REGLOD<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = distance units (scalable by SCLD)
Range 0.00000 to +999,999,999.99999
Default 0
Response REGLOD: *REGLOD0,0,0,0,0,0,0,0

1REGLOD: *1REGLOD0

See Also INFNC, RE, REG, REGSS, SCLD, TRGLOT

Product Rev

6K 5.0

The REGLOD command specifies the distance an axis must travel before its registration input will be
recognized. If scaling is enabled (SCALE1), the lock-out distance is scaled by the SCLD value.

Stepper axes: The lock-out distances are measured incrementally from the start of motion to the commanded
position.

Servo axes: The lock-out distances are measured incrementally from the start of motion to the actual position
(as measured by the position feedback device), not the commanded position.

Example (single axis, stepper):
A print wheel uses registration to initiate each print cycle. From the beginning of motion, the controller should ignore all
registration marks before traveling 2000 steps. This is to ensure that the unit is up to speed and that the registration mark
is a valid one.

DEL REGI3 ; Delete program (in case program already resides in memory)
DEF REGI3 ; Begin program definition
INFNC1-H ; Trigger capture mode for trigger 1A on axis 1
RE1 ; Enable registration
V2 ; Set registration move to a velocity of 2 revs/sec
1REGA2500 ; and a distance of 2500 steps
REGLOD2000 ; Set registration lockout distance to 2000 steps
MC1 ; Start a mode continuous move
V1 ; move at a velocity of 1 rps
GO1 ; Initiate motion
END ; End program definition

Registration Profile:

v

t0

1

2

1st Registration mark occurs
after 1500 steps, but the
registra tion
move does not
occur because
the lockout
distan ce is set
to 2000 steps.

2nd Registration
mark occurs after
3000 steps.

To check the status of the registration input:

> !TTRIG.1 Check to see of trigger interrupt input 1A has been activated
*0 Indicates registration move has not happened on any axis

220 6K Series Command Reference

REGSS Registration Single-Shot
Type Registration
Syntax <!><@>REGSS
Units n/a
Range b=0 (Disable), 1 (Enable), or x (don't care)
Default 0
Response REGSS: *REGSS0000_0000

1REGSS: *1REGSS0

See Also RE, REG, REGLOD

Product Rev

6K 5.0

The Registration Single Shot (REGSS) command sets the registration such that only one registration move will
take place for the specified axis. This allows the user to prevent any other trigger from interrupting the
registration move in progress. A GO command will reset the “one shot” condition.

Example – Option A :
A user has a line of material with randomly spaced registration marks. It is known that the first mark must initiate a
registration move, and that each registration move cannot be interrupted or the end product will be destroyed. Since the
distance between marks is random, it is impossible to predict if a second registration mark will occur before the first
registration move has finished.

DEL REGI2 ; Delete program (in case program already resides in memory)
DEF REGI2 ; Begin program definition
INFNC1-H ; Trigger capture mode for trigger 1A on axis 1
RE1 ; Enable registration
V2 ; Set registration move to a velocity of 2 rps
AD.5 ; a deceleration of 0.5 rev/sec/sec
1REGA20000 ; and a distance of 20000 steps
MC1 ; Start a mode continuous
V1 ; move at a velocity of 1 rps
GO1 ; Initiate motion
END ; End program definition

Registration Profile:

v

t0

1

2

1st Registration
mark occurs

2nd Registration
mark occurs The first reg istration move

is pre-empted by a second
registration input.

Example – Option B (introducing “single-shot” registration):
In order to stop the second registration from occurring, REGSS can be used:

DEL REGI2b ; Delete program (in case program already resides in memory)
DEF REGI2b ; Begin program definition
INFNC1-H ; Trigger capture mode for trigger 1A on axis 1
RE1 ; Enable registration
V2 ; Set registration move to a velocity of 2 rps
1REGA20000 ; and a distance of 20000 steps
REGSS1 ; Enable registration single shot mode
MC1 ; Start a mode continuous
V1 ; move at a velocity of 1 rps
GO1 ; Initiate motion
END ; End program definition

Registration Profile:
v

t0

1

2

1st Registration
mark occurs

2nd Registration
mark occurs Because of REGSS, the

first reg istration move is
NOT pre-empted by the
second registration input.
The registration “single
shot” will be reset when
you issue a new motion
command (GO, PRUN, etc.).

Command Descriptions 221

REPEAT Repeat Statement
Type Program Flow Control or Conditional Branching
Syntax <!>REPEAT
Units n/a
Range n/a
Default n/a
Response n/a

See Also JUMP, UNTIL

Product Rev

6K 5.0

The Repeat Statement (REPEAT) command, in conjunction with the UNTIL command, provide a means of
conditional program flow. The REPEAT command marks the beginning of the conditional statement. The
commands between the REPEAT and the UNTIL command are executed at least once. Upon reaching the
UNTIL command, the expression contained within the UNTIL command is evaluated. If the expression is false,
the program flow is redirected to the first command after the REPEAT command. If the expression is true, the
first command after the UNTIL command is executed.

Up to 16 levels of REPEAT ... UNTIL() commands may be nested.

NOTE: Be careful about performing a GOTO between REPEAT and UNTIL . Branching to a different location
within the same program will cause the next REPEAT statement encountered to be nested within the
previous REPEAT statement, unless an UNTIL command has already been encountered. The JUMP
command should be used in this case.

All logical operators (AND, OR, NOT), and all relational operators (=, >, >=, <, <=, <>) can be used within the
UNTIL expression. There is no limit on the number of logical operators, or on the number of relational
operators allowed within a single UNTIL expression.

The limiting factor for the UNTIL expression is the command length. The total character count for the UNTIL
command and expression cannot exceed 80 characters. For example, if you add all the letters in the UNTIL
command and the letters within the () expression, including the parentheses and excluding the spaces, this
count must be less than or equal to 80.

All assignment operators (A, AD, AS, D, ER, IN , INO, LIM , MOV, OUT, PC, PCE, PCME, PCMS, PE, PER, SS, TIM,
US, V, VEL, etc.) can be used within the UNTIL() expression.

Example:
REPEAT ; Beginning of REPEAT ... UNTIL() loop
GO1110 ; Initiate motion on axes 1, 2, and 3
VAR1=VAR1+1 ; Increment variable 1 by 1
UNTIL(VAR1=12) ; Repeat loop until variable 1 = 12

222 6K Series Command Reference

RESET Reset
Type Communication Interface
Syntax <!>RESET
Units n/a
Range n/a
Default n/a
Response RESET: ((power-up message is displayed))

See Also STARTP, TSTAT

Product Rev

6K 5.0

The Reset (RESET) command affects the 6K controller the same as cycling power. The controller’s programs
and variables are retained in non-volatile memory; however, all previously entered command values (not
saved in programs or variables) will be reset to factory default values.

NOTE: After sending the RESET or !RESET command to the 6K product, you must wait until you see the
power-up message (actual time varies by product) before communicating with the product.

CAUTION : The RESET command will disconnect an Ethernet connection.

RUN Begin Executing a Program
Type Program or Subroutine Definition
Syntax <!>RUN<t>
Units t = text (name of program)
Range Text name of 6 characters or less
Default n/a
Response n/a

See Also $, DEF, DEL, END, GOSUB, GOTO

Product Rev

6K 5.0

The Begin Executing a Program (RUN) command executes a program defined with the DEF command. A
program name consists of 6 or fewer alpha-numeric characters. The RUN command can be used inside a
program or subroutine. The program can also be run by specifying the name of the program without the RUN
command. The RUN command functions similar to a GOSUB command in that control returns to the original
program when the called program finishes.

Example:
DEF pick ; Begin definition of program named pick
GO1100 ; Initiate motion on axes 1 and 2
END ; End program definition
RUN pick ; Executes program named pick
pick ; Executes program named pick

Command Descriptions 223

S Stop Motion
Type Motion
Syntax <!>S
Units n/a
Range b = 0 (do not stop) or 1 (stop)
Default 1
Response >!S: No response, instead motion is stopped on all axes.

See Also C, COMEXC, COMEXS, GO, K

Product Rev

6K 5.0

The Stop Motion (S) command instructs the motor to stop motion on the specified axes. If the Stop (S)
command is used without any arguments, motion will be stopped on all axes. The Stop command will bring
the specified axes to rest using the last deceleration value (AD) entered.

NOTE

Since all commands are buffered, the next command does not begin until the previous
command has finished. This is important because if you place a Stop (S) command after
a Go (GO) command in a program, the Stop command will have no effect. For the Stop
command to have an effect within a program, continuous command processing mode
(COMEXC) must be enabled. If the Stop (S) command is to be used external to the
program, the immediate command identifier (!) must be used.

If COMEXS is set to zero, command processing will be terminated when any stop command is issued, or a
stop input is activated. If COMEXS is set to 1 or 2, a stop command issued for a specific axis will only stop
motion on that axis and will not clear the command buffer. If COMEXS is set to 2, a stop command or input
will stop motion and clear the command buffer.

If motion is to be paused and later resumed, the stop command must be used without any arguments (S or
!S), and the continue execution on stop (COMEXS) command must be enabled. The continue (!C) command
can then be used to resume motion.

Example:
GO1111 ; Initiate motion on all axes
!S1100 ; Stop motion on axes 1 and 2 (must use "!S" to stop motion in progress)

SCALE Enable/Disable Scale Factors
Type Scaling
Syntax <!>SCALE
Units n/a
Range b = 0 (disable) or 1 (enable)
Default 0
Response SCALE: *SCALE0

See Also DRES, ERES, SCLA, SCLD, SCLMAS, SCLV, SFB, TSTAT

Product Rev

6K 5.0

Scaling allows you to program acceleration, deceleration, velocity, and position values in units of measure
that are appropriate for your application. The SCALE command is used to enable or disable scaling (SCALE1

to enable, SCALEØ to disable). When scaling is enabled (SCALE1), all entered data is multiplied by the
appropriate scale factor:

Type of Motion Accel/Decel Scaling Velocity Scaling Distance Scaling

Standard Point-to-Point Motion SCLA SCLV SCLD

Contouring, Linear Interpolation SCLD SCLD SCLD

Following SCLA SCLV SCLD for follower distances
SCLMAS for master distances

NOTE: Contouring uses only the SCLD value to scale all motion parameters; SCLA & SCLV are not applicable.

224 6K Series Command Reference

When Should I Define Scaling Factors?

Scaling calculations are performed when a program is defined or downloaded. Consequently, you must
enable scaling (SCALE1) and define the scaling factors (SCLD, SCLA, SCLV, SCLMAS) prior to defining
(DEF), uploading (TPROG), or running (RUN or PRUN) the program.

RECOMMENDATION: Place the scaling commands at the beginning of your program file, before the
location of any defined programs. This ensures that the motion parameters in subsequent programs in
your program file are scaled correctly. When you use Motion Planner’s Setup Generator wizard, the
scaling commands are automatically placed in the appropriate location in your program file.

ALTERNATIVE: Scaling factors could be defined via a terminal emulator just before defining or
downloading a program. Because scaling command values are saved in battery-backed RAM
(remembered until you issue a RESET command), all subsequent program definitions and downloads
will be scaled correctly.

RESTRICTIONS : Scaling commands are not allowed in a program. If there are scaling commands in
a program, the controller will report an error message (“COMMAND NOT ALLOWED IN PROGRAM”)
when the program is downloaded. If you intend to upload a program with scaled motion parameters, be
sure to use Motion Planner. Motion Planner automatically uploads the scaling parameters and places
them at the beginning of the program file containing the uploaded program from the controller. This
assures correct scaling when the program file is later downloaded.

Servo Products
Scaling can be used with encoder or analog input feedback sources. When the scaling
commands (SCLA, SCLD, etc.) are executed, they are specific only to the current feedback
source selected with the last SFB command.

If your application requires switching between feedback sources for the same axis, then for each
feedback source, you must select the feedback source with the appropriate SFB command and
issue the scaling factors specific to operating with that feedback source.

For example, if you have two axes and will be switching between encoder and ANI feedback,
you should include code similar to the following in your setup program:

SFB1,1 ; Select encoder feedback (subsequent scaling
; parameters are specific to encoder feedback)

SCLA4000,4000 ; Program accel/decel in revs/sec/sec
SCLV4000,4000 ; Program velocity in revs/sec
SCLD4000,4000 ; Program distances in revs
SFB2,2 ; Select ANI feedback (subsequent scaling

; parameters are specific to ANI feedback)
SCLA205,205 ; Program accel/decel in volts/sec/sec
SCLV205,205 ; Program velocity in volts/sec
SCLD205,205 ; Program distances in volts

Units of Measure without Scaling (Scaling is disabled (SCALEØ) as the factory default condition):

• Stepper axes: All distance values entered are in commanded counts (sometimes referred to as motor
steps), and all acceleration, deceleration and velocity values entered are internally multiplied by the
DRES command value.

• Servo axes: Units of Measure (per feedback source)
Motion Attribute Encoder Analog Input
Accel/Decel Revs/sec/sec * volts/sec/sec
Velocity Revs/sec * volts/sec
Distance Counts ** Counts **

* All accel/decel & velocity values are internally multiplied by the ERES command value.
** Distance is measured in the counts received from the feedback device.

Contouring & Linear Interpolated Motion: Path acceleration, velocity, and distance are based on the
resolution (DRES for steppers, ERES for servos) of axis 1. If multi-tasking is used, path motion units are
based on the resolution of the first (lowest number) axis associated with the task (TSKAX).

SCALING EXAMPLES: Refer to page 16.

Command Descriptions 225

SCANP Scan Compiled PLCP Program
Type PLC Scan Program
Syntax <!>SCANP<t>
Units t = text (name of the PLCP program, or CLR)
Range t = PLCPi, where i is the number of the desired PLCP program,

or t = CLR (to clear or stop the scan function)
Default n/a
Response n/a

See Also PLCP, PCOMP, PRUN, PUCOMP, TSCAN

Product Rev

6K 5.0

Use the SCANP command to initiate scanning a specific compiled PLCP program (PLCPi). For example,
SCANP PLCP3 initiates scanning the program defined as PLCP3 (defined with DEF PLCP3) and compiled
(PCOMP PLCP3).

The PLCP program is scanned once per
2 ms system update period. Each scan
pass is allotted a 0.5 ms window in the
2 ms system update period in which to
complete the scan (refer to the diagram
on the right). If the scan takes more than
0.5 ms, the scan will pause and continue
where it stopped during the next 2-ms
system update period. Conversely, if the
scan takes less than 0.5 ms, the
remaining processing time is used for
normal processing.

To check how much time (in 2 ms
increments) the last scan took to
complete, issue the TSCAN command.
For example, if the last PLCP program

Scanning

Scanning

• I/O Updated by System
• Trajectories calculated
• Programs/Tasks run
• Etc.

End Scan Window

Begin Scan Window

End Scan Window

Begin New Scan
(or resume scan)

2 millisecond
System Update Period

0

2 msec

Time (msec)

Note: In Scan mode, when a
scan is complete, the next scan
will begin at the start of the
next 2 ms System Update Period.

Allowed scan time per
system update is
0.5 milliseconds.

took 3 system updates (2 ms each) to scan, then TSCAN would report *TSCAN6, indicating that it took 6 ms
to complete the scan.

Launching programs external to the scan: Using the EXE command or the PEXE command, a scan
program can launch another program in a specified task. EXE launches a standard, non-compiled program;
PEXE launches a compiled program.

Stopping the scan: The scan program can be stopped in either of two ways: using the !K command, or
clearing the scan program by issuing a SCANP CLR command.

Timing the PLCP program outputs: It is not possible to control where the PLCP program will pause if
the scan takes more than the allowed time. This means that there can be a time lag of several update periods
before the outputs, analog outputs, and/or variables affected by the PLCP program are updated. The order
in which the scan takes place should be considered when creating PLCP programs to minimize the effects of
such a lag. One way to avoid the lag is to create a binary variable as a temporary holding place for the
desired output states. The last commands before the END statement of the PLCP program can set the
outputs according to the final status of the variable, such that all output states are written at the same time,
just as the scan completes. This method is demonstrated in the example program below.

For more information on defining a PLC program, refer to the PLCP command description.

226 6K Series Command Reference

Example:
DEF PLCP3
; Binary states of outputs 1-6 are represented by VARB1 bit 1-6.
; Outputs 1-6 are set at the end of the program.
VARB1=b000000 ; Initialize binary variable 1
IF(IN.1=b1) ; If Input 1 is ON, turn Output 1 ON
VARB1=VARB1 | b100000 ; Set binary bit for output 1 only to ON
NIF
IF(IN.2=b1) ; If Input 2 is ON, turn Output 2 ON
VARB1=VARB1 | b010000 ; Set binary bit for output 2 only to ON
NIF
IF(IN.3=b1) ; If Input 3 is ON, turn Output 3 ON
VARB1=VARB1 | b001000 ; Set binary bit for output 3 only to ON
NIF
IF(IN.4=b1) ; If Input 4 is ON, turn Output 4 ON
VARB1=VARB1 | b000100 ; Set binary bit for output 4 only to ON
NIF
IF(IN.5=b1) ; If Input 5 is ON, turn Output 5 ON
VARB1=VARB1 | b000010 ; Set binary bit for output 5 only to ON
NIF
IF(IN.6=b1) ; If Input 6 is ON, turn Output 6 ON
VARB1=VARB1 | b000001 ; Set binary bit for output 6 only to ON
NIF
OUT(VARB1) ; Turn on appropriate outputs
END

PCOMP PLCP3 ; Compile program PLCP3

SCANP PLCP3 ; Run compiled program PLCP3 in Scan mode
; The diagram below illustrates the scan.

DEF PLCP3
VARB1=b000000
IF(IN.1=b1)
VARB1=VARB1 | b100000
NIF
IF(IN.2=b1)
VARB1=VARB1 | b010000
NIF
IF(IN.3=b1)
VARB1=VARB1 | b001000
NIF
IF(IN.4=b1)
VARB1=VARB1 | b000100
NIF
IF(IN.5=b1)
VARB1=VARB1 | b000010
NIF

IF(IN.6=b1)
VARB1=VARB1 | b000001
ELSE
VARB1=VARB1 | b000000
NIF
OUT(VARB1)
END

Pause Scan

Scanning

Scanning

Scanning

Scanning

Begin New
Scan

0

2 msec

Time (msec)

4 msec

6 msec

2 System Update Periods are needed to complete the scan
for compiled program PLCP3, for a total of 4 msec.
The response to a TSCAN command would be: *TSCAN4.

Scan
Complete

Command Descriptions 227

SCLA Acceleration Scale Factor
Type Scaling
Syntax <!><@><a>SCLA<i>,<i>,<i>,<i>,<i>,<i>,<i>,<i>
Units i = counts/unit
Range 1 - 999,999
Default 4000

(Servos auto-detect based on SFB: 4000 if encoder, 205 if ANI)
Response SCLA: *SCLA4000,4000,4000,4000,4000,4000,4000,4000

1SCLA: *1SCLA4000

See Also ANIRNG, FMAXA, SCALE, SCLD, SCLMAS, SCLV, SFB, TSTAT

Product Rev

6K 5.0

When scaling is enabled (SCALE1), all point-to-point acceleration values (A, AA, HOMA, HOMAA, JOGA,
JOGAA, JOYA, JOYAA) and deceleration values (AD, ADA, LHAD, LHADA, LSAD, LSADA, HOMAD, HOMADA,
JOGAD, JOGADA, JOYAD, JOYADA) are multiplied by the Acceleration Scale Factor (SCLA) command. Since
the units are counts/unit, and all the acceleration values are in units/sec/sec, all accelerations will thus be
internally represented as counts/sec/sec.

Stepper axes: If scaling is enabled (SCALE1), the entered accel and decel values are internally multiplied
by the acceleration scaling factor (SCLA) to convert user units/sec/sec to commanded counts/sec/sec
(sometimes referred to as “motor steps”/sec/sec). The entered values are always in reference to
commanded counts, regardless of the existence of an encoder.

If scaling is disabled (SCALEØ), all accel and decel values are entered in commanded revs/sec/sec;
these values are internally multiplied by the drive resolution (DRES) value to obtain accel and decel
values in commanded counts/sec/sec for the motion trajectory calculations.

Servo axes: If scaling is enabled (SCALE1), the entered accel and decel values are internally multiplied by
the acceleration scaling factor (SCLA) to convert user units/sec/sec to encoder or ANI counts/sec/sec.

If scaling is disabled (SCALEØ), all accel and decel values are entered in encoder revs/sec/sec or ANI
volts/sec/sec; encoder values are internally multiplied by the encoder resolution (ERES) value to
obtain accel and decel values in counts/sec/sec for the motion trajectory calculations.

As the acceleration scaling factor (SCLA) changes, the
resolution of the acceleration and deceleration values and
the number of positions to the right of the decimal point
also change (see table at right). An acceleration value with
greater resolution than allowed will be truncated. For
example, if scaling is set to SCLA1Ø, the A9.9999

command would be truncated to A9.9 .

SCLA (counts/unit) Decimal Places

1 - 9 0
10 - 99 1
100 - 999 2
1000 - 9999 3
10000 - 99999 4
100000 - 999999 5

The following equations can help you determine the range of acceleration and deceleration values.

Axis Type Min. Accel or Decel (resolution) Max. Accel or Decel

Stepper 0.001 ∗ DRES

SCLA

999.9999 ∗ DRES

SCLA

Servo
Encoder Feedback:

0.001 ∗ ERES

SCLA

ANI Feedback: *
0.8205

SCLA

Encoder Feedback:
999.9999 ∗ ERES

SCLA

ANI Feedback: *
20479.9795

SCLA

* This calculation assumes the analog input range (ANIRNG value) is left in its default setting (range is -10V to +10V).

MORE ABOUT SCALING

For additional details on scaling, including scaling examples, refer to page 16.

228 6K Series Command Reference

SCLD Distance Scale Factor
Type Scaling
Syntax <!><@><a>SCLD<i>,<i>,<i>,<i>,<i>,<i>,<i>,<i>
Units i = counts/unit
Range 1 - 999,999
Default 1

(Servos auto-detect based on SFB: 1 if encoder, 205 if ANI)
Response SCLD: *SCLD1,1,1,1,1,1,1,1

1SCLD: *1SCLD1

See Also [ANI], D, [FB], FOLRN, FSHFD, [PANI], [PC], [PCC],
[PCE], [PCMS], [PE], [PER], PSET, [PSHF], [PSLV],
REG, REGLOD, SCALE, SCLA, SCLV, SCLMAS, SFB, SMPER, TANI, TFB,
TPANI, TPC, TPCC, TPCE, TPCMS, TPE, TPER, TPSHF, TPSLV, TSTAT

Product Rev

6K 5.0

If scaling is enabled (SCALE1), all D, PSET, SMPER, and REG command values are internally multiplied by
the Distance Scale Factor (SCLD) value. Since the SCLD units are in terms of counts/unit, all distances will
thus be internally represented in counts. For instance, if your distance scaling factor is 10000 (SCLD1ØØØØ)
and you enter a distance of 75 (D75), the actual distance moved will be 750,000 (10000 x 75) counts.

This command is useful for allowing the user to specify distances in any unit. For example, if the user had a
25000 step/revolution drive and wanted distance units in terms of revolutions, then SCLD should be set to
25000, and scaling should be enabled (SCALE1).

As the distance scaling factor (SCLD) changes, the resolution of all distance commands and the number of
positions to the right of the decimal point also change (see table below). A distance value with greater
resolution than allowed will be truncated (e.g., if scaling is set to SCLD25ØØØ, the D1.99999 command
would be truncated to D1.9999).

SCLD (counts/unit) Distance Resolution (units) Distance Range (units) Decimal Places

1 - 9 1 0 - ±999,999,999 0

10 - 99 0.1 0.0 - ±99,999,999.9 1

100 - 999 0.01 0.00 - ±9,999,999.99 2

1000 - 9999 0.001 0.000 - ±999,999.999 3

10000 - 99999 0.0001 0.0000 - ±99,999.9999 4

100000 - 999999 0.00001 0.00000 - ±9999.99999 5

FRACTIONAL STEP TRUNCATION

If you are operating in the preset positioning mode (MCØ), when the distance scaling
factor (SCLD) and the distance value are multiplied, a fraction of one step may possibly
be left over. This fraction is truncated when the distance value is used in the move
algorithm. This truncation error can accumulate over a period of time, when performing
incremental moves continuously in the same direction. To eliminate this truncation
problem, set the distance scale factor (SCLD) to 1, or a multiple of 10.

MORE ABOUT SCALING

For additional details on scaling, including scaling examples, refer to page 16.

Command Descriptions 229

SCLMAS Master Scale Factor
Type Following; Scaling
Syntax <!><@><a>SCLMAS<i>,<i>,<i>,<i>,<i>,<i>,<i>,<i>
Units i = scaling factor
Range i = 1 - 999999
Default 1
Response SCLMAS *SCLMAS1,1,1,1,1,1,1,1

1SCLMAS *1SCLMAS1

See Also FMCLEN, FMCP, FOLEN, FOLMD, FOLRD, FOLRN, GOWHEN, [PCMS],
[PMAS], SCALE, SCLD, TPMAS, TPCMS

Product Rev

6K 5.0

The Master Scale Factor (SCLMAS) command internally multiplies all Following master values by the
specified scale factor value. Since the SCLMAS units are in terms of counts/unit, all distances will thus be
internally represented in counts. For instance, if your master scaling factor is 10000 (SCLMAS10000) and you
enter a master parameter of 75 (e.g., FOLMD75), the internal value will be 750,000 (10000 x 75) counts.

NOTE: The SCLMAS command will not take effect unless scaling is enabled (SCALE1).

This command allows you to specify distances in any unit. For example, if you had a 4000 step/revolution
encoder as the master and wanted master units in terms of revolutions, then SCLMAS should be set to 4000.

As the master scaling factor (SCLMAS) changes, the resolution of all master parameter values and the
number of positions to the right of the decimal point also change (see table below). A master parameter
value with greater resolution than allowed will be truncated (e.g., if scaling is set to SCLD4000, the
FOLMD1.9999 command would be truncated to FOLMD1.999).

SCLMAS (counts/unit) Master Resolution (units) Master Range (units) Decimal Places

1 - 9 1 0 - ±999,999,999 0
10 - 99 0.1 0.0 - ±99,999,999.9 1
100 - 999 0.01 0.00 - ±9,999,999.99 2
1000 - 9999 0.001 0.000 - ±999,999.999 3
10000 - 99999 0.0001 0.0000 - ±99,999.9999 4
100000 - 999999 0.00001 0.00000 - ±9999.99999 5

FRACTIONAL STEP TRUNCATION

If you are specifying master distance values (FOLMD), when the master scaling factor
(SCLMAS) and the distance value are multiplied, a fraction of one count may possibly be
left over. This fraction is truncated when the distance value is used in the move
algorithm. This truncation error can accumulate when performing several moves over
the specified master distance. To eliminate this truncation problem, set the master scale
factor (SCLMAS) to 1, or a multiple of 10.

Example: (refer also to the FOLEN examples, and page 16)

The commands below are a subset of the set-up parameters for an application in which axis 1 is following
the encoder input on axis #3 at a 1-to-1 ratio.

SCALE1 ; Enable parameter scaling
SCLA25000 ; Set follower acceleration scale factor to 25000 for axis 1
SCLV25000 ; Set follower velocity scale factor to 25000 for axis 1
SCLD25000 ; Set follower distance scale factor to 25000 for axis 1
SCLMAS4000 ; Set master scale factor to 4000 for axis 1
FOLMAS31 ; Axis 1 using encoder input #3 as master
FOLRN1 ; Set follower-to-master Following ratio numerator to 1

; (scaled by SCLD)
FOLRD1 ; Set follower-to-master Following ratio denominator to 1.

; This sets the ratio to 1:1 (scaled the SCLMAS).
; The actual ratio in counts = 25000 to 4000 = 6.25 follower
; axis counts per master count.

230 6K Series Command Reference

SCLV Velocity Scale Factor
Type Scaling
Syntax <!><@><a>SCLV<i>,<i>,<i>,<i>,<i>,<i>,<i>,<i>
Units i = counts/unit
Range 1 - 999,999
Default 4000

(Servos auto-detect based on SFB: 4000 if encoder, 205 if ANI)
Response SCLV: *SCLV4000,4000,4000,4000 ...

1SCLV: *1SCLV4000

See Also ANIRNG, FMAXV, HOMV, HOMVF, JOGVH, JOGVL, JOYVH, JOYVL, SCALE,
SCLA, SCLD, SFB, TSTAT, V

Product Rev

6K 5.0

When scaling is enabled (SCALE1), all velocity values (HOMV, HOMVF, JOGVH, JOGVL, JOYVH, JOYVL, V)
are multiplied by the Velocity Scale Factor (SCLV) command. Since the units are counts/unit, all velocities
will thus be internally represented in counts/sec.

Steppers: If scaling is enabled (SCALE1), the entered velocity values are internally multiplied by SCLV to
convert user units/sec to commanded counts/sec.

If scaling is disabled (SCALEØ), all velocity values are entered in commanded revs/sec; these
values are internally multiplied by the drive resolution (DRES) value to obtain velocity values in
commanded counts/sec for the motion trajectory calculations.

Servos: If scaling is enabled (SCALE1), the entered velocity values are internally multiplied by SCLV to
convert user units/sec to encoder or ANI counts/sec.

If scaling is disabled (SCALEØ), all velocity values are entered in encoder revs/sec or ANI
volts/sec; encoder values are internally multiplied by the encoder resolution (ERES) value to
obtain velocity values in counts/sec for the motion trajectory calculations.

As the velocity scaling factor (SCLV) changes, the resolution of the velocity commands and the number of
positions to the right of the decimal point also change (see table below). A velocity value with greater
resolution than allowed will be truncated. For example, if scaling is set to SCLV1Ø, the V1.9999 command
would be truncated to V1.9 .

SCLV (steps/unit) Velocity Resolution (units/sec) Decimal Places

1 - 9 1 0

10 - 99 0.1 1

100 - 999 0.01 2

1000 - 9999 0.001 3

10000 - 99999 0.0001 4

100000 - 999999 0.00001 5

Use the following equations to determine the maximum velocity range for your product type.

Max. Velocity for Stepper Axes
Max. Velocity for Servo Axes

(Servos: determined by feedback source selected for axis #1)

n

SCLV

n = maximum velocity is determined by
the PULSE command setting. Encoder Feedback:

6,500,000

SCLV

ANI Feedback: *
1000 205∗

SCLV

* This calculation assumes the analog input range (ANIRNG value) is left in its default setting (range is -10V to +10V).

MORE ABOUT SCALING

For additional details on scaling, including scaling examples, refer to page 16.

Command Descriptions 231

[SEG] Number of Free Segment Buffers
Type Compiled Motion; Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also MEMORY, [SS], TDIR, TMEM, TSEG, TSS

Product Rev

6K 5.0

Use the SEG operator to assign the number of free memory segment buffers in compiled memory to a
variable (VAR), or to make a comparison against another value. “Compiled memory” is the partition of the
6K controller’s non-volatile memory that stores compiled profiles & PLC programs. Compiled
profiles/programs could be a multi-axis contour (a series of arcs and lines), an individual axis profile (a
series of GOBUF commands), a compound profile (combination of multi-axis contours and individual axis
profiles), or a PLC program (for PLC Scan Mode).

System status bit (see TSSF, TSS, and SS) 29 to set when the compiled memory is 75% full, and bit 30 is set
if the compiled memory is 100% full.

Syntax: VARn=SEG where “n” is the variable number,
or SEG can be used in an expression such as IF(SEG=1)

SFB Select Servo Feedback Source
Type Controller Configuration or Servo
Syntax <@><a>SFB<i>,<i>,<i>,<i>,<i>,<i>,<i>,<i>
Units i = feedback source identifier
Range i = 0 (open loop, disable gains), 1 (encoder), or 2 (ANI input)
Default 1
Response SFB *SFB1,1,1,1,1,1,1,1

1SFB *1SFB1

See Also [ANI], ANIFB, ANIRNG, AXSDEF, ERES, [FB], OUTPn, [PANI],
[PCE], [PE], PSET, SCALE, SCLD, SGAF, SGI, SGILIM, SGP,
SGV, SGVF, SMPER, SOFFS, TANI, TFB, TPANI, TPE

Product Rev

6K 5.0

(applicable to servo
axes only)

Use the SFB command to select the servo feedback source to be used by each axis. The options are:

Options Physical Location Measurement* Resolution Command

1—Encoder

2—Analog (“ANI”) input **

ENCODER connector only

Analog input SIM on external
I/O brick

Encoder counts

ADC counts

ERES
(default is 4000 counts/rev)

ANIRNG
(default is 205 counts/volt)

* With scaling enabled (SCALE1), encoder and ANI feedback is scaled by the SCLD value.
** Before an analog input can be selected for feedback, it must be configured with the ANIFB command.

NOTE

Parameters for scaling (SCLA, SCLD, etc.) , tuning gains (SGI, SGP, etc.), position offset
(PSET) and maximum position error (SMPER) are specific to the feedback source
currently selected with the last SFB command.

If your application requires switching between feedback sources for the same axis, then
for each feedback source, you must issue the SFB command and then enter the scaling,
gains, PSET and SMPER commands specific to that feedback source.

The feedback source can be changed only if motion is not in progress. When the feedback source is
changed, the new setpoint will be determined by taking the new feedback source's value and adding any
existing position error. Changing the source will disable the Output On Position commands (OUTPn).

232 6K Series Command Reference

USING SFBØ

Setting the SFB command value to zero has these effects:

• WARNING: The end-of-travel limits are disabled. Make sure that it is safe to operate
without end-of-travel limits before using SFBØ.

• Gain values (SGILIM , SGAF, SGI, SGP, etc.) set to zero (open-loop operation).

• SMPER value set to zero (position error is allowed to increase without causing a fault.

• Subsequent attempts to change gain values or SMPER will cause an error message
("NOT ALLOWED IF SFBØ")

• SOFFS set to zero, but allows subsequent servo offset changes to affect motion.

• Disables output-on-position (OUTPA - OUTPH) functions.

• Any subsequent changes to PSET, PSETCLR, SCLD, SCLA, SCLV, and SOFFS are lost
when another feedback source is selected.

Recommendation: Use the Disable Drive On Kill more, enabled with the KDRIVE
command, so that the controller will shut down the drive if a kill command (e.g., !K) is
executed or if a kill input is activated. Keep in mind that shutting down the drive allows the
load to freewheel if there is not brake installed.

Example (to be placed outside of a program, because of the scaling parameters):
DRIVE0 ; Disable (shutdown) axis #1
SFB1 ; Select encoder feedback for axis #1 (subsequent scaling,

; gains, and PSET are specific to encoder feedback operation)
ERES4000 ; Set encoder resolution
SCLA4000 ; Set scaling for programming acceleration in revs/sec/sec
SCLV4000 ; Set scaling for programming velocity in revs/sec
SCLD4000 ; Set scaling for programming distance in revs
SGP5 ; Set proportional feedback gain to 5
SGI1 ; Set integral feedback gain to 1
SGV1 ; Set velocity feedback gain to 1
PSET0 ; Set current position as absolute position zero
1ANIRNG.17=4 ; Select a voltage range of -10V to +10V for the 1st analog

; input channel in SIM slot 3 (I/O location 17) of I/O brick 1.
; This means the counting resolution will be 205 counts/volt.

ANIFB1-17 ; Select the 1st analog input channel in SIM slot 3
; (I/O location 17) of I/O brick 1 to be used as
; feedback for axis 1. ((required before the SFB command))

SFB2 ; Select ANI feedback for axis #1 (subsequent scaling, gains,
; and PSET are specific to ANI feedback operation)

SCLA205 ; Set scaling for programming acceleration in volts/sec/sec
SCLV205 ; Set scaling for programming velocity in volts/sec
SCLD205 ; Set scaling for programming distance in volts
SGP1 ; Set proportional feedback gain to 1
SGI0 ; Set integral feedback gain to zero
SGV.5 ; Set velocity feedback gain to 0.5
PSET0 ; Set current position as absolute position zero
SFB1 ; Select encoder feedback for axis #1

Command Descriptions 233

SGAF Acceleration Feedforward Gain
Type Servo
Syntax <!><@><a>SGAF<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = microvolts/step/sec/sec
Range 0.00000000 - 2800000.00000000
Default 0
Response SGAF: *SGAF0,0,0,0,0,0,0,0

1SGAF: *1SGAF0

See Also SFB, SGENB, SGI, SGP, SGSET, SGV, SGVF, TGAIN, TSGSET

Product Rev

6K 5.0

(applicable to servo
axes only)

Use the Acceleration Feedforward Gain (SGAF) command to set the gain for the acceleration feedforward
term in the servo control algorithm. Introducing acceleration feedforward control improves position
tracking performance when the system is commanded to accelerate or decelerate.

The SGAF value is multiplied by the commanded acceleration (calculated by the 6K controller's DSP move
profile routine) to produce the control signal.

Acceleration feedforward control can improve the performance of contouring and linear interpolation
applications, as well as reduce the time required to reach the commanded velocity. However, if your
application only requires point-to-point moves, acceleration feedforward control is not necessary (leave
the SGAF command setting at zero—default).

Acceleration feedforward control does not affect the servo system's stability, nor does it have any effect at
constant velocity or at steady state.

NOTE

The SGAF command is specific to the current feedback source (selected with the last
SFB command). Therefore, if your application requires switching between feedback
sources for the same axis, then for each feedback source, you must select the feedback
source with the appropriate SFB command and then issue the SGAF command with the
gain values specific to the selected feedback source.

For more information on servo tuning and how the acceleration feedforward gain affects performance, refer
to your product's Installation Guide or to the Servo Tuner User Guide.

Example:
SGAF0.5555,43.554,0,0 ; Set the acceleration feedforward for axes 1 and 2

SGENB Enable a Servo Gain Set
Type Servo
Syntax <!><@><a>SGENB<i>,<i>,<i>,<i>,<i>,<i>,<i>,<i>
Units i = gain set identification number (see SGSET command)
Range 1 - 5
Default n/a
Response n/a

See Also SFB, SGAF, SGAFN, SGI, SGILIM, SGP, SGSET, SGV, SGVF, SOFFS,
TGAIN, TSGSET

Product Rev

6K 5.0

(applicable to servo
axes only)

This command allows you to enable any combination of the five gain sets to any combination of axes. The
gain sets are set with the SGSET command. A gain set can be enabled during motion at any specified point
in the profile, or when not in motion. For example, you could use one set of gain parameters for the constant
velocity portion of the profile, and when you approach the target position a different set of gains can be
enabled.

NOTE

The tuning gains in a given gain set are specific to the feedback source that was in use
(selected with the last SFB command) at the time the gains were established with the
respective gain commands (SGI, SGP, etc.). Make sure that the gain set you enable is
appropriate to the feedback source you are using at the time.

234 6K Series Command Reference

For more information on servo tuning, refer to your product's Installation Guide or to the Motion Planner
help system.

Example:
SGP5,5,10,10 ; Sets the gains for the proportional gain
SGI.1,.1,0,0 ; Sets the gains for the integral gain
SGV50,60,0,0 ; Sets the gains for the velocity gain
SGVF5,6,10,11 ; Sets the gains for the velocity feedforward gain
SGAF0,0,0,0 ; Sets the gains for the acceleration feedforward gain
SGSET3 ; Assign SGP, SGI, SGV, SGVF, & SGAF gains to servo gain set 3
SGP75,75,40,40 ; Sets the gains for the proportional gain
SGI5,5,5,7 ; Sets the gains for the integral gain
SGV1,.45,2,2 ; Sets the gains for the velocity gain
SGVF0,8,0,9 ; Sets the gains for the velocity feedforward gain
SGAF18,20,22,24 ; Sets the gains for the acceleration feedforward gain
SGSET1 ; Assign SGP, SGI, SGV, SGAF, & SGVF gains to servo gain set 1
SGENB1,3,3,1 ; Enables gain set 1 gains on axis 1 &4; enables gain set 3 on

; axis 2 & 3
TGAIN ; Displays the current value for all gains. Example response:

; *SGP75,5,10,40
; *SGI5,.1,0,7
; *SGV1,60,0,2
; *SGVF0,6,10,9
; *SGAF18,0,0,24

SGI Integral Feedback Gain
Type Servo
Syntax <!><@><a>SGI<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = millivolts/step * sec
Range 0.00000000-2,800,000.00000000
Default 0.0
Response SGI: *SGI0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0

1SGI: *1SGI0.0

See Also SFB, SGAF, SGENB, SGILIM, SGP, SGSET, SGV, SGVF, TGAIN, TSGSET

Product Rev

6K 5.0

(applicable to servo
axes only)

Use the Integral Gain (SGI) command to set the gain of the integral term in the control algorithm. The
primary function of the integral gain is to reduce or eliminate final position error (e.g., due to friction,
gravity, etc.) and improve system accuracy during motion. If a position error exists (commanded position
not equal to actual position—see TPER command), this control signal will ramp up until it is high enough to
overcome the friction and drive the motor toward its commanded position. If acceptable position accuracy
is achieved with proportional gain (SGP), then the integral gain (SGI) need not be used.

If the integral gain is set too high relative to the other gains, the system may become oscillatory or unstable.
The integral gain can also cause excessive position overshoot and oscillation if an appreciable position error
has persisted long enough during the transient period (time taken to reach the position setpoint); this effect
can be reduced by using the SGILIM command to limit the integral term windup.

NOTE

The SGI command is specific to the current feedback source (selected with the last SFB
command). Therefore, if your application requires switching between feedback sources
for the same axis, then for each feedback source, you must select the feedback source
with the appropriate SFB command and then issue the SGI command with the gain
values specific to the selected feedback source.

For more information on servo tuning, refer to your product's Installation Guide or to the Motion Planner
help system.

Example:
SGI15,14.5 ; Set the integral gain for axes 1 and 2

Command Descriptions 235

SGILIM Integral Windup Limit
Type Servo
Syntax <!><@><a>SGILIM<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = volts
Range 0-65,535
Default 200
Response SGILIM: *SGILIM200,200,200,200,200,200,200,200

1SGILIM: *1SGILIM200

See Also SFB, SGENB, SGI, TGAIN, TSGSET

Product Rev

6K 5.0

(applicable to servo
axes only)

If integral control (SGI) is used and an appreciable position error has persisted long enough during the
transient period (time taken to reach the setpoint), the control signal generated by the integral action can end
up too high and saturate to the maximum level of the controller's analog control signal output. This
phenomenon is called integrator windup.

After windup occurs, it will take a while before the integrator output returns to a level within the limit of the
controller's output. Such a delay causes excessive position overshoot and oscillation. Therefore, the integral
windup limit (SGILIM) command is provided for you to set the absolute limit of the integral and, in essence,
turn off the integral action as soon as it reaches the limit; thus, position overshoot and oscillation can be
reduced.

NOTE

The SGILIM command is specific to the current feedback source (selected with the last
SFB command). Therefore, if your application requires switching between feedback
sources for the same axis, then for each feedback source, you must select the feedback
source with the appropriate SFB command and then issue the SGILIM command with
the gain values specific to the selected feedback source.

For more information on servo tuning, refer to your product's Installation Guide or to the Motion Planner
help system.

Example:
SGI44,43,55,0 ; Sets the integral gain term
SGILIM15,15,15,15 ; Sets the integral windup limit on the integral gain term

SGP Proportional Feedback Gain
Type Servo
Syntax <!><@><a>SGP<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = millivolts/step
Range 0.00000000-2,800,000.00000000
Default 0.5
Response SGP: *SGP0.5,0.5,0.5,0.5 ...

1SGP: *1SGP0.5

See Also SFB, SGAF, SGENB, SGI, SGSET, SGV, SGVF, TGAIN, TSGSET

Product Rev

6K 5.0

(applicable to servo
axes only)

This command allows you to set the gain of the proportional term in the servo control algorithm. The output
of the proportional term is proportional to the difference between the commanded position and the actual
position read from the feedback device. The primary function of the proportional term is to stabilize the
system and speed up the response. It can also be used to reduce the steady state position error.

When the proportional gain (SGP) is used alone (i.e., the other gain terms are set to zero), setting this gain
too high can cause the system to become oscillatory, underdamped, or even unstable.

NOTE

The SGP command is specific to the current feedback source (selected with the last SFB
command). Therefore, if your application requires switching between feedback sources
for the same axis, then for each feedback source, you must select the feedback source
with the appropriate SFB command and then issue the SGP command with the gain
values specific to the selected feedback source.

236 6K Series Command Reference

For more information on servo tuning, refer to your product's Installation Guide or to the Motion Planner
help system.

Example:
SGP10,4.22233,2.22,.0445245 ; Sets the proportional gain of all axes

SGSET Save a Servo Gain Set
Type Servo
Syntax <!>SGSET<i>
Units i = gain set identification number
Range 1-5
Default n/a
Response n/a

See Also SFB, SGAF, SGENB, SGI, SGILIM, SGP, SGV, SGVF, SOFFS, TGAIN, TSGSET

Product Rev

6K 5.0

(applicable to servo
axes only)

This command allows you to save the presently assigned gain values (SGP, SGI, SGV, SGAF, and SGVF) as a
set of gains. Stand-alone servo controllers save (into battery-backed RAM) the gains and the axes and
feedback sources to which they are assigned. Up to 5 sets of gains can be saved. Any gain set can be
displayed using the TSGSET command.

Any gain set can be enabled with the SGENB command during motion at any specified point in the profile, or
when not in motion. For example, you could use one set of gain parameters for the constant velocity portion
of the profile, and when you approach the target position a different set of gains can be enabled.

NOTE

The tuning gains in a given gain set are specific to the feedback source that was in use
(selected with the last SFB command) at the time the gains were established with the
respective gain commands (SGI, SGP, etc.). If your application requires you to switch
between feedback sources for the same axis, make sure that the gain set you enable is
appropriate to the feedback source you are using at the time.

For more information on servo tuning, refer to your product's Installation Guide or to the Motion Planner
help system.

Example:
SGP5,5,10,10 ; Sets the gains for the proportional gain
SGI.1,.1,0,0 ; Sets the gains for the integral gain
SGV50,60,0,0 ; Sets the gains for the velocity gain
SGVF5,6,10,11 ; Sets the gains for the velocity feedforward gain
SGAF0,0,0,0 ; Sets the gains for the acceleration feedforward gain
SGSET3 ; Assign SGP, SGI, SGV, SGVF, & SGAF gains to servo gain set 3
SGP75,75,40,40 ; Sets the gains for the proportional gain
SGI5,5,5,7 ; Sets the gains for the integral gain
SGV1,.45,2,2 ; Sets the gains for the velocity gain
SGVF0,8,0,9 ; Sets the gains for the velocity feedforward gain
SGAF18,20,22,24 ; Sets the gains for the acceleration feedforward gain
SGSET1 ; Assign SGP, SGI, SGV, SGAF, & SGVF gains to servo gain set 1
SGENB1,3,3,1 ; Enables gain set 1 gains on axis 1 &4; enables gain set 3 on

; axis 2 & 3
TGAIN ; Displays the current value for all gains. Example response:

; *SGP75,5,10,40
; *SGI5,.1,0,7
; *SGV1,60,0,2
; *SGVF0,6,10,9
; *SGAF18,0,0,24

Command Descriptions 237

SGV Velocity Feedback Gain
Type Servo
Syntax <!><@><a>SGV<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = microvolts/step/sec
Range 0.00000000-2,800,000.00000000
Default 0.0
Response SGV: *SGV0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0

1SGV: *1SGV0.0

See Also ERES, SFB, SGAF, SGI, SGP, SGVF, TGAIN, TSGSET

Product Rev

6K 5.0

(applicable to servo
axes only)

This command allows you to control the velocity feedback gain in the servo algorithm. Using velocity
feedback, the controller's output signal is made proportional to the velocity, or rate of change, of the
feedback device position. Since it acts on the rate of change of the position, the action of this term is to
anticipate position error and correct it before it becomes too large. This increases damping and tends to
make the system more stable.

If this term is too large, the response will be slowed to the point that the system is over-damped. This gain
can increase position tracking error, which can be countered by the velocity feedforward term (SGVF).

Since the feedback device signal has finite resolution, the velocity accuracy has a limit. Therefore, if the
velocity feedback gain (SGV) is too high, the errors due to the finite resolution are magnified and a noisy, or
chattering, response may be observed.

NOTE

The SGV command is specific to the current feedback source (selected with the last SFB
command). Therefore, if your application requires switching between feedback sources
for the same axis, then for each feedback source, you must select the feedback source
with the appropriate SFB command and then issue the SGV command with the gain
values specific to the selected feedback source.

For more information on servo tuning, refer to your product's Installation Guide or to the Motion Planner
help system.

Example:
SGV100,97,43.334,0 ; Sets the velocity gain term for all the axes

SGVF Velocity Feedforward Gain
Type Servo
Syntax <!><@><a>SGVF<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = microvolts/step/sec
Range 0.00000000-2,800,000.00000000
Default 0.0
Response SGVF: *SGVF0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0

1SGVF: *1SGVF0.0

See Also SFB, SGAF, SGENB, SGI, SGP, SGSET, SGV, TGAIN, TSGSET

Product Rev

6K 5.0

(applicable to servo
axes only)

Use the Velocity Feedforward Gain (SGVF) command to set the velocity feedforward gain. Introducing
velocity feedforward control improves position tracking performance when the system is commanded to
move at constant velocity. The tracking error is mainly attributed to friction, torque load, and velocity
feedback control (SGV).

The SGVF value is multiplied by the commanded velocity (calculated by the 6K controller's DSP move
profile routine) to produce the control signal.

Velocity feedforward control can improve the performance of interpolation (linear and circular) application.
However, if your application only requires short, point-to-point moves, velocity feedforward control is not
necessary (leave the SGVF command setting at zero—default).

Because velocity feedforward control is not in the servo feedback loop, it does not affect the servo system's
stability, nor does it have any effect at steady state. Therefore, the only limits on how high you can set the
velocity feedforward gain (SGVF) are: when it saturates the control output (tries to exceed the servo

238 6K Series Command Reference

controller's ±10V analog control signal range); or when it causes the actual position to precede the
commanded position.

NOTE

The SGVF command is specific to the current feedback source (selected with the last
SFB command). Therefore, if your application requires switching between feedback
sources on the same axis, then for each feedback source, you must select the feedback
source with the appropriate SFB command and then issue the SGVF command with the
gain values specific to the selected feedback source.

For more information on servo tuning, refer to your product's Installation Guide or to the Motion Planner
help system.

Example:
SGVF3555,3555,4000,4000 ; Sets the velocity feedforward for all axes

[SIN()] Sine
Type Operator (Trigonometric)
Syntax ... SIN(r) (See below)
Units r = value in radian or degrees based on RADIAN command
Range ±17500.0000000 radians
Default n/a
Response n/a

See Also [ATAN], [COS], [PI], RADIAN, [TAN], VAR

Product Rev

6K 5.0

This operator is used to calculate the sine of a number
given in radians or degrees (see the RADIAN

command). If "a" and "b" are coordinates of a point
on a circle of radius "r", then the angle of measure "θ"

can be defined by the equation: sine =
a

r
θ

If a value is given in radians and a conversion is
needed to degrees, use the formula: 360° = 2π radians.

y

x

r

b

aθ

sin θ = a
r

cos θ = b
r

tan θ = a
b

The graph on the right
shows the amplitude of y
on the unit circle for
different values of x.

1

0 . 7 0 7

0

-1

-0 . 7 0 7

4 4

3π π 5π
4

7π
4

2π3π
22 R a d i a n s

A m p l i t u d e
(y a x i s)

(x a x i s)

2 π R a d i a n s = 3 6 0 D e g r e e s

π π

Syntax: VARx=SIN(r) where “x” is the numeric variable number and “r ” is a value provided in either
degrees or radians based on the RADIAN command. Parentheses (()) must be placed around the
SIN operand. The result will be specified to 5 decimal places.

Example:
RADIAN1
VAR1=5 * SIN(PI/4) ; Set variable 1 equal to 5 times the sine of Pi divided by 4

Command Descriptions 239

SINAMP Virtual Master Sine Wave Amplitude
Type Following
Syntax <!><@><a>SINAMP<i>,<i>,<i>,<i>,<i>,<i>,<i>,<i>
Units i = amplitude
Range 0-8192 (max. peak to peak is 16384)
Default 0
Response SINAMP *SINAMP0,0,0,0,0,0,0,0

1SINAMP *1SINAMP0

See Also FOLMAS, FVMACC, FVMFRQ, SINANG, SINGO

Product Rev

6K 5.0

Use the SINAMP command to define the amplitude of the internal sine wave when it has been designated as
the virtual master. By designating the internal sine wave as a master, the user may produce a sinusoidally
oscillating motion, with control of the phase, amplitude, and center of oscillation.

The SINAMP command allows a change in follower amplitude without changing the center of oscillation. It
affects the sine wave immediately, without any built in ramp in amplitude. If a gentle change in amplitude
is desired, write a user program which repeatedly issues the command with small changes in value until the
desired value is reached.

The peak-to-peak amplitude of a virtual master sine wave is twice the value specified with the SINAMP

command.

SINANG Virtual Master Sine Wave Angle
Type Following
Syntax <!><@><a>SINANG<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units degrees
Range 0.0-360.0
Default 0
Response SINAMP *SINAMP0,0,0,0,0,0,0,0

1SINAMP *1SINAMP0

See Also FOLMAS, FVMACC, FVMFRQ, SINAMP, SINGO

Product Rev

6K 5.0

The SINANG command is used to define the phase angle when the internal sine wave is designated as the
virtual master. By designating the internal sine wave as a master, the user may produce a sinusoidally
oscillating motion, with control of the phase, amplitude, and center of oscillation.

There is one sine wave per axis, each using the variable count frequency (FVMFRQ) of that axis to increase
or decrease the angle from which the sine is calculated. Each count of the count frequency changes the
angle by one-tenth (0.1) of a degree. For example, a FVMFRQ value of 3600 would create an angular
frequency of 3600 tenths of degrees per second, or 1 cycle per second. When used as a source for the sine
wave, the maximum value for FVMFRQ is 144000. This results in a maximum of 40 Hz angular frequency.
Frequencies higher than this are not allowed because they may be subject to aliasing.

SINGO Virtual Master - Initiate Internal Sine Wave
Type Following
Syntax <!><@><a>SINGO
Units n/a
Range b = 1 (restart sine wave from previous angle & amplitude) or

0 (stop sine wave)
Default 0
Response SINGO *SINGO0000_0000

1SINGO *1SINGO0

See Also FOLMAS, FVMACC, FVMFRQ, SINAMP, SINANG

Product Rev

6K 5.0

The SINGO command is used to restart the internal sine wave from zero degrees. By designating the
internal sine wave as a master, the user may produce a sinusoidally oscillating motion, with control of the
phase, amplitude, and center of oscillation.

240 6K Series Command Reference

The SINGO command with a “0” parameter abruptly stops the sine wave, without changing its current
magnitude. Using the SINGO command with a “1” parameter abruptly starts the sine wave, also without
changing its current magnitude. To gently pause the follower output, change the FVMFRQ value to zero with
a moderate FVMACC value; to resume the follower output, restore the original FVMFRQ value.

The SINGO command with a “1” parameter always starts at the previous angle, which may not be the
desired start of oscillation. The SINANG command will instantly change the angle and corresponding sine
of the angle. This represents an abrupt change in master position. If the follower axis is still following
when this occurs, there will be an abrupt change in commanded follower position. To start the follower
properly, move the follower to the desired start position first (using MC0, D, GO), then issue SINANG, then
MC1, GO1, and finally SINGO.

SMPER Maximum Allowable Position Error
Type Servo
Syntax <!><@><a>SMPER<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = feedback device steps (scalable with SCLD)
Range 0-200,000,000 (0 = do not monitor position error condition)
Default 4000
Response SMPER: *SMPER4000,4000,4000,4000 ...

1SMPER: *1SMPER4000

See Also [AS], CMDDIR, ENCPOL, [ER], ERES, ERROR, ERRORP, SCALE,
SCLD, SFB, SGILIM, TANI, TAS, TER, TFB, TPC, TPE, TPER

Product Rev

6K 5.0

(applicable to
servo axes only)

This command allows you to set the maximum position error allowed before an error condition occurs. The
position error, monitored once per system update period, is the difference between the commanded position
and the actual position as read by the feedback device selected with the last SFB command. When the
position error exceeds the value entered by the SMPER command, an error condition is latched (see TAS or AS

bit #23) and the 6K controller issues a shutdown to the faulted axis and sets its analog output command to
zero volts. To enable the system again, the DRIVE1 command must be issued to the affected axis, which also
sets the commanded position equal to the actual feedback device position (incremental devices will be
zeroed).

If the SMPER value is set to zero (SMPERØ), the position error condition is not monitored, allowing the
position error to accumulate without causing a fault.

When SMPER is set to a non-zero value, the maximum position error acts as the servo system fault monitor;
if the system becomes unstable or loses position feedback, the controller detects the resulting position error,
shuts down the drive, and sets an error status bit. You can enable ERROR command bit #12 to continually
check for the position error condition, and when it occurs to branch to a programmed response defined in
the ERRORP program. You can check the status of this error condition with the TAS, AS, TER, and ER

commands. You can check the actual position error with the TPER and PER commands.

If scaling is enabled (SCALE1), the SMPER value is multiplied by the SCLD value.

NOTE

The SMPER command is specific to the current feedback source (selected with the last
SFB command). Therefore, if your application requires switching between feedback
sources on the same axis, then for each feedback source, you must select the feedback
source with the appropriate SFB command and then issue the SMPER command with the
gain values specific to the selected feedback source.

Example:
ERES4000,4000,4000,4000 ; Set encoder resolution for all axes to 4000 counts/rev
SMPER4000,4000,4000,4000 ; Set maximum allowable position error to 1 rev for

; all 4 axes. If the position error exceeds 4000 counts
; (1 rev) a fault condition will occur.

Command Descriptions 241

SOFFS Servo Control Signal Offset
Type Servo
Syntax <!><@><a>SOFFS<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = volts
Range -10.000 to 10.000 (resolution is 0.001 volts)
Default 0
Response SOFFS: *SOFFS0,0,0,0,0,0,0,0

1SOFFS: *1SOFFS0

See Also [DAC], DACLIM, SGENB, SGSET, TDAC, TGAIN, TSGSET

Product Rev

6K 5.0

This command allows you to set an offset voltage to the commanded analog control signal output
(commanded analog output + SOFFS value = offset analog output). With this command, you can set an
offset voltage to the drive system so that the motor will be stationary in an open-loop configuration. This is
the same effect as the balance input on most analog servo drives.

CAUTION

If there is little or no load attached, the SOFFS offset may cause an acceleration to a high speed.

Typically, this offset will be set to zero. This offers a method for setting the analog output command to a
known voltage. By setting the SGP, SGI, SGV, SGAF, & SGVF gains to zero, the analog output will reflect
this offset value and the system becomes an open-loop configuration.

Use the TDAC command to check the voltage being commanded at the 6K controller's analog output (voltage
displayed includes any offset in effect). An axis configured as a stepper can use the SOFFS command to set
the DAC output voltage.

Example:
SOFFS0,0,1,2 ; Sets the offset voltage on all axes

[SQRT()] Square Root
Type Operator (Mathematical)
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also [=], [+], [-], [*],[/], VAR

Product Rev

6K 5.0

This operator takes the square root of a value. The result, if multiplied by itself, will approximately equal
the original value (the difference is attributed to round-off error). The resulting value has 3 decimal places.

Syntax: VARn=SQRT(expression) where “n” is the variable number, and the expression can be a number
or a mathematical expression. The SQRT of a negative number is not allowed. Parentheses (()) must be
placed around the SQRT operand.

Example:
VAR1=SQRT(25) ; Set variable 1 equal to the square root of 25 (result = 5)

[SS] System Status
Type Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also IF, TCMDER, TRGFN, [TRIG], TTRIG, TSS, TSSF, TSTAT, VARB

Product Rev

6K 5.0

Use the SS operator to assign the system status bits to a binary variable (VARB), or to make a comparison
against a binary or hexadecimal value. To make a comparison against a binary value, the letter b (b or B)

242 6K Series Command Reference

must be placed in front of the value. The binary value itself must only contain ones, zeros, or Xs (1, Ø, X,
x). To make a comparison against a hexadecimal value, the letter h (h or H) must be placed in front of the
value. The hexadecimal value itself must only contain the letters A through F, or the numbers Ø through 9.

Syntax: VARBn=<i%>SS where “n” is the binary variable number, or SS can be used in an expression
such as IF(SS=b11Ø1) , or IF(SS=h7F) . NOTE: If you are using multi-tasking, be aware that
each task has its own system status register. If you wish to check the system status of a external
task (a task other than the task that is executing the SS operator), then you must prefix the SS

operator to address the targeted task (e.g., 2%SS for the system status of Task 2).

The function of each system status bit is shown below.

BIT (Left to Right) Function (1 = yes, Ø = no) BIT (Left to Right) Function (1 = yes, Ø = no)

1 System Ready 17 Loading Thumbwheel Data (TW)
2 Reserved 18 External Program Select Mode (INSELP)
3 Executing a Program 19 Dwell in Progress (T command)
4 Immediate Command (set if last

command was immediate)
20 Waiting for RP240 Data—DREAD or

DREADF

5 In ASCII Mode 21 RP240 Connected — current PORT
setting only

6 In Echo Mode — current PORT
setting only

22 Non-volatile Memory Error

7 Defining a Program 23 Servo data gathering transmission in
progress (servo axes only)

8 In Trace Mode 24 Reserved

9 In Step Mode 25 RESERVED
10 In Translation Mode 26 RESERVED
11 Command Error Occurred (bit is

cleared when TCMDER is issued)
26 RESERVED

12 Break Point Active (BP) 28 RESERVED

13 Pause Active 29 Compiled memory is 75% full
14 Wait Active (WAIT) 30 Compiled memory is 100% full
15 Monitoring On Condition (ONCOND) 31 * Compile operation failed (PCOMP) **
16 Waiting for Data (READ) 32 Reserved

* Bit #31: failed PCOMP compile is cleared on power up, RESET, or after successful compile. Possible causes include:
• Errors in profile design (e.g., change direction while at non-zero velocity; distance & velocity equate to < 1 count

per system update; preset move profile ends in non-zero velocity)
• Profile will cause a Following error (see TFSF, TFS, or FS command descriptions)
• Out of memory (see SS bit #30)
• Axis already in motion at the time of the PCOMP command
• Loop programming errors (e.g., no matching PLOOP or PLN; more than 4 embedded PLOOP/END loops)
• PLCP program contains invalid commands.

If it is desired to assign only one bit of the system status value to a binary variable, instead of all 32, the bit
select (.) operator can be used. For example, VARB1=SS.12 assigns system status bit 12 to binary variable
1: *VARB1=XXXX_XXXX_XXXØ_XXXX_XXXX_XXXX_XXXX_XXXX.

Example:
VARB1=SS ; System status assigned to binary variable 1
IF(SS=b111011X11) ; If the system status contains 1s in bit locations 1, 2, 3,

; 5, 6, 8, & 9, and a 0 in bit location 4, do the IF
; statement

IF(SS=h7F00) ; If the system status contains 1s in bit locations 1, 2, 3,
; 5, 6, 7, & 8, and 0s in every other bit location, do the IF
; statement

NIF ; End of second IF statement
NIF ; End of first IF statement

Command Descriptions 243

STARTP Start-Up Program
Type Subroutines
Syntax <!>STARTP<t>
Units t = text (name of program)
Range Text name of 6 characters or less
Default n/a
Response STARTP: *STARTP MAIN

See Also DEF, RESET, SCALE

Product Rev

6K 5.0

The Start-Up Program (STARTP) command specifies the name of the program that will automatically when
the 6K product is powered up or reset with the RESET command. If the program that is identified as the
STARTP program is deleted with the DEL command, the STARTP is automatically cleared. If you wish to
prevent the STARTP program from being executed, without having to delete the assigned program, issue the
STARTP CLR command.

Example:
STARTP WakeUp ; Set program WakeUp as the program that will start to run

; after power is cycled or the 6K product is reset
STARTP CLR ; Clears the program WakeUp from its assignment as the

; start-up program
DEL WakeUp ; Deletes the program WakeUp and clears the STARTP command

; (no power-up program will be executed)

STEP Single Step Mode Enable
Type Program Debug Tool
Syntax <!>STEP
Units n/a
Range b = 0 (disable), 1 (enable) or X (don't care)
Default 0
Response STEP: *STEP0

See Also [#], BP, [SS], TRACE, TRACEP, TRANS, TSS

Product Rev

6K 5.0

The Single Step Mode Enable (STEP) command enables single command step mode. Single step mode is
used for stepping through a defined (DEF) program. To execute single step mode:

1. Define a program (DEF)

2. Enable single step mode (STEP1)

3. Run the program (RUN)

4. Use the immediate pound (!#) to step through the program

Each step (!#) command will initiate the next command to be processed.

Example:
DEF tester ; Begin definition of program named tester
V1,1,1,1 ; Set velocity to 1 unit/sec on all axes
A10,10,10,10 ; Set acceleration to 10 units/sec/sec on all axes

; (Note: This command will not be executed until a !# sign
; is received.)

D1,2,3,4 ; Set distance to 1 unit on axis 1, 2 units on axis 2,
; 3 units on axis 3, and 4 units on axis 4

GO1101 ; Initiate motion on axes 1, 2, and 4
OUT11X1 ; Turn on onboard outputs 1, 2, and 4, leave 3 unchanged
END ; End program definition
STEP1 ; Enable single step mode
RUN tester ; Execute program named tester
; **
; * At this point no action will occur because single step mode *
; * has been enabled. Here's how to execute commands: *
; * !#2 (Execute 1st 2 commands in the program: V1,1,1,1 & A10,10,10,10) *
; * !# (Execute 1 command: command to be executed is D1,2,3,4) *
; * !#1 (Execute 1 command: command to be executed is GO110) *
; * !#2 (Execute 2 commands: commands to be executed are OUT11X1 & END) *
; **

244 6K Series Command Reference

STRGTD Target Distance Zone
Type Servo
Syntax <!><@><a>STRGTD<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = distance units (scalable with SCLD)
Range 0-999,999,999.99999
Default 50
Response STRGTD: *STRGTD50,50,50,50 ...

1STRGTD: *1STRGTD50

See Also [AS], SCLD, STRGTE, STRGTT, STRGTV, TAS, TSTLT

Product Rev

6K 5.0

(applicable only to
servo axes)

This command sets the target distance zone used in the Target Zone Settling Mode. The target distance zone
is a range of positions around the desired endpoint that the load must be within before motion is considered
complete. If scaling is enabled (SCALE1), the STRGTD value is multiplied by the distance scale factor
(SCLD).

When using the Target Zone Mode, the load’s actual position and actual velocity must be within the target
zone (that is, within the distance zone defined by STRGTD and within the velocity zone defined by STRGTV)
before motion can be determined complete. Axis status bit #24 (see TASF, TAS, or AS) indicates when the
axis is within the zone specified with STRGTD and STRGTV; this bit is usable even if the Target Zone Mode
is not enabled (STRGTE0).

If the load does not settle into the target zone before the timeout period set by STRGTT, the controller
detects an error (see TASF, TAS, or AS bit #25). If this error occurs, you can prevent subsequent command
and/or move execution by enabling the ERROR command to continually check for this error condition, and
when it occurs to branch to a programmed response defined in the ERRORP program. (Refer to the ERRORP

command description for an example of using an error program.)

*** For a more information on target zone operation, refer to the Programmer's Guide.

Example:
STRGTD5,5,5,5 ; Sets the distance target zone to +/-5 units
STRGTV.01,.01,.01,.01 ; Sets the velocity target zone to <= 0.01 units/sec
STRGTT10,10,10,10 ; Sets the timeout period to 10 milliseconds on all axes
STRGTE1111 ; Enables the target zone criterion for all axes
;
; Given these target zone commands, a move with a distance of 8,000 units
; (@D8000) must end up between position 7,995 and 8,005 and settle down
; to <=0.01 units/sec within 10 ms after the commanded profile is complete.

STRGTE Enable Target Zone Settling Mode
Type Servo
Syntax <!><@><a>STRGTE
Units n/a
Range b = 0 (disable), 1 (enable), or X (don't care)
Default 0
Response STRGTE: *STRGTE0000_0000

1STRGTE: *1STRGTE0

See Also COMEXC, STRGTD, STRGTT, STRGTV, TSTLT

Product Rev

6K 5.0

(applicable only to
servo axes)

This command enables or disables the Target Zone Settling Mode. When using the target zone settling
criterion, the load's actual position and actual velocity must be within the target zone (that is, within the
position band defined by STRGTD and within the velocity band defined by STRGTV) before motion can be
determined complete.

If the load does not settle into the target zone before the timeout period set by STRGTT, the controller
detects an error (see TAS or AS bit #25). If this error occurs, you can prevent subsequent command and/or
move execution by enabling the ERROR command to continually check for this error condition, and when it
occurs to branch to a programmed response defined in the ERRORP program.

*** For a more information on target zone operation, refer to the Programmer's Guide.

Command Descriptions 245

Example:
STRGTD5,5,5,5 ; Sets the distance target zone to +/-5 units
STRGTV.01,.01,.01,.01 ; Sets the velocity target zone to <= 0.01 units/sec
STRGTT10,10,10,10 ; Sets the timeout period to 10 milliseconds on all axes
STRGTE1111 ; Enables the target zone criterion for all axes
;
; Given these target zone commands, a move with a distance of 8,000 units
; (@D8000) must end up between position 7,995 and 8,005 and settle down
; to <=0.01 units/sec within 10 ms after the commanded profile is complete.

STRGTT Target Settling Timeout Period
Type Servo
Syntax <!><@><a>STRGTT<i>,<i>,<i>,<i>,<i>,<i>,<i>,<i>
Units r = milliseconds
Range 0-5000
Default 1000
Response STRGTT: *STRGTT1000,1000,1000,1000 ...

1STRGTT: *1STRGTT1000

See Also [AS], [ER], ERROR, ERRORP, STRGTD, STRGTE, STRGTV, TAS,
TER, TSTLT

Product Rev

6K 5.0

(applicable only to
servo axes)

This command sets the maximum time allowed for the load to settle within the defined target zone before an
error occurs.

This command is useful only if the Target Zone Settling Mode is enabled with the STRGTE command. When
using the Target Zone Settling Mode, the load's actual position and actual velocity must be within the target
zone (that is, within the position band defined by STRGTD and within the velocity zone defined by STRGTV)
before motion can be determined complete. If the load does not settle into the target zone before the timeout
period set by STRGTT, the servo controller detects an error (see TAS or AS bit #25).

If this error occurs, you can prevent subsequent command and/or move execution by enabling the ERROR

command to continually check for this error condition, and when it occurs to branch to a programmed
response defined in the ERRORP program. (Refer to the ERRORP command description for an example of
using an error program.) You can check the status of the error condition with the TER and ER commands.

*** For a more information on target zone operation, refer to the Programmer's Guide.

Example (see STRGTE):

STRGTV Target Velocity Zone
Type Servo
Syntax <!><@><a>STRGTV<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec (scalable by SCLV)
Range 0.00000-1,600,000.00000
Default 1.00000
Response STRGTV: *STRGTV1.0000,1.0000,1.0000,1.0000 ...

1STRGTV: *1STRGTV1.0000

See Also [AS], SCLV, STRGTD, STRGTE, STRGTT, TAS, TSTLT

Product Rev

6K 5.0

(applicable only to
servo axes)

This command sets the target velocity zone for use in the Target Zone Settling Mode. The target velocity
zone is a velocity range that the load must be within before motion is considered complete. If scaling
(SCALE) is enabled, the STRGTV value is multiplied by the velocity scale factor (SCLV).

When using the Target Zone Mode, the load's actual position and actual velocity must be within the target
zone (that is, within the distance zone defined by STRGTD and less than or equal to the velocity defined by
STRGTV) before motion can be determined complete. Axis status bit #24 (see TASF, TAS, or AS) indicates
when the axis is within the zone specified with STRGTD and STRGTV; this bit is usable even if the Target
Zone Mode is not enabled (STRGTE0).

246 6K Series Command Reference

If the load does not settle into the target zone before the timeout period set by STRGTT, the servo controller
detects an error (see TAS or AS bit #25). If this error occurs, you can prevent subsequent command and/or
move execution by enabling the ERROR command to continually check for this error condition, and when it
occurs to branch to a programmed response defined in the ERRORP program. (Refer to the ERRORP

command description for an example of using an error program.)

*** For a more information on target zone operation, refer to the Programmer's Guide.

Example:
STRGTD5,5,5,5 ; Sets the distance target zone to +/-5 units
STRGTV.01,.01,.01,.01 ; Sets the velocity target zone to <= 0.01 units/sec
STRGTT10,10,10,10 ; Sets the timeout period to 10 milliseconds on all axes
STRGTE1111 ; Enables the target zone criterion for all axes
;
; Given these target zone commands, a move with a distance of 8,000 units
; (@D8000) must end up between position 7,995 and 8,005 and settle down
; to <=0.01 units/sec within 10 ms after the commanded profile is complete.

[SWAP] Task Swap Assignment
Type Assignment or Comparison
Syntax See Below
Units n/a
Range n/a
Default n/a
Response n/a

See Also %, [SS], TTASK, TSWAP, TSKTRN, TSKAX, TSS

Product Rev

6K 5.0

The Task Swap Assignment command (SWAP) allows a binary bit pattern indicating the tasks that are
currently active to be assigned to a binary variable, or evaluated in a conditional statement such as IF or
WAIT. This is useful for ascertaining which tasks have any activity. To ascertain exactly what activity a
specific task has at a given time, use the system status (SS or TSS).

SWAP’s binary 10-bit pattern represents tasks 1-10, from left to right. A “1” indicates that the task is active,
and a “0” indicates that the task is inactive. The “Task Supervisor”, represented by task Ø, is always active
and is therefore not included in the SWAP and TSWAP status.

Syntax: VARBn=SWAP where “n” is the binary variable number, or SWAP can be used in an expression such
as IF(SWAP=b1001000000) or IF(SWAP.3=b1) or IF(SWAP=h7F0) .

To check the status of only one task, you may use the bit select (.) operator. For example,
VARB1=SWAP.2 assigns the binary state of Task2 to binary variable 1; or WAIT(SWAP.2=b1)

establishes a wait condition that evaluates true when Task2 becomes active.

Command Descriptions 247

T Time Delay
Type Program Flow Control
Syntax <!>T<r>
Units r = seconds
Range 0.001-999.999
Default n/a
Response n/a

See Also GOWHEN, PS, [SS], [TIM], TTIM, TSS, WAIT

Product Rev

6K 5.0

The Time Delay (T) command pauses command processing for r seconds before continuing command
execution. Once the elapsed time has expired, the command after the T command will be executed.

The minimum resolution of the T command is 2 ms. Although you can enter time delays that are not
multiples of 2 ms, the time delay will be rounded up to the next multiple of 2 ms. For example, T.005
produces a 6 ms time delay.

Example:
T5 ; Wait 5 seconds before executing TPE command
TPE ; Transfer position of all encoders to the terminal

[TAN()] Tangent
Type Operator (Trigonometric)
Syntax ... TAN(r) (See below)
Units r = radians or degrees depending on RADIAN command
Range ±17500.0000000 radians
Default n/a
Response n/a

See Also [ATAN], [COS], [PI], RADIAN, [SIN], VAR

Product Rev

6K 5.0

The Tangent (TAN) operator is used to calculate the
tangent of a number given in radians or degrees (see
the RADIAN command). If "a" and "b" are
coordinates of a point on a circle of radius "r", then
the angle of measure "θ" can be defined by the

equation: tan =
a

b
θ

If a value is given in radians and a conversion is
needed to degrees, use the following formula:
360° = 2π radians.

Syntax: VARx=TAN(r) , where x is the numeric
variable number and r is a value in either radians or
degrees depending on the RADIAN command.
Parentheses (()) must be placed around the TAN
operand. The result will be specified to 5 decimal
places.

y

x

r

b

aθ

sin θ = a
r

cos θ = b
r

tan θ = a
b

Example:
VAR1=5 * TAN(PI/4) ; Set variable 1 = 5 times the tangent of Pi divided by 4

248 6K Series Command Reference

TANI Transfer Analog Input Voltage
Type Transfer
Syntax <!>TANI<.i>
Units B = I/O brick

i = location on I/O brick
Range i = 1-32
Default n/a
Response 1TANI *1TANIx,x,x,x,x,x,x,x

 +5.802,-4.663,-4.972, +6.023,+2.126,+2.223, ...
 x,x,x,x,x,x,x,x
 x,x,x,x,x,x,x,x

1TANI.10 *-4.663

See Also ANIRNG, [ANI], [FB], [PANI], TFB, TPANI

Product Rev

6K 5.0

The Transfer Analog Input Voltage for analog inputs (TANI) command returns the voltage level present at
the ANI analog inputs located on external I/O bricks. The value reported with the TANI command is
measured in volts and does not reflect the effects of distance scaling (SCLD), position offset (PSET), or
commanded direction polarity (CMDDIR). To ascertain the offset ANI input value, as affected by SCLD,
PSET, or CMDDIR, use the TPANI command or the TFB command.

To determine the analog value from a specific input, use the bit select operator (.). For example, to check
the voltage of the 2nd analog input on the 3rd SIM (I/O location 18) of I/O brick 2, use the 2TANI.18
command. To understand more about the location of I/O points on external I/O bricks, see page 6.

The TANI value is derived from the voltage applied to the corresponding analog input and ground. The
analog value is determined from a 12-bit analog-to-digital converter (ADC). Under the default ANI voltage
range, set with ANIRNG, the range of the ANI operator is -10.000VDC to +10.000VDC (see ANIRNG
command for optional voltage ranges).

TAS Transfer Axis Status
Type Transfer
Syntax <!><a>TAS<.i>
Units i = bit location on the specified axis (See below)
Range 1-32
Default n/a
Response TAS: *TAS 0000_0000_0000_0000_0000_0000_0000_0000

* 0000_1000_0000_0000_0000_0000_0000_0000
* (repeated for each axis)

1TAS: *1TAS0000_0000_0000_0000_0000_0000_0000_0000

 bit 1 bit 32
TAS.5: *00110000 (bit 5 of all eight axes status registers)
1TAS.5: *0 (bit 5 of status register for axis 1)

See Also [AS], [ASX], DRFLVL, ESTALL, GOWHEN, HOM, JOG, JOY, MA,
MC, SMPER, STRGTD, STRGTE, STRGTT, STRGTV, TASF, TASX, TSTAT

Product Rev

6K 5.0

The Transfer Axis Status (TAS) command returns the current status of all axes.

FULL-TEXT STATUS REPORT AVAILABLE

The TAS status command reports a binary bit report. If you would like to see a more
descriptive text-based report, use the TASF command description.

Command Descriptions 249

Bit #
(left to right) Function (1/Ø)

 1 Moving/Not Moving. This bit is set only when motion is commanded on the axis. The motor may still be
“moving” (e.g., due to end-of-move settling).

 2 Negative/positive-direction

 3 Accelerating/Not Accelerating. This bit does not indicate deceleration (bit is set to 0 during decel); to
check if the axis is decelerating, the state of TAS bits 1, 3 and 4 should be: TAS1x00 .

 4 At Velocity/Not at Velocity

 5 Home Successful (HOM) (YES/NO)

 6 Absolute/Incremental (MA)

 7 Continuous/Preset (MC)

 8 Jog Mode/Not Jog Mode (JOG)

 9 Joystick Mode/Not Joystick Mode (JOY)

10 RESERVED

11 RESERVED

12 Stall Detected (YES/NO). This bit is not usable until Stall Detect is enabled with ESTALL1 command.

13 Drive Shut Down (YES/NO)

14 Drive Fault occurred (YES/NO). A drive fault cannot be detected (this bit is always 0) until the drive fault
input check is enabled with DRFEN1. Note: TASX bit 4 reports the hardware state of the drive fault input,
regardless of DRFEN or DRIVE.

15 Positive-direction Hardware Limit Hit (YES/NO)

16 Negative-direction Hardware Limit Hit (YES/NO)

17 Positive-direction Software Limit Hit (YES/NO)

18 Negative-direction Software Limit Hit (YES/NO)

19 RESERVED

20 RESERVED

21 RESERVED

22 RESERVED

23 Position Error Exceeded (SMPER) (YES/NO). Servo axes only.

24 In Target Zone (defined with STRGTD & STRGTV) (YES/NO). Servo axes only. This bit is set only after
the successful completion of a move (if STRGTD and STRGTV criteria have been satisfied). This bit is
usable even if the Target Zone mode is not enabled (STRGTE0).

25 Target Zone Timeout occurred (STRGTT) (YES/NO). Servo axes only.

26 Change in motion is suspended pending GOWHEN (YES/NO). This bit is cleared if the GOWHEN condition
is true, or if STOP (!S) or KILL (!K or ^K) is executed.

27 RESERVED

28 Registration move initiated by trigger since last GO command. This bit is cleared with the next GO
command.

29 RESERVED

30 Pre-emptive (OTF) GO or Registration profile not possible

31 RESERVED

32 RESERVED

250 6K Series Command Reference

TASF Transfer Axis Status (full-text report)
Type Transfer
Syntax <!><a>TASF
Units n/a
Range n/a
Default n/a
Response TASF: (see example below)

See Also [AS], [ASX], DRFLVL, ESTALL, GOWHEN, HOM, JOG, JOY, MA,
MC, SMPER, STRGTD, STRGTE, STRGTT, STRGTV, TAS, TASX, TSTAT

Product Rev

6K 5.0

The TASF command returns a text-based status report of all axes. This is an alternative to the binary report
(TAS). Example TASF response:

*TASF AXIS #
* 1 2 3 4 5 6 7 8
*Moving NO NO NO NO NO NO NO NO
*Direction NEG NO NO NO NO NO NO NO NO
*Accelerating NO NO NO NO NO NO NO NO
*At Velocity NO NO NO NO NO NO NO NO
*
*Home successful NO NO NO NO NO NO NO NO
*Mode Absolute NO NO NO NO NO NO NO NO
*Mode Continuous NO NO NO NO NO NO NO NO
*Jog Mode NO NO NO NO NO NO NO NO
*
*Joystick Mode NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO
*Stall Detected NO NO NO NO NO NO NO NO
*
*Drive Shutdown NO NO NO NO NO NO NO NO
*Drive Faulted NO NO NO NO NO NO NO NO
*POS Hard Limit Hit NO NO NO NO NO NO NO NO
*NEG Hard Limit Hit NO NO NO NO NO NO NO NO
*
*POS Sftwr Limit Hit NO NO NO NO NO NO NO NO
*NEG Sftwr Limit Hit NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO
*
*RESERVED NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO
*Pos Error Exceeded NO NO NO NO NO NO NO NO
*In Target Zone YES YES YES YES YES YES YES YES
*
*Target Zone Timeout NO NO NO NO NO NO NO NO
*Gowhen is Pending NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO
*Reg Move Commanded NO NO NO NO NO NO NO NO
*
*RESERVED NO NO NO NO NO NO NO NO
*Preset Move OvershotNO NO NO NO NO NO NO NO

[TASK] Task Number Assignment
Type Assignment or Comparison
Syntax See below
Units The TASK value is the number of the controlling task.
Range 0-10
Default n/a
Response n/a

See Also %, TTASK, VAR, VARI

Product Rev

6K 5.0

The Task Number Assignment operator (TASK) allows the program itself to determine which task is
executing it. The current task number TASK may be assigned to a numeric or integer variable or evaluated
in a conditional statement, such as IF or WAIT.

Command Descriptions 251

Syntax: VARn=TASK or VARIn=TASK where “n” is the variable number; or TASK can be used in an
expression, such as IF(TASK=3) .

The TASK operator allows a single program to be used as a subroutine called from programs running in all
tasks, yet this routine could contain sections of statements which are executed by some tasks and not others.
The example below demonstrates statements used to execute different WAIT-for-input conditions, depending
on the task that is executing the program.

Example:
IF (TASK=1) ; Check if this program is operating in task 1
WAIT(1IN.3=B1) ; If in task 1, wait for input at location 3 on I/O brick 1
NIF

IF(TASK=2) ; Check if this program is operating in task 2
WAIT(2IN.11=B1) ; If in task 2, wait for input at location 11 on I/O brick 2
NIF

TASX Transfer Extended Axis Status
Type Transfer
Syntax <!><a>TASX<.i>
Units i = bit location on the specified axis (See below)
Range 1-32
Default n/a
Response TASX: *TASX 0000_0000_0000_0000_0000_0000_0000_0000

* 0000_1000_0000_0000_0000_0000_0000_0000
* (repeated for each axis)

1TASX: *1TASX0000_0000_0000_0000_0000_0000_0000_0000

 bit 1 bit 32
TASX.5: *00110000 (bit 5 of all eight axes status registers)
1TASX.5: *0 (bit 5 of status register for axis 1)

See Also [AS], [ASX], [ER], EFAIL, TAS, TASXF, TER

Product Rev

6K 5.0

The Transfer Extended Axis Status (TASX) command returns the current status for each axis.

FULL-TEXT STATUS REPORT AVAILABLE

The TASX status command reports a binary bit report. If you would like to see a more
descriptive text-based report, use the TASXF command description.

Bit Assignment
(left to right) Function (1 = yes, Ø = no)

1-3 RESERVED

 4 Drive Fault Input Active (indicates the current hardware state of the drive
fault input, even if the drive and the drive fault input are disabled)

 5 Encoder failure (requires EFAIL1 enabled for the axis).
This bit is cleared with the EFAILØ command

 6 Encoder Z-Channel state (1 = active, Ø = inactive)

7-32 RESERVED

Bit #4 indicates the current hardware state of the drive fault input, even in the factory default power-up state —the drive is
disabled (see DRIVE command) and the drive fault input is disabled (see DRFEN command).

252 6K Series Command Reference

TASXF Transfer Extended Axis Status, (full-text report)
Type Transfer
Syntax <!><a>TASXF
Units n/a
Range n/a
Default n/a
Response TASXF: (see example below)

See Also [AS], [ASX], [ER], TAS, TASX, TER

Product Rev

6K 5.0

The TASXF command returns a text-based status report of all axes. This is an alternative to the binary
report (TASX). Example TASXF response:

*TASX AXIS #
* 1 2 3 4 5 6 7 8
*RESERVED NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO
*Drive Fault Active NO NO NO NO NO NO NO NO
*
*Encoder Failure NO NO NO NO NO NO NO NO
*Z-Channel Active NO NO NO NO NO NO NO NO

TCMDER Transfer Command Error
Type Transfer or Program Debug Tool
Syntax <!>TCMDER
Units n/a
Range n/a
Default n/a
Response TCMDER: *(incorrect command)

See Also ERRBAD, [SS], TSS

Product Rev

6K 5.0

To facilitate program debugging, the Transfer Command Error (TCMDER) command allows you to transfer the
command that the controller detects as an error. This is especially useful if you receive an error message when
running or downloading a program, because it catches and remembers the first command that caused the error.

When the bad command is detected, the controller sends an error message to the screen, followed by the
ERRBAD error prompt (?). To determine which command is in error, enter the TCMDER command and the
controller will display the command, including all its command fields, if any.

Once a command error has occurred, the command and its fields are stored and system status bit #11
(reported in the TSSF, TSS, and SS commands) is set to 1. The status bit remains set until the TCMDER
command is issued.

Example:
DEF badprg ; Begin definition of program called badprg
MA11 ; Select the absolute preset positioning mode
A25,40 ; Set acceleration
AD11,26 ; Set deceleration
V5,8 ; Set velocity
VAR1=0 ; Set variable #1 equal to zero
GO11 ; Initiate move on both axes
IF(VAR1<)16 ; Mistyped IF statement—should be typed as: IF(VAR1<16)
VAR1=VAR1+1 ; If variable #1 is less than16, increment the counter by 1
NIF ; End IF statement
END ; End programming of program called badprg
RUN badprg ; Run the program called badprg

; (this will cause an error --see comment box below)
; **
; * 1. When you run the badprg program, you should see this error *
; * message on your screen: "*INCORRECT DATA" (this error message *
; * indicates incorrect command syntax). *
; * 2. Type "TCMDER" and press enter. This queries the controller to *
; * display the command that caused the error. In this case, the *
; * response will be "*IF(VAR1<)16". *
; **

Command Descriptions 253

TDAC Transfer Digital-to-Analog Converter (DAC) Voltage
Type Transfer
Syntax <!><@><a>TDAC
Units Reported value represents volts
Range Range of reported value is -10 to +10
Default n/a
Response TDAC: *TDAC10.000,10.000,10.000,10.000 ...

1TDAC: *1TDAC10.000

See Also [DAC], DACLIM, SFB, SGAF, SGI, SGP, SGV, SGVF, SOFFS

Product Rev

6K 5.0

This command allows you to display the voltage being commanded at the digital-to-analog converter
(DAC). This is the analog command signal (plus any voltage offset set with the SOFFS command) output by
the servo controller. The DAC output is a 12-bit, ± 10V analog signal. At any point, the voltage that is
currently being commanded can be displayed using the TDAC command. If direct control over the analog
voltage is required, it can be accomplished by setting the servo algorithm gains (SGP, SGI, SGV, SGVF, &
SGAF) to zero and using the SOFFS command.

Example:
TDAC ; Display the actual output voltage for each axis.

; Example response is: *TDAC4.552,5.552,5.552,5.552

TDIR Transfer Program Directory
Type Transfer
Syntax <!>TDIR
Units n/a
Range n/a
Default n/a
Response TDIR: *NO PROGRAMS DEFINED

*33000 OF 33000 BYTES (100%) PROGRAM MEMORY REMAINING
*500 of 500 SEGMENTS (100%) COMPILED MEMORY REMAINING

See Also DEF, INFNC, LIMFNC, MEMORY, PLCP, [SEG] TMEM, TSEG

Product Rev

6K 5.0

The Transfer Program Directory (TDIR) command returns the names of all the programs and subroutines
defined with the DEF command, and the amount of memory each consumes. The format of the response is as
follows:

*1 - PROG1 USES 345 BYTES
*2 - PROG2 USES 333 BYTES
*32322 OF 33ØØØ BYTES (98%) PROGRAM MEMORY REMAINING
*5ØØ of 5ØØ SEGMENTS (1ØØ%) COMPILED MEMORY REMAINING

(In the above example, PROG1 and PROG2 are names of programs.)

NOTE: The amount of memory available is product-dependent.

The number in front of the program name is the number to use when defining specific inputs (INFNC) to
correspond to a specific program (function P of INFNC or LIMFNC), or when programs are selected via BCD
(function B of INFNC or LIMFNC).

If the program is intended to be a compiled profile and has been successfully compiled (PCOMP), then the
line item for a compiled contouring or GOBUF program is amended with “COMPILED AS A PATH”, and the
line item for a compiled PLCP program is “COMPILED AS A PLC PROGRAM.”

254 6K Series Command Reference

TDPTR Transfer Data Pointer Status
Type Data Storage
Syntax <!>TDPTR
Units n/a
Range n/a
Default n/a
Response TDPTR *TDPTR1,1,1

See Also DATPTR, DATSIZ, [DPTR]

Product Rev

6K 5.0

The TDPTR command responds with a 3-integer status report (i,i,i). The first integer is the number of the
current active data program (the program number specified with the last DATSIZ or DATPTR command).
The second integer is the location number of the data element to which the data pointer is currently
pointing. The third integer is the increment set with the last DATPTR command.

The DPTR command can be used to compare the current pointer location against another value or variable,
or to assign the pointer location number to a variable.

Example
DATSIZ4,200 ; Create data program called DATP4 with 200 data elements
DATPTR4,20,2 ; Set the data pointer to data element #20 in DATP4 and set the

; increment to 2 (DATP4 becomes the current active data program)
TDPTR ; Response is *TDPTR4,20,2. Indicates that the data pointer is

; pointing to data element #20 in data program #4 (DATP4),
; and the increment setting is 2.

TER Transfer Error Status
Type Transfer
Syntax <!><%>TER<.i>
Units i = specific error status bit (specific to the task)
Range 1-32
Default n/a
Response TER: *TER0000_0000_0000_0000_0000_0000_0000_0000

 bit 1 bit 32
TER.4: *0 (bit 4 of error status register for Task 0)

See Also [ASX], DRFLVL, EFAIL, [ER], ERROR, ESTALL, GOWHEN, INFNC,
LH, LIMFNC, LS, SMPER, STRGTT, TASX, TCMDER, TERF

Product Rev

6K 5.0

The Transfer Error Status (TER) command returns the status of the 32 error bits. There is one error status
for all axes (per Task). The TER status command reports a binary bit report. If you would like to see a more
descriptive text-based report, use the TERF command description.

NOTES

• The specific error bits must be enabled by the Error Enable (ERROR) command before the TER
command will provide the correct status of the error conditions.

• Multi-tasking: If you are using multi-tasking, be aware that each task has its own error status
register. Therefore, to check a specific task’s error status, you must prefix the TER command with
the task identifier (e.g., 2%TER to check error status for Task 2). If no task identifier is given, the
TER response is for the task supervisor (Task 0). Regarding axis-related error conditions (e.g.,
drive fault, end-of-travel limit, etc.), only errors on the task’s associated (TSKAX) axes are
detected in its error status register.

The function of error status bit is shown below.

Bit # Function (1 = Yes; Ø = No)

 1 * Stall Detected: Functions when stall detection has been enabled (ESTALL).
 2 Hard Limit Hit: Functions when hard limits are enabled (LH).
 3 Soft Limit Hit: Functions when soft limits are enabled (LS).
 4 Drive Fault: Detected only if the drive is enabled (DRIVE), the drive fault input is enabled (DRFEN), and the drive

fault level is set correctly (DRFLVL).

Command Descriptions 255

 5 RESERVED (refer to the ERROR command)
 6 Kill Input: When an input is defined as a Kill input (INFNCi-C or LIMFNCi-C), and that input becomes active.
 7 User Fault Input: When an input is defined as a User Fault input (INFNCi-F or LIMFNCi-F), and that input

becomes active.
 8 Stop Input: When an input is defined as a Stop input (INFNCi-D or LIMFNCi-D), and that input becomes active.

 9 Enable input is activated (not grounded).
10 Pre-emptive (on-the-fly) GO or registration move profile not possible.
11 ** Target Zone Settling Timeout Period (set with the STRGTT command) is exceeded.
12 ** Maximum Position Error (set with the SMPER command) is exceeded.

13 RESERVED
14 Position relationship in GOWHEN already true when GO, GOL, FSHFC, or FSHFD was executed.
15 RESERVED
16 Bad command detected (bit is cleared with TCMDER command).

17 Encoder failure (EFAIL1 must be enabled before error can be detected; error is cleared by sending EFAILØ to
the affected axis).

18 Cable to an expansion I/O brick is disconnected, or power to the I/O brick is lost; to clear the error, reconnect the
I/O brick (or restore power to the I/O brick) and issue the ERROR.18-0 command and then the ERROR.18-1
command.

19-32 RESERVED

* Stepper axes only; ** Servo axes only

When error bit 5 (Commanded Kill or Stop) of the ERROR command is enabled (ERROR.5-1), a Stop (!S)
or a Kill (!K or <ctrl>K) command will cause the controller to GOSUB or GOTO to the error program
(ERRORP). Within the error program the cause of the error will need to be determined. The transfer error
status (TER) command can be used to determine the cause of the error. If none of the error status bits are set,
the cause of the error is a commanded kill or a commanded stop. The reason for not setting a bit on this
error condition is that there is no way to clear the error condition upon leaving the error program.

TERF Transfer Error Status (full-text report)
Type Transfer
Syntax <!><%>TERF
Units n/a
Range n/a
Default n/a
Response TERF: (see example below)

See Also [ASX], DRFLVL, EFAIL, [ER], ERROR, ESTALL, GOWHEN, INFNC,
LH, LIMFNC, LS, SMPER, STRGTT, TASX, TCMDER, TER

Product Rev

6K 5.0

The TERF command returns a text-based status report of all axes. This is an alternative to the binary report (TER).
Example TERF response:

*TERF AXIS #
* 1 2 3 4 5 6 7 8
*Stall Detected NO NO NO NO NO NO NO NO
*Hard Limit Hit NO NO NO NO NO NO NO NO
*Soft Limit Hit NO NO NO NO NO NO NO NO
*Drive Fault Active NO NO NO NO NO NO NO NO
*
*RESERVED NO NO NO NO NO NO NO NO
*Kill Input Active NO NO NO NO NO NO NO NO
*User Fault Input NO NO NO NO NO NO NO NO
*Stop Input Active NO NO NO NO NO NO NO NO
*
*Enable Input OK NO NO NO NO NO NO NO NO
*Profile Impossible NO NO NO NO NO NO NO NO
*Target Zone Timeout NO NO NO NO NO NO NO NO
*Max Position Error NO NO NO NO NO NO NO NO
*
*RESERVED NO NO NO NO NO NO NO NO
*GOWHEN cond true NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO
*Bad command NO NO NO NO NO NO NO NO

*Encoder Failure NO NO NO NO NO NO NO NO
*I/O Brick Failure NO NO NO NO NO NO NO NO

256 6K Series Command Reference

TEX Transfer Program Execution Status
Type Transfer
Syntax !<%>TEX
Units n/a
Range n/a
Default n/a
Response !TEX: *PROGRAM NOT EXECUTING

See Also DEF

Product Rev

6K 5.0

The Transfer Program Execution Status (TEX) command reports the status of any programs in progress (in the
specified task). If using multi-tasking, you must prefix the TEX with the task you want to check (e.g., 2%TEX).

If the program PAUL was in progress (in task 0), and within that program a loop was in progress, the
response to !TEX could look like the following: *PROGRAM=PAUL COMMAND=LN LOOP COUNT=12

TFB Transfer Position of Selected Feedback Devices
Type Transfer
Syntax <!><@><a>TFB
Units Response is position of the selected feedback devices
Range n/a
Default n/a
Response TFB *TFB+0,+0,+0,+0,+0,+0,+0,+0

1TFB *1TFB+0

See Also [ANI], CMDDIR, ENCPOL, [FB], [PANI], [PE], PSET,
SCALE, SCLD, SFB, TANI, TPANI, TPCE, TPE

Product Rev

6K 5.0

(applicable only to
servo axes)

Use the TFB command to return the current values of the feedback sources selected with the SFB command.
If you do not change the default SFB selection, the response will indicate the encoder position.

If scaling is not enabled, the position values returned will be counts (encoder or analog input). If scaling is
enabled (SCALE1), the values will be scaled by the SCLD value.

If you issue a PSET command, the feedback device position value will be offset by the PSET command value.

Example:
SFB2,1 ; Select ANI feedback on axis 1 and encoder feedback on axis 2
TFB ; Report ANI input #1's voltage and encoder #2's position.

; Sample response is *TFB4.256,2.436

TFS Transfer Following Status
Type Following; Transfer
Syntax <!><a>TFS
Units n/a
Range n/a
Default n/a
Response TFS *TFS0000_0000_0000_0000_0000_0000

* 0000_0000_0000_0000_0000_0000
(repeated for each axis)

1TFS *1TFS0000_0000_0000_0000_0000_0000

 bit 1 bit 24

See Also FGADV, FMCLEN, FMCP, FOLEN, FOLMAS, FPPEN, [FS], FSHFC,
FSHFD, MC, [NMCY], [PMAS], TFSF

Product Rev

6K 5.0

The Transfer Following Status (TFS) command returns the current Following status of all axes. The
response for TFS is as follows (Note: response is product dependent):

FULL-TEXT STATUS REPORT AVAILABLE

The TFS status command reports a binary bit report. If you would like to see a more
descriptive text-based report, use the TFSF command description.

Command Descriptions 257

Bit Assignment
(left to right) Function (YES = 1; NO = Ø)

1 Follower in Ratio Move A Following move is in progress.

2 Ratio is Negative The current ratio is negative (i.e., the follower counts are counting in the
opposite direction from the master counts).

3 Follower Ratio Changing The follower is ramping from one ratio to another (including a ramp to or
from zero ratio).

4 Follower At Ratio The follower is at constant non-zero ratio.

Bits 1-4 indicate the status of Following motion. They mimic the meaning and
organization of Axis Status (TAS & AS) bits 1-4, except that each bit indicates the
current state of the ratio, rather than the current state of the velocity.

* 5 FOLMAS Active A master is specified with the FOLMAS command.

* 6 FOLEN Active Following has been enabled with the FOLEN command.

* 7 Master is Moving The specified master is currently in motion.

8 Master Dir Neg The current master direction is negative. (Bit must be cleared to allow
Following move in preset mode–MCØ).

Bits 5-8 indicate the status required for Following motion (i.e., a master must be
assigned, Following must be enabled, the master must be moving, and for many
features, the master direction must be positive).

Unless the master is a commanded position of another axis, it is likely that minor
vibration of the master will cause bits 7-8 to toggle on and off, even if the master is
nominally “at rest”. These bits are meant primarily as a quick diagnosis for the absence
of master motion, or master motion in the wrong direction. Many features require
positive master counting to work properly.

9 OK to Shift Conditions are valid to issue shift commands (FSHFD or FSHFC).

10 Shifting now A shift move is in progress.

11 Shift is Continuous An FSHFC-based shift move is in progress.

12 Shift Dir is Neg The direction of the shift move in progress is negative.

Bits 9-12 indicate the shift status of the follower. Shifting is super-imposed motion, but if
viewed alone, can have its own status. In other words, bits 10-12 describe only the
shifting portion of motion.

13 Master Cyc Trig Pend A master cycle restart is pending the occurrence of the specified trigger.

14 Mas Cyc Len Given A non-zero master cycle length has been specified with the FMCLEN
command.

15 Master Cyc Pos Neg The current master cycle position (PMAS) is negative. This could be by
caused by a negative initial master cycle position (FMCP), or if the
master is moving in the negative direction.

16 Master Cyc Num > 0 The master position (PMAS) has exceeded the master cycle length
(FMCLEN) at least once, causing the master cycle number (NMCY) to
increment.

Bits 13-16 indicate the status of master cycle counting. If a Following application is
taking advantage of master cycle counting, these bits provide a quick summary of
some important master cycle information.

17 Mas Pos Prediction On Master position prediction has been enabled (FPPEN).

18 Mas Filtering On A non-zero value for master position filtering (FFILT) is in effect.

Bit 17-18 indicate the status of master position measurement features.

19 RESERVED
20 RESERVED

21 RESERVED
22 RESERVED

23 OK to do FGADV move OK to do Geared Advance move (master assigned with FOLMAS,
Following enabled with FOLEN, and follower axis is either not moving, or
moving at constant ratio in continuous mode).

24 FGADV move underway Geared Advance move profile is in progress.

* All these conditions must be true before Following motion will occur.

258 6K Series Command Reference

TFSF Transfer Following Status (full-text report)
Type Following; Transfer
Syntax <!><a>TFSF
Units n/a
Range n/a
Default n/a
Response TFSF: (see example below)

See Also FGADV, FMCLEN, FMCP, FOLEN, FOLMAS, FPPEN, [FS], FSHFC,
FSHFD, MC, [NMCY], [PMAS], TFS

Product Rev

6K 5.0

The TFSF command returns a text-based status report of all axes. This is an alternative to the binary report (TFS).

Example TFSF response:

*TFSF AXIS #
* 1 2 3 4 5 6 7 8
*Follower in Ratio Move NO NO NO NO NO NO NO NO
*Ratio is Negative NO NO NO NO NO NO NO NO
*Followr Ratio Changing NO NO NO NO NO NO NO NO
*Follower At Ratio NO NO NO NO NO NO NO NO
*
*FOLMAS Active NO NO NO NO NO NO NO NO
*FOLEN Active NO NO NO NO NO NO NO NO
*Master is Moving NO NO NO NO NO NO NO NO
*Master Dir Neg NO NO NO NO NO NO NO NO
*
*OK to Shift NO NO NO NO NO NO NO NO
*Shifting now NO NO NO NO NO NO NO NO
*Shift is Continuous NO NO NO NO NO NO NO NO
*Shift Dir is Neg NO NO NO NO NO NO NO NO
*
*Master Cyc Trig Arm NO NO NO NO NO NO NO NO
*Mas Cyc Len Given NO NO NO NO NO NO NO NO
*Master Cyc Pos Neg NO NO NO NO NO NO NO NO
*Master Cyc Num > 0 NO NO NO NO NO NO NO NO
*
*Pos Prediction On YES YES YES YES YES YES YES YES
*Master Filtering On NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO
*
*RESERVED NO NO NO NO NO NO NO NO
*RESERVED NO NO NO NO NO NO NO NO
*OK to do FGADV move NO NO NO NO NO NO NO NO
*FGADV move underway NO NO NO NO NO NO NO NO

TGAIN Transfer Servo Gains
Type Transfer
Syntax <@><a>TGAIN
Units n/a
Range n/a
Default n/a
Response TGAIN: *SGP1,2,3,4 ...

*SGI.1,.1,0,0 ...
*SGV25,25,40,40 ...
*SGVF100,100,100,100 ...
*SGAF0,0,0,0 ...

1TGAIN: *1SGP1
*1SGI.1
*1SGV25
*1SGVF100
*1SGAF0

See Also SFB, SGAF, SGENB, SGI, SGILIM, SGP, SGSET, SGV, SGVF, SOFFS, TSGSET

Product Rev

6K 5.0

(applicable to servo
axes only)

This command allows you to display the current value of each of the control algorithm gains (SGP, SGI,
SGV, SGAF, & SGVF). Each time an individual gain is entered, the current value is updated to be that value.
When a gain set is enabled with the SGENB command, the current value of each gain is set to the values
saved in that particular gain set.

Command Descriptions 259

NOTE

Tuning gains are specific to the feedback source that was in use (selected with the last SFB
command) at the time the gains were established with the respective gain commands (SGI,
SGP, etc.).

Example:
SGP5,5,10,10 ; Set the gains for the proportional gain
SGI.1,.1,0,0 ; Set the gains for the integral gain
SGV50,60,0,0 ; Set the gains for the velocity gain
SGVF5,6,10,11 ; Set the gains for the velocity feedforward gain
SGAF0,0,0,0 ; Set the gains for the acceleration feedforward gain
TGAIN ; Display current values for all gains. Example response:

; *SGP5,5,10,10
; *SGI.1,.1,0,0
; *SGV50,60,0,0
; *SGVF5,6,10,11
; *SGAF0,0,0,0

[TIM] Current Timer Value
Type Assignment or Comparison
Syntax See below
Units Milliseconds
Range Maximum count is 999,999,999 (approx. 11 days, 13 hours)
Default n/a
Response n/a

See Also TIMINT, TIMST, TIMSTP, TTIM

Product Rev

6K 5.0

The Current Timer Value (TIM) command is used to assign the timer value to a variable, or to make a
comparison against another value. The value returned is in milliseconds.

Syntax: VARx=<n%>TIM where x is a numeric variable number, or TIM can be used in an expression such as
IF(TIM<24ØØ) . Multi-tasking: If addressing the timer of a specific task, include the n% prefix.

Example:
VAR1=TIM ; Timer value is assigned to variable 1
IF(TIM<1000) ; If timer value is < 1000 milliseconds, do the IF statement
VAR1=TIM + 10 ; Timer value plus 10 assigned to variable 1
NIF ; End IF statement

TIMINT Timer Value to Cause Alarm Event
Type Timer; Alarm Event
Syntax <!>TIMINT,<i>
Units i = milliseconds
Range b = 0 (reset and start) or 1 (stop)

i = 0 - 999,999,999
Default 0,0
Response TIMINT: *TIMINT0,0

See Also INTHW, [TIM], TIMST, TIMSTP, TTIM

Product Rev

6K 5.0

The TIMINT command sets the timer value upon which the 6K controller will trigger an Alarm Event. The
time value at which the alarm event will occur is specified by the second field in the command.

NOTES

• To use TIMINT , you must first issue the INTHW.21-1 command to enable checking for
the alarm event.

• When using multi-tasking, this feature only works with the timer for Task zero.

The TIMINT command also determines if the timer is to be stopped when the value is reached, or if the
timer is to be reset and started again. If the timer is to be stopped upon reaching the alarm value, a one
should be specified for the first field. If the timer is to be reset and restarted upon reaching the alarm value,

260 6K Series Command Reference

a zero should be specified for the first field. By specifying a zero in the first field, an alarm will occur
repeatedly.

Example:
INTHW.21-1 ; Enable checking for the timer-driven alarm event
TIMINT1,10000 ; Trigger alarm once after 10000 ms, do not restart the timer
TIMST0 ; Reset and start timer

TIMST Start Timer
Type Timer
Syntax <!>TIMST<r>
Units b = Enable bit

r = time (milliseconds) if b = 0, task # if b = 1
Range b = 0 (reset and start) or 1 (start from previous TIMSTP)

r = absolute time 0-999,999,999 if b = 0,
or r = task # 0-10 if b = 1

Default 0
Response TIMST: No response, acts as if TIMST1 command was issued

See Also SSFR, [TIM], TIMINT, TIMSTP, TTIM

Product Rev

6K 5.0

The Start Timer (TIMST) command is used to start the timer.

• If TIMST0, you can start the timer at a specific time in milliseconds (e.g., TIMST0,500).

• If TIMST1, you can resume the timer (after stopping it with the TIMSTP command) with the value of
the time of the specified task (e.g., TIMST1,3).

The timer resolution is 2 ms. The delay for executing TIMST and TIMSTP in combination is 4-6 ms.

If the timer is started and allowed to roll over the maximum timer count of 999,999,999 milliseconds (11
days, 13 hours, 46 minutes, 39.999 seconds), the timer will be stopped, and the value will be frozen at the
maximum value.

Multi-Tasking : Each task has its own timer.

Example:
TIMST0 ; Reset and start timer
GO1100 ; Initiate motion on axes 1 and 2
TIMSTP ; Stop timer
TTIM ; Transfer time required for move

TIMSTP Stop Timer
Type Timer
Syntax <!><%>TIMSTP
Units n/a
Range n/a
Default n/a
Response n/a

See Also SSFR, [TIM], TIMINT, TIMST, TTIM

Product Rev

6K 5.0

The Stop Timer (TIMSTP) command stops the timer. This command in conjunction with the start timer
(TIMST) command, provides a timer that can be used to time internal or external events.

The timer resolution is 2 ms. The delay for executing TIMST and TIMSTP in combination is 4-6 ms.

Multi-Tasking : Each task has its own timer.

Example:
TIMST0 ; Reset and start timer
GO1100 ; Initiate motion on axes 1 and 2
TIMSTP ; Stop timer
TTIM ; Transfer time required for move

Command Descriptions 261

TIN Transfer Input Status
Type Transfer
Syntax <!><@>TIN<.i>
Units i = input number on the specified I/O brick (B) — see page 6
Range 1-32 (product dependent)
Default n/a
Response TIN: *0000_0000_0000_0000_0 (onboard trigger inputs)

1TIN *0000_0000_0000_0000_0000_0000_0000_0000
1TIN.4: *1 (status of I/O point 4 on I/O brick 1)

See Also [IN], INFNC, INLVL, TINO, TLIM

Product Rev

6K 5.0

The Transfer Input Status (TIN) command returns the current status (active or inactive) of the
programmable inputs. The input is active when it is grounded. The active level (active high or active low)
for the inputs is established with the INLVL command. “High” means that current is flowing and no voltage
is present at the input terminal; conversely, “low” means that no current is flowing and a voltage may be
present at the input terminal. If the active level is set to active low (INLVLØ – default), the TIN response
indicates active with a one (1) and inactive with a zero (Ø). If the active level is set to active high (INLVL1),
the TIN response indicates active with a zero (Ø) and inactive with a one (1).

The inputs are numbered 1 to n from left to right (n is the maximum number of I/O points on the I/O brick).
The amount of onboard and external inputs varies by product and number of external I/O bricks — refer to
page 6 for details.

If the status of a specific input is required, use the bit select operator (.). For example, 1TIN.9 reports the
status of the 1st I/O point on the 2nd SIM of I/O brick 1.

TINO Transfer Other Input Status
Type Transfer
Syntax <!>TINO<.i>
Units i = number of input (see below)
Range 6
Default n/a
Response TINO: *TINO0000_0100

TINO.6: *1 (status of input number 6 – ENABLE input)

See Also [INO], TINOF

Product Rev

6K 5.0

The Transfer Other Input Status (TINO) command returns the status of all of the inputs not covered by the
TLIM or TIN commands. These 8 additional inputs may be used for status feedback.

TINO response:*TINObbbb_bbbb
^ ^

Bit #1 Bit #12

FULL-TEXT STATUS REPORT AVAILABLE

The TINO status command reports a binary bit report. If you would like to see a more
descriptive text-based report, use the TINOF command description.

Bit Function Location

1-5 RESERVED
6 Enable input (1 = OK for motion) “ENABLE” terminal
7-8 RESERVED

262 6K Series Command Reference

TINOF Transfer Other Input Status (full-text report)
Type Transfer
Syntax <!>TINOF
Units n/a
Range n/a
Default n/a
Response TINOF: (see example below)

See Also [INO], TINO

Product Rev

6K 5.0

The TINOF command returns a text-based status report of all axes. This is an alternative to the binary
report (TINO).

Example response:

*TINOF
*Enable input OK YES

TIO Transfer Current Expansion I/O Status
Type Transfer
Syntax <!>TIO
Units B = I/O brick number
Range 1-8
Default n/a
Response (see example below)

See Also TIN, TINO, TLIM, TOUT, TANI

Product Rev

6K 5.0

The TIO command displays the status of the current I/O configuration for the controller’s expansion I/O
bricks. If an I/O brick is not connected, it will not be included in the status report. Onboard I/O is not
reported.

The I/O bricks are connected in a series to the “EXPANSION I/O” connector (see Installation Guide for
instructions). The 1st I/O brick in the series (closest to the 6K product) is BRICK 1 . The next is BRICK 2 ,
and so on.

Each I/O brick has 4 SIM slots and can hold from 1 to 4 I/O SIM modules. A SIM slot may hold a digital
input SIM, a digital output SIM, or an analog input SIM. Each SIM provides 8 inputs or outputs; therefore,
each I/O brick has 32 I/O addresses, referenced as absolute I/O point locations:

• SIM slot 1 = I/O points 1-8
• SIM slot 2 = I/O points 9-16
• SIM slot 3 = I/O points 17-24
• SIM slot 4 = I/O points 25-32

The TIO response for each I/O brick is separated into four lines, one for each SIM. I/O points 1-8 represent
SIM #1, 9-16 represents SIM #2, 17-24 represents SIM #3, and 25-32 represents SIM #4. When digital
outputs are detected, the report also indicates whether the jumper is set to SINKING or SOURCING. When
digital inputs and outputs are detected, TIO displays the current hardware state and programmed function
(INFNC for inputs and OUTFNC for outputs). When analog inputs are detected, TIO reports the current
voltage present on each input.

Command Descriptions 263

Example TIO responses (in this example, 2 I/O bricks are connected to the controller):

>TIO
*BRICK 1: SIM Type Status Function
 1-8: DIGITAL INPUTS 0000_0000 AAAA_AAAA
 9-16: DIGITAL INPUTS 0000_0000 AAAA_AAAA
 17-24: DIGITAL INPUTS 0000_0000 AAAA_AAAA
 25-32: ANALOG INPUTS 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
*BRICK 2: SIM Type Status Function
 1-8: DIGITAL OUTPUTS 0000_0000 AAAA_AAAA -- SINKING
 9-16: DIGITAL INPUTS 0000_0000 AAAA_AAAA
 17-24: NO SIM PRESENT
 25-32: DIGITAL OUTPUTS 0000_0000 AAAA_AAAA -- SOURCING

>1TIO
*BRICK 1: SIM Type Status Function
 1-8: DIGITAL INPUTS 0000_0000 AAAA_AAAA
 9-16: DIGITAL INPUTS 0000_0000 AAAA_AAAA
 17-24: DIGITAL INPUTS 0000_0000 AAAA_AAAA
 25-32: ANALOG INPUTS 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000

>2TIO
*BRICK 2: SIM Type Status Function
 1-8: DIGITAL OUTPUTS 0000_0000 AAAA_AAAA -- SINKING
 9-16: DIGITAL INPUTS 0000_0000 AAAA_AAAA
 17-24: NO SIM PRESENT
 25-32: DIGITAL OUTPUTS 0000_0000 AAAA_AAAA -- SOURCING

TLABEL Transfer Labels
Type Transfer
Syntax <!>TLABEL
Units n/a
Range n/a
Default n/a
Response TLABEL: *NO LABELS DEFINED

See Also $

Product Rev

6K 5.0

The Transfer Labels (TLABEL) command returns the names of all the labels defined with the $ command.

The response to a TLABEL command if the labels call and open are defined in a program named prog1 is
as follows: *CALL DEFINED IN PROGRAM PROG1

*OPEN DEFINED IN PROGRAM PROG1

264 6K Series Command Reference

TLIM Transfer Limits
Type Transfer
Syntax <!><a>TLIM<.i>
Units i = limit input number
Range Product dependent
Default n/a
Response TLIM: *TLIM110_110_110_110_110_110_110_110

TLIM.4: *0 (status of positive-direction limit input on axis 2)

See Also HOM, INDEB, INFNC, [LIM], LIMFNC, LIMLVL, TAS, TASF, TIN

Product Rev

6K 5.0

The Transfer Limits (TLIM) command returns the current hardware state of the dedicated limit inputs
located on the “LIMITS/HOME” connector(s). This command reports the state of the limit inputs, regardless
of their assigned function with the LIMFNC command. There are 3 limit inputs per axis. To determine if an
end-of-travel limit has been hit, refer to the TAS or TASF command response, bits 15 through 18.

This command does not report the status of triggers or external inputs configured as limit inputs with the
INFNC command. For status on such inputs, refer to the TIN command.

The TLIM value is the debounced version of the limits status (debounced with the ØINDEB value). Axis
status (TAS) bits 15 and 16 reports the non-debounced version of the end-of-travel limits.

TLIM response (bits are numbered 1-24 from left to right):

Positive direction end-of-travel limit, axis 2

*TLIM___

Negative direction end-of-travel limit, axis 1

bit 1Positive direction end-of-travel limit, axis 1

Home limit, axis 1

Negative direction end-of-travel limit, axis 2

Home limit, axis 2

Axis 1 Axis 2 Axis 3 Axis 4

TMEM Transfer Memory Usage
Type Transfer
Syntax <!>TMEM
Units n/a
Range n/a
Default n/a
Response TMEM: *33000 OF 33000 BYTES (100%) PROGRAM MEMORY REMAINING

*500 OF 500 SEGMENTS (100%) COMPILED MEMORY REMAINING

See Also DEF, MEMORY, PCOMP, [SEG], TDIR, TSEG

Product Rev

6K 5.0

The Transfer Memory Usage (TMEM) command returns the amount of available memory for user program
storage and for storing contouring path segments. A path segment is one element of the path (e.g.,
PLIN3777,3777). The amount of memory available can be modified with the MEMORY command. As
programs are defined (DEF) and paths are compiled (PCOMP), the amount of memory available decreases.

Command Descriptions 265

TNMCY Transfer Master Cycle Number
Type Following; Transfer
Syntax <!><a>TNMCY
Units n/a
Range n/a
Default n/a
Response TNMCY *TNMCY0,0,0,0,0,0,0,0

1TNMCY *1TNMCY0

See Also FMCLEN, FMCNEW, [FS], TRGFN, TFS

Product Rev

6K 5.0

The Transfer Master Cycle Number (TNMCY) command displays the current master cycle number for all
axes, or the axis specified. The value represents the current cycle number, not the position of the master (or
the follower). The master cycle number is set to zero when master cycle counting is restarted, and is
incremented each time a master cycle finishes (i.e., rollover occurs). It will often correspond to the number
of complete parts in a production run. This value may be used for subsequent decision making, or simply
recording the cycle number corresponding to some other event.

The master must be assigned first (FOLMAS command) before this command will be useful.

For a complete discussion of master cycles, please refer to the Following chapter in the Programmer's
Guide.

TNTMAC Transfer Ethernet Address
Type Transfer; Communications Interface
Syntax <!>TNTMAC
Units n/a
Range n/a
Default n/a
Response TMAC: *0,144,85,0,0,1

See Also NTADDR, NTMASK

Product Rev

6K 5.0

The TNTMAC command reports the 6K product’s Ethernet address.

TOUT Transfer Output Status
Type Transfer
Syntax <!><@>TOUT<.i>
Units i = input number on the specified I/O brick (B) — see page 6
Range 1-32 (Product dependent)
Default n/a
Response TOUT: *0000_0000 (onboard outputs)

1TOUT *0000_0000_0000_0000_0000_0000_0000_0000
1TOUT.4: *1 (status of I/O point 4 on I/O brick 1)

See Also OUT, OUTFNC, OUTLVL, TIN, TINO

Product Rev

6K 5.0

The Transfer Output Status (TOUT) command returns the current status (active or inactive) of the
programmable outputs. The output is active when it is grounded. The active level (active high or active low)
for the outputs is established with the OUTLVL command. “High” means that current is flowing and no
voltage is present at the output terminal; conversely, “low” means that no current is flowing and a voltage
may be present at the output terminal. If the active level is set to active low (OUTLVLØ – default), the TOUT
response indicates active with a one (1) and inactive with a zero (Ø). If the active level is set to active high
(OUTLVL1), the TOUT response indicates active with a zero (Ø) and inactive with a one (1).

The outputs are numbered 1 to n from left to right (n is the maximum number of I/O points on the I/O
brick). The amount of onboard and external outputs varies by product and number of external I/O bricks —
refer to page 6 for details.

If the status of a specific output is required, use the bit select operator (.). For example, 1TOUT.9 reports
the status of the 1st I/O point on the 2nd SIM of I/O brick 1.

266 6K Series Command Reference

TPANI Transfer Position of ANI Inputs
Type Transfer
Syntax <!>TPANI<.i>
Units i = location of the analog input on the I/O brick ()
Range 1-32 (depending on I/O brick configuration)
Default n/a
Response 1TPANI: *1TPANIxxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx

1TPANI.1 *108 (position of analog input at I/O pin 1 on I/O brick 1)

See Also [ANI], ANIRNG, CMDDIR, [FB], [PANI], PSET, SCALE, SCLD,
SFB, TANI, TFB

Product Rev

6K 5.0

(applicable only to
servo axes)

The TPANI command returns the value of the ANI analog inputs as modified by scaling (SCLD), offset
(PSET), and commanded direction polarity (CMDDIR).

The TPANI and PANI commands are designed for applications in which the ANI input is scaled and/or used
as position feedback. If you are using the ANI input to monitor an analog signal, the TANI and ANI
commands would be more appropriate (TANI and ANI values are measured in volts and are unaffected by
scaling, polarity, or command direction).

The TPANI value is represented in analog-to-digital converter (ADC) units if scaling is disabled (SCALEØ).
The ADC has a 12-bit resolution, giving a range of +2047 to -2048 counts when using the full ±10V range
of the analog input (205 counts/volt). If scaling is enabled (SCALE1), an SCLD scale factor of 205 (the
default value when analog input feedback is selected) allows units of volts to be used.

NOTE: If you change the voltage range of the analog input (with the ANIRNG command), the resolution of
the PANI response will change accordingly. The default is ±10V.

TPC Transfer Position Commanded
Type Transfer
Syntax <!><@><a>TPC
Units Reported value represents distance units (scalable by SCLD)
Range Range of the reported value is ±2,147,483,648
Default n/a
Response TPC: *TPC+0,+0,+0,+0,+0,+0,+0,+0

1TPC: *1TPC+0

See Also CMDDIR, ERES, [PC], [PCC], PSET, SCALE, SCLD, SMPER, TAS,
TFB, TPCC, TPER

Product Rev

6K 5.0

This command allows you to display the current commanded position of each axis. The TPC value is scaled
by the distance scaling factor (SCLD) if scaling is enabled with the SCALE1 command.

Servo Axes: The reported value is measured in encoder or analog input (ANI) counts.
Stepper Axes: The reported value is measured in commanded counts (“motor counts”).

If you issue a PSET command, the commanded position value will be offset by the PSET command value.

Servo Axes: The commanded position (TPC) and the actual position (TFB) are used in the control algorithm
to calculate the position error (TPC - TFB = TPER) and thereby determine the corrective control signal.

Example:
TPC ; Display the current commanded position for each axis:

; *TPC4000,4000,4000,4000 (setpoints displayed in steps)
TFB ; Display the current actual position for each axis:

; *TFB4004,4005,4004,4003 (actual positions displayed in steps)
TPER ; Display current position error of each axis:

; *TPER-4,-5,-4,-3 (error displayed in steps)

Command Descriptions 267

TPCC Transfer Captured Commanded Position
Type Transfer
Syntax <!>aTPCCc
Units a = axis #

c = trigger input letter (A, B or M) for axis “a”
(Reported value is commanded counts, scalable by SCLD)

Range n/a
Default n/a
Response 1TPCCA: *1TPCCA+0

See Also CMDDIR, ENCCNT, INFNC, [PC], [PCC], [PCMS], PSET, SCALE,
SCLD, SFB, TFB, TPC [TRIG], TRGLOT, TTRIG

Product Rev

6K 5.0

Use the TPCC command to display the current captured commanded position of a specific axis, captured
with the specific “trigger interrupt” input.

Trigger Input (Axis 1-4
“ TRIGGERS/OUTPUTS” connector) *

Dedicated
Axis

TPCC
Syntax

Trigger Input (Axis 5-8
“ TRIGGERS/OUTPUTS” connector) *

Dedicated
Axis

TPCC
Syntax

Pin 23, Trigger 1A 1 1TPCCA Pin 23, Trigger 5A 5 5TPCCA

Pin 21, Trigger 1B 1 1TPCCB Pin 21, Trigger 5B 5 5TPCCB

Pin 19, Trigger 2A 2 2TPCCA Pin 19, Trigger 6A 6 6TPCCA

Pin 17, Trigger 2B 2 2TPCCB Pin 17, Trigger 6B 6 6TPCCB

Pin 15, Trigger 3A 3 3TPCCA Pin 15, Trigger 7A 7 7TPCCA

Pin 13, Trigger 3B 3 3TPCCB Pin 13, Trigger 7B 7 7TPCCB

Pin 11, Trigger 4A 4 4TPCCA Pin 11, Trigger 8A 8 8TPCCA
Pin 9, Trigger 4B 4 4TPCCB Pin 9, Trigger 8B 8 8TPCCB

* The number of trigger inputs available varies by product (refer to your product’s Installation Guide).

To report an axis position captured with the MASTER TRIG input, use aPCCM, where “a” can be any axis number.

About Position Capture: The commanded position can be captured only by a trigger input that is defined
as “trigger interrupt” input with the INFNCi-H command (see INFNC for details). Each trigger input, when
configured as a “trigger interrupt” input, is dedicated to capture the position of a specific axis (see table
above). When a “trigger interrupt” input is activated, the commanded position of the dedicated axis is
captured and the position is available through the use of the PCC operator and the TPCC display command.

Note for Stepper Axes: By default, stepper axes capture only the commanded position. However, if the
axis has Encoder Capture Mode enabled with the ENCCNT command, only the encoder position is captured.

Position Capture Status, Longevity of Captured Position: Use the TTRIG and TRIG commands to
ascertain if a trigger interrupt input has been activated. TTRIG displays the status as a binary report, and
TRIG is an assignment/comparison operator for using the status information in a conditional expression
(e.g., in an IF statement). Once the captured commanded position value is displayed with the TPCC
command, the TTRIG/TRIG status bit for that trigger input is cleared; but the position information remains
available until it is overwritten by a subsequent position capture from the same trigger input.

Position Capture Accuracy: The commanded position capture accuracy is ±1 count.

Scaling and Position Offset: If scaling is enabled (SCALE1), the commanded position is scaled by the
distance scaling factor (SCLD). If scaling is not enabled (SCALEØ), the value reported will be actual
commanded counts. If you issue a PSET (establish absolute position reference) command, any previously
captured commanded positions will be offset by the PSET command value.

Example:
1TPCCA ; Report axis 1's captured command position, which was captured

; when the dedicated trigger (TRG-1A) was activated
3TPCCB ; Report axis 3's captured command position, which was captured

; when the dedicated trigger (TRG-3B) was activated
2TPCCM ; Report axis 2's captured command position, which was captured

; when the master trigger (TRG-M) was activated

268 6K Series Command Reference

TPCE Transfer Position of Captured Encoder
Type Transfer
Syntax <!>aTPCEc
Units a = axis #

c = trigger input letter (A, B or M) for axis “a”
(Reported value represents encoder counts, scalable by SCLD)

Range n/a
Default n/a
Response 1TPCEA: *1TPCEA+0

See Also CMDDIR, ENCCNT, ENCPOL, INFNC, [PCE], PESET, PSET, SCALE,
SCLD, SFB, TPE

Product Rev

6K 5.0

Use the TPCE command to display the current captured encoder position, from the time of the last trigger
interrupt.

Trigger Input (Axis 1-4
“ TRIGGERS/OUTPUTS” connector) *

Dedicated
Axis

TPCE
Syntax

Trigger Input (Axis 5-8
“ TRIGGERS/OUTPUTS” connector) *

Dedicated
Axis

TPCE
Syntax

Pin 23, Trigger 1A 1 1TPCEA Pin 23, Trigger 5A 5 5TPCEA

Pin 21, Trigger 1B 1 1TPCEB Pin 21, Trigger 5B 5 5TPCEB

Pin 19, Trigger 2A 2 2TPCEA Pin 19, Trigger 6A 6 6TPCEA

Pin 17, Trigger 2B 2 2TPCEB Pin 17, Trigger 6B 6 6TPCEB

Pin 15, Trigger 3A 3 3TPCEA Pin 15, Trigger 7A 7 7TPCEA

Pin 13, Trigger 3B 3 3TPCEB Pin 13, Trigger 7B 7 7TPCEB

Pin 11, Trigger 4A 4 4TPCEA Pin 11, Trigger 8A 8 8TPCEA
Pin 9, Trigger 4B 4 4TPCEB Pin 9, Trigger 8B 8 8TPCEB

* The number of trigger inputs available varies by product (refer to your product’s Installation Guide).

To report an axis position captured with the MASTER TRIG input, use aPCEM, where “a” can be any axis number.

About Position Capture: The encoder position can be captured only by a trigger input that is defined as
“trigger interrupt” input with the INFNCi-H command (see INFNC command). Each trigger input, when
configured as a “trigger interrupt” input, is dedicated to capture the position of a specific axis (see table
above). When a “trigger interrupt” input is activated, the encoder position of the dedicated axis is captured
and the position is available through the use of the PCE operator and the TPCE display command. Stepper
Axes: By default, stepper axes capture only the commanded position. To capture the encoder position, the
axis must be in the Encoder Capture Mode (see ENCCNT command).

Position Capture Status, Longevity of Captured Position: Use the TTRIG and TRIG commands to
ascertain if a trigger interrupt input has been activated. TTRIG displays the status as a binary report, and
TRIG is an assignment/comparison operator for using the status information in a conditional expression
(e.g., in an IF statement). Once the captured encoder position value is reported with the TPCE command,
the TTRIG/TRIG status bit for that trigger input is cleared; but the position information remains available
until it is overwritten by a subsequent position capture from the same trigger input.

Position Capture Accuracy: The encoder position capture accuracy is ±1 encoder count.

Scaling and Position Offset: If scaling is enabled (SCALE1), the encoder position is scaled by the distance
scaling factor (SCLD). If scaling is not enabled (SCALEØ), the value reported will be actual encoder counts.
If you issue a PSET (establish absolute position reference) command, any previously captured encoder
positions will be offset by the PSET command value.

Example:
1TPCEA ; Report axis 1's captured encoder position, which was captured

; when the dedicated trigger (TRG-1A) was activated
3TPCEB ; Report axis 3's captured encoder position, which was captured

; when the dedicated trigger (TRG-3B) was activated
2TPCEM ; Report axis 2's captured encoder position, which was captured

; when the master trigger (TRG-M) was activated

Command Descriptions 269

TPCME Transfer Captured Master Encoder Position
Type Transfer
Syntax <!>TPCME
Units n/a
Range n/a
Default n/a
Response TPCME *TPCME+0

See Also INFNC, MEPOL, MESND, [PME], [PCME], [PCMS], PMECLR,
PMESET, TPME, TPCMS

Product Rev

6K 5.0

Use the TPCME command to display the current captured master encoder position. The master encoder is
connected to the connector labeled “Master Encoder.”

Syntax: VARn=PCME where n is the variable number; or PCME can be used in an expression such as
IF(PCME>2345Ø) .

About Position Capture: The master encoder position can be captured only by the Master Trigger input
(labeled “MASTER TRIG”), and only when that input is defined as a “trigger interrupt” input with the
INFNC17-H command (see INFNC command). When the “trigger interrupt” input is activated (active edge),
the master encoder position is captured and the position is available through the use of the PCME operator
and the TPCME display command.

Position Capture Status, Longevity of Captured Position: Use the TTRIG and TRIG commands to
ascertain if a trigger interrupt input has been activated. TTRIG displays the status as a binary report, and
TRIG is an assignment/comparison operator for using the status information in a conditional expression
(e.g., in an IF statement). Once the captured master encoder position value is displayed with the TPCME
command, TTRIG/TRIG status bit #17 is cleared; but the position information remains available until it is
overwritten by a subsequent position capture from the master trigger input.

Position Capture Accuracy: The master encoder position capture accuracy is ±1 encoder count.

Scaling and Position Offset: The TPCME value is always in master encoder counts; it is never scaled. If you
issue a PMESET (establish absolute position reference) command, any previously captured master encoder
positions will be offset by the PMESET command value.

270 6K Series Command Reference

TPCMS Transfer Captured Master Cycle Position
Type Transfer
Syntax <!>aTPCMSc
Units a = axis #

c = trigger input letter (A, B or M) for axis “a”
(Reported value represents master counts, scalable by SCLMAS)

Range n/a
Default n/a
Response 1TPCMSA *1TPCMSA+0

See Also CMDDIR, ENCCNT, ENCPOL, FOLMAS, INFNC, [PCMS], PSET, SCALE,
SCLMAS, SFB, TPCMS, [TRIG], TRGLOT, TTRIG

Product Rev

6K 5.0

The TPCMS command transfers the captured position of the master within its current master cycle.

TPCMS (and TPMAS) is unique among position transfers, because its value rolls over to zero each time the
entire master cycle length (FMCLEN) has been traveled. Thus, the captured TPCMS value is essentially a
snap-shot of the position relative to the master cycle at the time of the capture.

The master must be assigned first (FOLMAS command) before this command will be useful.

For a complete discussion of master cycles, refer to the Following chapter in the 6K Series Programmer’s
Guide.

Trigger Input (Axis 1-4
“ TRIGGERS/OUTPUTS” connector) *

Dedicated
Axis

TPCMS
Syntax

Trigger Input (Axis 5-8
“ TRIGGERS/OUTPUTS” connector) *

Dedicated
Axis

TPCMS
Syntax

Pin 23, Trigger 1A 1 1TPCMSA Pin 23, Trigger 5A 5 5TPCMSA

Pin 21, Trigger 1B 1 1TPCMSB Pin 21, Trigger 5B 5 5TPCMSB

Pin 19, Trigger 2A 2 2TPCMSA Pin 19, Trigger 6A 6 6TPCMSA

Pin 17, Trigger 2B 2 2TPCMSB Pin 17, Trigger 6B 6 6TPCMSB

Pin 15, Trigger 3A 3 3TPCMSA Pin 15, Trigger 7A 7 7TPCMSA

Pin 13, Trigger 3B 3 3TPCMSB Pin 13, Trigger 7B 7 7TPCMSB

Pin 11, Trigger 4A 4 4TPCMSA Pin 11, Trigger 8A 8 8TPCMSA
Pin 9, Trigger 4B 4 4TPCMSB Pin 9, Trigger 8B 8 8TPCMSB

* The number of trigger inputs available varies by product (refer to your product’s Installation Guide).

To report an axis position captured with the MASTER TRIG input, use aPCMSM, where “a” can be any axis number.

About Position Capture: The master cycle position can be captured only by a trigger input that is defined as
“trigger interrupt” input with the INFNCi-H command (see INFNC command). Each trigger input, when
configured as a “trigger interrupt” input, is dedicated to capture the position of a specific axis (see table
above). When a “trigger interrupt” input is activated, the master cycle position of the dedicated axis is
captured and the position is available through the use of the PCMS operator and the TPCMS display command.

Position Capture Status, Longevity of Captured Position: Use the TTRIG and TRIG commands to
ascertain if a trigger interrupt input has been activated. TTRIG displays the status as a binary report, and
TRIG is an assignment/comparison operator for using the status information in a conditional expression
(e.g., in an IF statement). Once the captured master cycle position value is reported with the TPCMS
command, the TTRIG/TRIG status bit for that trigger input is cleared; but the position information remains
available until it is overwritten by a subsequent position capture from the same trigger input.

Position Capture Accuracy: The master cycle position is interpolated; the capture accuracy is 50 µs
multiplied by the velocity of the axis at the time the trigger input was activated.

Scaling and Position Offset: If scaling is enabled (SCALE1), the master cycle position is scaled by the
distance scaling factor (SCLMAS). If scaling is not enabled (SCALEØ), the value assigned will be actual
counts from the commanded or encoder master source as selected with the FOLMAS command. If you issue a
PSET (establish absolute position reference) command, any previously captured master cycle positions will
be offset by the PSET command value.

Command Descriptions 271

TPE Transfer Position of Encoder
Type Transfer
Syntax <!><a>TPE
Units (Reported value represents encoder counts, scalable by SCLD)
Range n/a
Default n/a
Response TPE: *TPE+0,+0,+0,+0,+0,+0,+0,+0

1TPE: *1TPE+0

See Also CMDDIR, ENCCNT, ENCPOL, ENCSND, [FB], [PE], PESET, PSET,
SCALE, SCLD, SFB, TFB

Product Rev

6K 5.0

The Transfer Position of Encoder (TPE) command returns the current encoder position. If the encoder has
been configured to receive step and direction input (ENCSND), the TPE command will report the position as
counted from the step and direction signal.

Stepper axes: If the ENCCNT1 mode is enabled TPE reports the encoder position, but in ENCCNT0 mode (the
factory default setting) the TPE report represents the commanded position.

UNITS OF MEASURE and SCALING : refer to page 16 or to the SCLD command.

If you issue a PSET command, the encoder position value will be offset by the PSET command value. If you
are using a stepper axis in the ENCCNT1 mode, use the PESET command instead.

TPER Transfer Position Error
Type Transfers
Syntax <!><a>TPER
Units Reported value represents distance units (scalable by SCLD)
Range Range of the reported value is ±2,147,483,648
Default n/a
Response TPER: *TPER+0,+0,+0,+0,+0,+0,+0,+0

1TPER: *1TPER+0

See Also CMDDIR, DRES, ENCPOL, ERES, [FB], [PC], [PE], [PER],
SFB, SMPER, TANI, TAS, TFB, TPE, TPC

Product Rev

6K 5.0

(applicable only to
servo axes)

The Transfer Position Error (TPER) command allows you to display the current position error of each axis.
The error is displayed in feedback device counts and is scaled by the distance scaling factor (SCLD), if
scaling is enabled with the SCALE1 command.

The position error is the difference between the commanded position and the actual position read by the
feedback device (TPER = TPC - TFB). This error is calculated every sample period and can be displayed at
any time using this command.

Example:
TPC ; Display the current commanded position for each axis:

; *TPC4000,4000,4000,4000 (setpoints displayed in steps)
TFB ; Display the current actual position for each axis:

; *TFB4004,4005,4004,4003 (actual positions displayed in steps)
TPER ; Display current position error of each axis:

; *TPER-4,-5,-4,-3 (error displayed in steps)

272 6K Series Command Reference

TPMAS Transfer Current Master Cycle Position
Type Following; Transfer
Syntax <!><a>TPMAS
Units Reported value represents master counts, scalable by SCLMAS.
Range n/a
Default n/a
Response TPMAS *TPMAS0,0,0,0

1TPMAS *1TPMAS0

See Also FMCLEN, FMCNEW, FMCP, FOLMAS, FOLMD, [FS], MEPOL, [NMCY],
[PMAS], SCALE, SCLMAS, TFS

Product Rev

6K 5.0

The TPMAS command transfers the current position of the master within its current master cycle. The
master must be assigned first (FOLMAS command) before this command will be useful.

TPMAS is unique among position transfers, because master cycle position rolls over to zero each time the
entire master cycle length (FMCLEN value) has been traveled.

If scaling is enabled (SCALE1), the value returned is scaled by the master scaling factor (SCLMAS). If scaling
is disabled (SCALEØ), the value returned is in master counts (encoder counts, commanded counts, or analog
input counts).

For a complete discussion of master cycles, please refer to the Following chapter in the Programmer's
Guide.

TPME Transfer Position of Master Encoder
Type Transfer
Syntax <!>TPME
Units Reported value represents master encoder counts.
Range n/a
Default n/a
Response TPME *TPME+0

See Also MEPOL, MESND, [PCME], [PE], [PME], PMECLR, PMESET, TPCME

Product Rev

6K 5.0

Use the TPME command to display the current master encoder position. The master encoder is connected to
the connector labeled “Master Encoder”. If you issue a PMESET command, the master encoder position
value will be offset by the PMESET command value. The TPME value is always in encoder counts, it is never
scaled.

TPROG Transfer Program Contents
Type Transfer
Syntax <!>TPROG<t>
Units t = text (name of program)
Range Text name of 6 characters or less
Default n/a
Response n/a

See Also DEF, TDIR, TMEM

Product Rev

6K 5.0

The Transfer Program (TPROG) command displays the contents of the program specified. If there is no such
program, then the error message *INVALID DATA will be generated. To see which programs have been
created, use the TDIR command.

Command Descriptions 273

TPSHF Transfer Net Position Shift
Type Following; Transfer
Syntax <!><a>TPSHF
Units (Reported value represents commanded counts, scalable by SCLD)
Range n/a
Default n/a
Response TPSHF *TPSHF+0,+0,+0,+0,+0,+0,+0,+0

See Also FMCNEW, FMCP, FOLEN, FSHFC, FSHFD, [PSHF], SCALE, SCLD

Product Rev

6K 5.0

The TPSHF command transfers the net (absolute) follower axis position shift that has occurred since that last
FOLEN1 command. The position returned will be the sum of all shifts performed on that axis, or axes,
including decelerations due to limits, kill, or stop. The shift value is set to zero each time a new FOLEN1
command or a FOLMAS command (with a value other than zero) is issued.

If scaling in enabled (SCALE1), the PSHF value is scaled by the distance scaling factor (SCLD). If scaling is
not enabled, the value is in commanded counts.

TPSLV Transfer Current Commanded Position of Follower Axis
Type Following; Transfer
Syntax <!><a>TPSLV
Units (Reported value represents commanded counts, scalable by SCLD)
Range n/a
Default n/a
Response TPSLV *TPSLV+0,+0,+0,+0,+0,+0,+0,+0

See Also FMCNEW, FMCP, [PSLV], SCALE, SCLD

Product Rev

6K 5.0

The TPSLV command transfers the current commanded position of the follower axis. The master must be
assigned first (FOLMAS command) before this command will be useful.

If scaling in enabled (SCALE1), the PSLV value is scaled by the distance scaling factor (SCLD). If scaling is
not enabled, the value is in commanded counts.

TRACE Program Trace Mode Enable
Type Program Debug Tool
Syntax <!>TRACE
Units n/a
Range b = 0 (disable), 1 (enable) or X (don't care)
Default 0
Response TRACE: *TRACE0

See Also [,], [#], PORT, [SS], STEP, TRACEP, TRANS, TSS

Product Rev

6K 5.0

The Program Trace Mode Enable (TRACE) command enables program trace mode. When in program trace
mode, all commands executed are or transferred out the Ethernet, RS-232 or RS-485 port, along with the
program from which the command came.

Example:
DEF pick ; Begin definition of program named pick
GO1100 ; Initiate motion on axes 1 and 2
IF(VAR1=5) ; If variable 1 = 5 then do commands between IF and NIF
 GOTOpick1 ; Goto label pick1
 ELSE ; Else part of IF command
 GOTOpick2 ; Goto label pick2
NIF ; End IF command
$pick1 ; Label declaration for pick1
GO0011 ; Initiate motion on axes 3 and 4
BREAK ; Break out of current subroutine or program
$pick2 ; Label declaration for pick2
GO1001 ; Initiate motion on axes 1 and 4
END ; End program definition
TRACE1 ; Enable trace mode.
VAR1=5 ; Set variable 1 to 5

274 6K Series Command Reference

@LH0 ; Disable all limits
EOT13,10,0 ; Set End-of-Transmission characters to a carriage return

; and a line feed
RUN pick ; Initiate program pick

After executing RUN pick , the following information will be placed in the output buffer, due to the trace
mode being enabled. (Assume variable 1 = 5)

*PROGRAM=PICK COMMAND=GO1100
*PROGRAM=PICK COMMAND=IF(VAR1=5.0)
*PROGRAM=PICK COMMAND=GOTO PICK1
*PROGRAM=PICK COMMAND=$PICK1
*PROGRAM=PICK COMMAND=GO0011
*PROGRAM=PICK COMMAND=BREAK

TRACEP Program Flow Mode Enable
Type Program Debug Tool
Syntax <!>TRACEP
Units n/a
Range b = 0 (disable), 1 (enable) or X (don't care)
Default 0
Response TRACEP: *TRACEP0

See Also TRACE

Product Rev

6K 5.0

The Program Flow Mode Enable (TRACEP) command provides a debug tool to monitor the entry and exit of
programs and their associated nest-levels.

Example:
DEF PICK1
GOSUB PICK2
GOTO PICK3
END

DEF PICK2
GOSUB PICK4
END

DEF PICK3
END

DEF PICK 4
END

>TRACEP1
>PICK1
*INITIATE PROGRAM: PICK1 NEST=1
*INITIATE PROGRAM: PICK2 NEST=2
*INITIATE PROGRAM: PICK4 NEST=3
*END: PROGRAM NOW: PICK2 NEST=2
*END: PROGRAM NOW: PICK1 NEST=1
*INITIATE PROGRAM: PICK3 NEST=1
*END: PROGRAM EXECUTION TERMINATED

Command Descriptions 275

TRANS Translation Mode Enable
Type Program Debug Tool
Syntax <!>TRANS
Units n/a
Range b = 0 (disable), 1 (enable) or X (don't care)
Default 0
Response TRANS: *TRANS0

See Also [#], [SS], STEP, TSS

Product Rev

6K 5.0

The Translation Mode Enable (TRANS) command enables the program translation mode, in which all
commands processed by the 6K Series product are echoed back in their binary format (hex representation of
the binary equivalent), and are not executed. The first byte (first two characters) of the response represents
the command's memory requirement. The remaining bytes represent the actual command.

Example:
TRANS1 ; Enable translation mode
A10,20,1,1 ; Translate acceleration command A10,20,1,1. Response displayed

; is: 13 01 00 00 01 86 A0 00 03 0D 40 00 00 27 10 00 00 27 10.
; Note that 13 hex represents a command memory requirement of 19
; bytes.

GO1100 ; Translate initiate motion command GO1100. Response displayed
; is: 07 07 03 01 01 00 00. Note that 07 hex represents a
; command memory requirement of 7 bytes.

GO0011 ; Translate initiate motion command GO0011. Response displayed
; is: 07 07 03 00 00 01 01. Note that 07 hex represents a
; command memory requirement of 7 bytes.

TREV Transfer Revision Level
Type Transfer
Syntax <!>TREV
Units n/a
Range n/a
Default n/a
Response TREV: *TREV92-016740-01-5.0 (response varies by product)

See Also RESET

Product Rev

6K 5.0

The Transfer Revision Level (TREV) command provides the current revision of the product’s firmware. It
also reports any options that have been installed. Options can be ordered through your local ATC or
distributor.

276 6K Series Command Reference

TRGFN Trigger Functions
Type Inputs; Following; Motion
Syntax <!><@>aTRGFNcbb
Units a = axis #

c = trigger input letter for axis “a”
1st b = bit to select Conditional GO (GOWHEN) function
2nd b = bit to select Start New Master Cycle (FMCNEW) function

Range a = 1-8 (product dependent)
c = A, B, or M (M is master trigger, “TRG-M”)
b = 0 (disable function), 1 (enable function),
or X (leave unchanged)

Default a = 1, c = A; b = 0
Response 1TRGFN *1TRGFNA00

See Also [AS], ERROR, ERRORP, FMCNEW, GOWHEN, INFNC, [SS], TAS,
TRGLOT, TSS, [TRIG], TTRIG

Product Rev

6K 5.0

Use the TRGFN command to assign certain command functions to the onboard trigger inputs. Note that the
number of trigger inputs available varies by product — see page 6.

Trigger Input (Axis 1-4
“ Triggers/Outputs ” connector) *

Dedicated
Axis

TRGFN
Syntax

Trigger Input (Axis 5-8
“ Triggers/Outputs ” connector) *

Dedicated
Axis

TRGFN
Syntax

Pin 23, Trigger 1A 1 1TRGFNA Pin 23, Trigger 5A 5 5TRGFNA

Pin 21, Trigger 1B 1 1TRGFNB Pin 21, Trigger 5B 5 5TRGFNB

Pin 19, Trigger 2A 2 2TRGFNA Pin 19, Trigger 6A 6 6TRGFNA

Pin 17, Trigger 2B 2 2TRGFNB Pin 17, Trigger 6B 6 6TRGFNB

Pin 15, Trigger 3A 3 3TRGFNA Pin 15, Trigger 7A 7 7TRGFNA

Pin 13, Trigger 3B 3 3TRGFNB Pin 13, Trigger 7B 7 7TRGFNB

Pin 11, Trigger 4A 4 4TRGFNA Pin 11, Trigger 8A 8 8TRGFNA
Pin 9, Trigger 4B 4 4TRGFNB Pin 9, Trigger 8B 8 8TRGFNB

“Master Trigger” (TRIG-M) trigger: syntax is TRGFNM

* The number of trigger inputs available varies by product (refer to your product’s Installation Guide).

NOTE

The trigger input used in this command must first be defined as a Trigger Interrupt input
with the INFNCi-H command.

• “Conditional GO” Function (aTRGFNc1x): Suspend execution of the next start-motion command
until the specified trigger input goes active. Start-motion commands are:

- GO (standard command to begin motion)
- GOL (begin linear interpolated motion)
- FGADV (begin geared advance – for Following motion)
- FSHFC (begin continuous shift – for Following motion)
- FSHFD (begin preset shift – for Following motion)

Axis status bit #26 (reported with TASF, TAS, or AS) is set to one (1) when there is a pending
“Conditional GO” condition initiated by a TRGFN command; this bit is cleared when the trigger is
activated or when a stop command (S) or a kill command (K) is issued. If you need execution to be
triggered by other factors (e.g., input state, master position, encoder position, etc.) use the GOWHEN
command.

• “New Master Cycle” Function (aTRGFNcx1): This is equivalent to executing the FMCNEW command.
When the specified trigger input goes active, the controller begins a new Following master cycle. For
more information on master cycles, refer to the Following chapter in the Programmer’s Guide.

These trigger functions are cleared once the function is complete. To use the trigger to perform a GOWHEN
function again, the TRGFN command must be given again.

TRGFN in Compiled Motion: When used in a compiled program, a aTRGFNc1xx (GOWHEN function)
command will pause the profile in progress (motion continues at constant velocity) until the trigger is

Command Descriptions 277

activated to execute the next move profile. When used in a compiled profile, the TRGFN command
consumes one segment of compiled memory. When used in a compiled Following profile, the TRGFN
command is ignored on the reverse Following profile (i.e., when the master is moving in the opposite
direction of that specified in the FOLMAS command).

Trigger Interrupt Status : The status of a trigger interrupt event is reported with the TTRIG and TRIG
commands

Example: (refer also to the FOLEN examples)
1TRGFNBx1 ; When trigger 1B goes active, axis 1 will begin a

; new master cycle
2TRGFNB1x ; When trigger 2B goes active, axis 2 will execute the move

; commanded with the GO command.
GO01 ; The move on axis 2 is commanded, but will not execute until

; trigger 2B goes active.

TRGLOT Trigger Interrupt Lockout Time
Type Input
Syntax <!>TRGLOT<r>
Units r = time in milliseconds
Range 0-250
Default 24
Response TRGLOT: *TRGLOT24

See Also INDEB, INFNC, RE, REG, TIN, TRGFN, [TRIG], TTRIG

Product Rev

6K 5.0

The TRGLOT command configures the amount of time in which all “trigger interrupt” inputs (all trigger
inputs configured with the INFNCi-H command) are disabled between its initial active transition and its
secondary active transition. This allows rapid recognition of a trigger, but prevents subsequent bouncing of
the input from causing a false position capture, registration move, or TRGFN event. The lockout time affects
those triggers configured as H (trigger interrupt) with the INFNC command during those interrupt actions
(registration, position capture, etc.).

The TRGLOT setting overrides the existing INDEB setting for only the trigger inputs that are assigned the
“Trigger Interrupt” function.

Example:
INFNC1-H ; Assign trigger 1A as a "trigger interrupt" input
TRGLOT40 ; Set lockout time for all "trigger interrupt" inputs

; to be 40 milliseconds

[TRIG] Trigger Interrupt Status
Type Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also INFNC, [PCC], [PCE], [PCME], [PCMS], TAS, TPCC, TPCE,
TPCME, TPCMS, TRGFN, TTRIG

Product Rev

6K 5.0

Use the TRIG operator to assign the Trigger Interrupt status bits to a binary variable (VARB), or to make a
comparison against a binary or hexadecimal value. To make a comparison against a binary value, the letter
b (b or B) must be placed in front of the value. The binary value itself must only contain ones, zeros, or Xs
(1, Ø, X, x). To make a comparison against a hexadecimal value, the letter h (h or H) must be placed in
front of the value. The hexadecimal value itself must only contain the letters A through F, or the numbers Ø
through 9.

Syntax: VARBn=TRIG where “n” is the binary variable number, or TRIG can be used in an expression
such as IF(TRIG=b11Ø1) , or IF(TRIG=h7F)

278 6K Series Command Reference

Each Trigger Interrupt status bit indicates whether a “trigger interrupt” input has been activated to capture a
position, initiate a registration move, or execute a TRGFN function. “Trigger Interrupt” inputs are onboard
trigger inputs that have been assigned the trigger interrupt function with the INFNCi-H command.

Each TTRIG bit is cleared when the captured position value is read with the PCC, PCE, PCME, PCMS, TPCC,
TPCE, TPCME, or TPCMS commands, but the position information is still available from the respective
register until it is overwritten by a subsequent position capture by the same trigger input.

The function of each status bit are shown in the table below (bits are numbered from left to right). A bit that
is set (“1”) indicated the trigger interrupt has occurred, a “0” indicates no trigger interrupt.

TTRIG
bit #

Trigger Input (Axis 1-4
“ Triggers/Outputs ” connector) *

Dedicated
Axis

TTRIG
bit #

Trigger Input (Axis 5-8
“ Triggers/Outputs ” connector) *

Dedicated
Axis

1 Pin 23, Trigger 1A 1 9 Pin 23, Trigger 5A 5
2 Pin 21, Trigger 1B 1 10 Pin 21, Trigger 5B 5
3 Pin 19, Trigger 2A 2 11 Pin 19, Trigger 6A 6
4 Pin 17, Trigger 2B 2 12 Pin 17, Trigger 6B 6
5 Pin 15, Trigger 3A 3 13 Pin 15, Trigger 7A 7
6 Pin 13, Trigger 3B 3 14 Pin 13, Trigger 7B 7
7 Pin 11, Trigger 4A 4 16 Pin 11, Trigger 8A 8
8 Pin 9, Trigger 4B 4 16 Pin 9, Trigger 8B 8

17 Master Trigger (“TRG-M”) Master Encoder

* The number of trigger inputs available varies by product (refer to your product’s Installation Guide).

TSCAN Transfer Scan Time of PLCP Program
Type Transfer; PLC Scan Program
Syntax <!>TSCAN
Units Response is in increments of 2 milliseconds
Range 2 ms - unlimited
Default n/a
Response TSCAN *TSCAN4 (4 ms corresponds to 2 system updates)

See Also SCANP, PLCP, EXE

Product Rev

6K 5.0

The TSCAN command reports the duration it takes the last PLCP program to be scanned completely. A
compiled PLCP program is launched into Scan mode using the SCANP command. During each 2 ms system
update, the PLCP program is scanned an allotted 0.5 ms window. If the PLCP program requires more than
0.5 ms to be scanned, the program will be paused and then resumed at the next system update. The value
reported by the TSCAN command is in multiples of the 2 ms system update period.

Example:
SCANP PLCP1 ; Start execution of compiled PLCP program PLCP1 in Scan mode
TSCAN ; Report the duration of the scan program in multiples of the

; 2 millisecond system update period. An example response might
; be *TSCAN4 (indicates that 2 system update periods, a total of
; 4 milliseconds was required to scan the last PLCP program).

TSEG Transfer Number of Free Segment Buffers
Type Compiled Motion; Transfer
Syntax <!>TSEG
Units n/a
Range n/a
Default n/a
Response TSEG: *TSEG258

See Also MEMORY, TDIR, TMEM, [SEG], [SS], TSS, TSSF

Product Rev

6K 5.0

The Transfer Number of Free Segment Buffers (TSEG) command returns the number of free segment
buffers in compiled memory.

System status bit (see TSSF, TSS, and SS) 29 to set when the compiled memory is 75% full, and bit 30 is set
if the compiled memory is 100% full.

Command Descriptions 279

TSGSET Transfer Servo Gain Set
Type Transfer
Syntax <!>TSGSETi
Units i = gain set identification number (see SGSET command)
Range 1-5
Default n/a
Response (see examples below)

See Also SFB, SGAF, SGENB, SGI, SGILIM, SGP, SGSET, SGV, SGVF, SOFFS, TGAIN

Product Rev

6K 5.0

(application to servo
axes only)

This command allows you to display any of the 5 gain sets that you saved with the SGSET command. Up to
5 gain sets can be saved.

NOTE

The tuning gains in a given gain set are specific to the feedback source that was in use
(selected with the last SFB command) at the time the gains were established with the
respective gain commands (SGI, SGP, etc.).

Example:
SGP5,5,10,10 ; Set the gain for the proportional gain
SGI.1,.1,0,0 ; Set the gain for the integral gain
SGV50,60,0,0 ; Set the gain for the velocity gain
SGVF5,6,10,11 ; Set the gain for the velocity feedforward gain
SGAF0,0,0,0 ; Set the gain for the acceleration feedforward gain
SGSET3 ; Assign the SGP, SGI, SGV, SGVF, & SGAF gains to servo gain set 3
SGP75,75,40,40 ; Set the gain for the proportional gain
SGI5,5,5,7 ; Set the gain for the integral gain
SGV1,.45,2,2 ; Set the gain for the velocity gain
SGVF0,8,0,9 ; Set the gain for the velocity feedforward gain
SGAF18,20,22,24 ; Set the gain for the acceleration feedforward gain
SGSET1 ; Assign the SGP, SGI, SGV, SGVF, & SGAF gains to servo gain set 1
SGENB1,3,3,1 ; Enable gain set 1 on axis 1 & 4 and enables gain set 3 on

; axis 2 & 3
TSGSET1 ; Display gain set 1. Response should be:

; *SGP75,75,40,40
; *SGI5,5,5,7
; *SGV1,.45,2,2
; *SGVF0,8,0,9
; *SGAF18,20,22,24

TSGSET3 ; Display gain set 3. Response should be:
; *SGP5,5,10,10
; *SGI.1,.1,0,0
; *SGV50,60,0,0
; *SGVF5,6,10,11
; *SGAF0,0,0,0

TSKAX Task Axis
Type Multi-Tasking
Syntax i%TASKAX<a1>,<a2>
Units i = task number

a1 = first axis associated with the task
a2 = last axis associated with the task
Range of axes from a1 - a2, where a1 ≤ a2

Range For i, 0-10
For a1 and a2, 0-n,
where n = number of axes on the product

Default a1 = 1
a2 = n

Response n/a

See Also %, TTASK, [TASK], TSWAP, [SWAP], TSKTRN

Product Rev

6K 5.0

The Task Axis command (TSKAX) allows you to specify the axes associated with a task. The default
condition in multi-tasking is that each task is associated with all controller axes. This means, for example,
that when an axis being used in a task hits an end-of travel limit, program execution will be killed within
that task, and in all other tasks, because they all share that axis. The TSKAX command is used to assign a

280 6K Series Command Reference

set of axes to a given task to allow a multi-axis controller to be used as more than one independent program
execution environment.

The TSKAX command allows you to assign axes to specific tasks, thus constraining task response and
control to a smaller set of axes. A task is allowed to control only its associated axes. This axis association
covers all interaction between axes commands, conditions or inputs and task program flow. For example, if
a 6K controller is controlling two independent machines that do not share common axes, with control of
each machine as a separate task, a limit hit by an axis in one machine can kill the task running that machine,
but will not kill the task running the other machine.

The TSKAX command allows you to specify the first and last axis numbers associated with the task. Thus,
the axes associated with a task will always be consecutive. As a demonstration, the TSKAX commands in the
example below will associate axes 1, 2 and 3 with Task1, axes 4, 5 and 6 with Task2, and axes 7 and 8 with
Task3. If axis 3 in Task1 hits a limit, program execution in Task1 will be killed, but Task2 and Task3 can
continue to run because they are independent and do not share axis 3. Task1 may change motion parameters
and start motion on only axes 1, 2, and 3.

Example:
DEF main ; Begin definition of program called "main"
1%TSKAX1,3 ; Associate axes 1, 2 and 3 to Task1
2%TSKAX4,6 ; Associate axes 4, 5 and 6 to Task2
3%TSKAX7,8 ; Associate axes 7 and 8 to Task3
1%move1 ; Execute stored program "move1" in Task1
2%inout ; Execute stored program "inout" in Task2
3%fill ; Execute stored program "fill" in Task3
END

It is also possible to eliminate axis association for a task altogether with the TSKAX0,0 command. This
would be appropriate for a task that is not involved in motion control, but may control I/O or start other
tasks.

TSKTRN Task Turns Before Swapping
Type Multi-Tasking
Syntax i 1%TSKTRNi2
Units i 1 = task number

i 2 = number of turns before task swap
Range i 1 = 0-10

i 2 = 0-10,000
Default i 1 = 0

i 2 = 1
Response n/a

See Also %, LOCK, TTASK, [TASK], TSWAP, [SWAP], TSKAX

Product Rev

6K 5.0

Use the TSKTRN command to set the relative amount of processing time a task will get. Under default
multi-tasking operation, all active tasks have an equal share of processing time; that is, each task executes
one “turn” and then “swaps” control to the next active task. (A “turn” is the execution of a command, or a
portion of a complex command such as those for contouring and math and trig operators.)

For example, if Task2 issued a TSKTRN6 command, while the other tasks stayed at TSKTRN1, Task2 would
execute 6 commands (or portions of long commands) before relinquishing control to another task.

The TSKTRN value for a task may be changed at any time, allowing a task to increase its weight for an
isolated section of program commands.

Command Descriptions 281

TSS Transfer System Status
Type Transfer
Syntax <!><%>TSS<.i>
Units i = system status bit number
Range 1-32
Default n/a
Response TSS: *TSS1000_1000_0000_0000_0000_0000_0000_0000

TSS.1: *1 (status of Task 0 status bit #1—system is ready)

See Also PORT, TAS, TCMDER, TRGFN, TSTAT, [TRIG], TTRIG

Product Rev

6K 5.0

The Transfer System Status (TSS) command provides information on the 32 system status bits. The TSS
status command reports a binary bit report. If you would like to see a more descriptive text-based report,
use the TSSF command description.

Response for TSS (b can equal Ø, 1, X, or x): *TSSbbbb_bbbb_bbbb_bbbb_bbbb_bbbb_bbbb_bbbb
^ ^

Bit #1 Bit #32

MULTI-TASKING

If you are using multi-tasking, be aware that each task has its own system status register.
Therefore, to check a specific task’s system status, you must prefix the TSS command
with the task identifier (e.g., 2%TSS to check system status for Task 2). If no task identifier
is given, the TSS response is for the task supervisor (Task 0).

BIT (Left to Right) Function (1 = yes, Ø = no) BIT (Left to Right) Function (1 = yes, Ø = no)

1 System Ready (fully powered up and
ready to receive commands)

17 Loading Thumbwheel Data ([TW])

2 Reserved 18 External Program Select Mode (INSELP)

3 Executing a Program 19 Dwell in Progress (T command)

4 Immediate Command (set if last
command was immediate)

20 Waiting for RP240 Data—[DREAD] or
[DREADF]

5 In ASCII Mode 21 RP240 Connected— current PORT setting
only

6 In Echo Mode — current PORT
setting only

22 Non-volatile Memory Error

7 Defining a Program 23 Servo data gathering transmission in
progress (servo axes only)

8 In Trace Mode 24 Reserved

9 In Step Mode 25 RESERVED

10 In Translation Mode (must use fast
status area to see)

26 RESERVED

11 Command Error Occurred (bit is
cleared when TCMDER is issued)

27 RESERVED

12 Break Point Active (BP) 28 RESERVED

13 Pause Active 29 Compiled memory is 75% full

14 Wait Active (WAIT) 30 Compiled memory is 100% full

15 Monitoring On Condition (ONCOND) 31 * Compile operation failed (PCOMP) **

16 Waiting for Data (READ) 32 RESERVED

* Bit #31: failed PCOMP compile is cleared on power up, RESET, or after successful compile. Possible causes include:
• Errors in profile design (e.g., change direction while at non-zero velocity; distance & velocity equate to < 1 count

per system update; preset move profile ends in non-zero velocity)
• Profile will cause a Following error (see TFSF, TFS, or FS command descriptions)
• Out of memory (see TSS bit #30)
• Axis already in motion at the time of the PCOMP command
• Loop programming errors (e.g., no matching PLOOP or PLN; more than 4 embedded PLOOP/END loops)
• PLCP program contains invalid commands.

282 6K Series Command Reference

TSSF Transfer System Status (full-text report)
Type Transfer
Syntax <!><%>TSSF
Units n/a
Range n/a
Default n/a
Response TSSF: (see example below)

See Also PORT, [SS], TAS, TCMDER, TRGFN, TSS, TSTAT

Product Rev

6K 5.0

The TSSF command returns a text-based status report of all axes. This is an alternative to the binary report (TSS).

MULTI-TASKING

If you are using multi-tasking, be aware that each task has its own system status register.
Therefore, to check a specific task’s system status, you must prefix the TSSF command
with the task identifier (e.g., 2%TSSF to check system status for Task 2). If no task
identifier is given, the TSSF response is for the task supervisor (Task 0).

Example TSSF response:

*TSSF
*System Ready YES Thumbwhl Data Load NO
*RESERVED NO Ext Prog Sel Mode NO
*Program Executing NO Time Command NO
*Immediate Comm Last NO Waiting RP240 Data NO
*
*ASCII Mode YES RP240 Connected NO
*Echo Mode YES Memory Error NO
*Defining a Program NO Servo Data Transfer NO
*Trace Mode NO RESERVED NO
*
*Step Mode NO RESERVED NO
*FS Translate Mode NO RESERVED NO
*Command Error NO RESERVED NO
*Break Point Active NO RESERVED NO
*
*Pause Active NO Comp Mem Near Full NO
*Wait Active NO Compiled Mem Full NO
*Checking On Conds NO Compile Failed NO
*Waiting for Data NO Reserved NO

Command Descriptions 283

TSTAT Transfer Statistics
Type Transfer
Syntax <!>TSTAT
Units n/a
Range n/a
Default n/a
Response TSTAT: (See below)

See Also NTADDR, TAS, TDIR, TER, TFB, TIN, TIO, TLIM, TOUT, TPC, TPE,
TREV, TSKAX, TSWAP, TSS, TTIM, TUS, TVEL

Product Rev

6K 5.0

The following is an example (NOTE: The response for each 6K Series product will vary slightly.):

*6K8 (8-axis controller)
*6K revision: 92-XXXXXX-01-5.0 6K 92-XXXXXX-XX-NOP2.5 DSP
*Ethernet address: xxxxxxxxxx; IP address: 192.168.10.30
*Axis definition: Servo,Servo,Servo,Servo,Stepper,Stepper,Stepper,Stepper
*Power-up program assignment (STARTP): SETUP
*ENABLE input OK: Yes
*Drive status (DRIVE): 0000_0000
*Drive Fault input states (ASX.4 for each axis): 0000_0000
*Drive Fault input checking - enabled (DRFEN1): 0000_0000
*Drive resolution (DRES): -,-,-,-,25000,25000,25000,25000
*Encoder resolution (ERES): 4000,4000,4000,4000
*Encoder failure detection enabled (EFAIL1): 0000_0000
*Hard Limit enable: LH3,3,3,3,3,3,3,3
*Soft Limit enable: LS0,0,0,0,0,0,0,0
*Current Motion Attributes:
* Scaling enabled (SCALE1): 0
* Acceleration scaler (SCLA): 4000,4000,4000,4000,4000,4000,4000,4000
* Distance scaler (SCLD): 1,1,1,1,1,1,1,1
* Velocity scaler (SCLV): 4000,4000,4000,4000,4000,4000,4000,4000
* Continuous/Preset (MC1/MC0) positioning mode: 0,0,0,0,0,0,0,0
* Absolute/Incremental (MA1/MA0) positioning mode: 0,0,0,0,0,0,0,0
* Feedback position (TFB or TPE): +0,+0,+0,+0,-,-,-,-
* Commanded position (TPC): +0,+0,+0,+0,+0,+0,+0,+0
* A10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000
* AA10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000
* AD10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000
* ADA10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000,10.0000
* V1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000
* D+4000,+4000,+4000,+4000,+4000,+4000,+4000,+4000
*I/O Status:
* Onboard limit inputs:
* Hardware state (TLIM): 000_000_000_000_000_000_000_000
* Prog. function (LIMFNC): RST_RST_RST_RST_RST_RST_RST_RST
* Onboard trigger inputs:
* Hardware state (TIN): 0000_0000_0000_0000_0
* Prog. function (INFNC): AAAA_AAAA_AAAA_AAAA_A
* Onboard digital outputs:
* Hardware state (TOUT): 000_000
* Prog. function (OUTFNC): AAA_AAA
* Expansion I/O bricks: See TIO response
*Axis Status (see TASF for full text report of all axes):
* Axis 1 (1TAS): 0010_0000_0000_1000_0000_0001_0000_0000
* Axis 2 (2TAS): 0010_0000_0000_1000_0000_0001_0000_0000
* Axis 3 (3TAS): 0010_0000_0000_1000_0000_0001_0000_0000
* Axis 4 (4TAS): 0010_0000_0000_1000_0000_0001_0000_0000
* Axis 5 (5TAS): 0010_0000_0000_1000_0000_0001_0000_0000
* Axis 6 (6TAS): 0010_0000_0000_1000_0000_0001_0000_0000
* Axis 7 (7TAS): 0010_0000_0000_1000_0000_0001_0000_0000
* Axis 8 (8TAS): 0010_0000_0000_1000_0000_0001_0000_0000
*System Status (This is Task 0 status if using multi-tasking.):
* Assoc. axes (TSKAX): 1,2,3,4,5,6,7,8
* System status (TSSF): 1000_1100_0000_0000_0000_0100_0000_0000
* Error checking (ERROR): 1000_0100_1000_0001_0000_0000_0000_0000
* Error status (TERF): 0000_0000_0000_0000_0000_0000_0000_0000
* Error program (ERRORP): ERRPRG
* On conditions (ONCOND): 0000
*Multi-Tasking Status:
* Currently active tasks (TSWAP): 1100_0000_00
* Task 1:
* Assoc. axes (1%TSKAX): 1,2,3,4
* System status (1%TSSF): 1000_1100_0000_0000_0000_0100_0000_0000
* Error checking (1%ERROR): 1000_0100_1000_0001_0000_0000_0000_0000
* Error status (1%TERF): 0000_0000_0000_0000_0000_0000_0000_0000
* Error program (1%ERRORP): ERRPRG
* On conditions (1%ONCOND): 0000
* Task 2:
* Assoc. axes (2%TSKAX): 5,6,7,8
* System status (2%TSSF): 1000_1100_0000_0000_0000_0100_0000_0000
* Error checking (2%ERROR): 1000_0100_1000_0001_0000_0000_0000_0000
* Error status (2%TERF): 0000_0000_0000_0000_0000_0000_0000_0000
* Error program (2%ERRORP): ERRPRG
* On conditions (2%ONCOND): 0000
*Following Conditions:
* Master-Follower assignment (FOLMAS): +0,+0,+0,+0,+0,+0,+0,+0
* Master scaling (SCLMAS): 4000,4000,4000,4000,4000,4000,4000,4000
* Following status (TFSF): 0000_0000_0000_0000_0000_0000_0000_0000

284 6K Series Command Reference

TSTLT Transfer Settling Time
Type Transfer
Syntax <!><a>TSTLT
Units Reported value represents milliseconds
Range n/a
Default n/a
Response TSTLT: *TSTLT502,483,344,249,299,443,534,674

1TSTLT: *1TSTLT502

See Also STRGTD, STRGTE, STRGTT, STRGTV

Product Rev

6K 5.0

(applicable only to
servo axes)

TSTLT allows you to display the actual time it took the last move to settle into the target zone (that is, within
the distance zone defined by STRGTD and less than or equal to the velocity defined by STRGTV). The
reported value represents milliseconds. This command is usable whether or not the Target Zone
Settling Mode is enabled with the STRGTE command.

*** For a more information on target zone operation, refer to the Programmer's Guide.

TSWAP Transfer Current Active Tasks
Type Transfer
Syntax <!>TSWAP
Units n/a
Range Binary response status of tasks (0 = inactive, 1 = inactive).

10-bit pattern represents tasks 1-10 from left to right.
Default n/a
Response TSWAP: *TSWAP1001_0000_00 (tasks 1 and 4 are active)

TSWAP.3: *0 (task 3 is inactive)

See Also %, [SS], [TASK], TSKAX, TSS

Product Rev

6K 5.0

The Transfer Task Swap command (TSWAP) reports a binary bit pattern indicating the tasks that are
currently active. Note that TSWAP only indicates of a task is active; to ascertain exactly what activity the
task has at a given time, use the system status (SS or TSS commands).

TSWAP’s binary 10-bit pattern represents tasks 1-10, from left to right. A “1” indicates that the task is active,
and a “0” indicates that the task is inactive. To check the status of only one task, you may use the bit select
(.) operator. For example, TSWAP.3 checks the status of Task3 only.

The “Task Supervisor”, represented by task Ø, is always active and is therefore not included in the SWAP
and TSWAP status.

TTASK Transfer Task Number
Type Transfer
Syntax <!>TTASK
Units Reported value is the number of the controlling task.
Range 0-10
Default n/a
Response TTASK: *TTASK2 (Task 2 executed the TTASK command)

See Also %, [TASK]

Product Rev

6K 5.0

Use the TTASK command to the display the task number of the task which executed the command. This
could be used for diagnostic purposes, as a way to indicate which task is executing a given section of
program.

Command Descriptions 285

TTIM Transfer Timer
Type Transfer
Syntax <!><%>TTIM
Units Reported value represents milliseconds
Range Maximum count is 999,999,999 (approx. 11 days, 13 hours)
Default n/a
Response TTIM: *TTIM64000

See Also T, [TIM], TIMINT, TIMST, TIMSTP

Product Rev

6K 5.0

The Transfer Timer (TTIM) command returns the current value of the timer in milliseconds. The timer is
started with the TIMST command, and stopped with the TIMSTP command.

Multi-Tasking : Each task has its own timer.

TTRIG Transfer Trigger Interrupt Status
Type Transfer, Inputs
Syntax <!>TTRIG
Units n/a
Range n/a
Default n/a
Response TTRIG *TTRIG0000_0000_0000_0000_0

See Also INFNC, [PCC], [PCE], [PCME], [PCMS], TAS, TPCC, TPCE,
TPCME, TPCMS, TRGFN, [TRIG]

Product Rev

6K 5.0

Use the TTRIG command to check whether a “trigger interrupt” input has been activated to capture a
position, initiate a registration move, or execute a TRGFN function. “Trigger Interrupt” inputs are onboard
trigger inputs that have been assigned the trigger interrupt function with the INFNCi-H command.

Each TTRIG bit is cleared when the captured position value is read with the PCC, PCE, PCME, PCMS, TPCC,
TPCE, TPCME, or TPCMS commands, but the position information is still available from the respective
register until it is overwritten by a subsequent position capture by the same trigger input.

The functions of each bit in the binary report are shown in the table below (bits are numbered from left to
right). A bit that is set (“1”) indicated the trigger interrupt has occurred, a “0” indicates no trigger interrupt.

TTRIG
bit #

Trigger Input (Axis 1-4
“ Triggers/Outputs ” connector) *

Dedicated
Axis

TTRIG
bit #

Trigger Input (Axis 5-8
“ Triggers/Outputs ” connector) *

Dedicated
Axis

1 Pin 23, Trigger 1A 1 9 Pin 23, Trigger 5A 5
2 Pin 21, Trigger 1B 1 10 Pin 21, Trigger 5B 5
3 Pin 19, Trigger 2A 2 11 Pin 19, Trigger 6A 6
4 Pin 17, Trigger 2B 2 12 Pin 17, Trigger 6B 6

5 Pin 15, Trigger 3A 3 13 Pin 15, Trigger 7A 7
6 Pin 13, Trigger 3B 3 14 Pin 13, Trigger 7B 7
7 Pin 11, Trigger 4A 4 16 Pin 11, Trigger 8A 8
8 Pin 9, Trigger 4B 4 16 Pin 9, Trigger 8B 8

17 Master Trigger (“TRG-M”) Master Encoder

* The number of trigger inputs available varies by product (refer to your product’s Installation Guide).

Example
COMEXC1 ; Continuous command execution
INFNC1-H ; Define trigger 1A is a trigger interrupt input
1REGA10000 ; Registration move on axis 1 on trigger 1A event
WAIT(TRIG.1=B1) ; Wait for trigger 1A event to occur
WRITE"TRIGGER 1A OCCURRED" ; Display message
TTRIG ; Get report back (display to monitor)

; response should be: *TTRIG1000_0000_0000_0000_0

286 6K Series Command Reference

TUS Transfer User Status
Type Transfer
Syntax <!>TUS<.i>
Units i = user status bit number
Range 1 - 16
Default n/a
Response TUS: *TUS1111_0000_1111_0000

TUS.4: *1 (user status bit 4 is reported)

See Also INDUSE, INDUST, [US]

Product Rev

6K 5.0

The Transfer User Status (TUS) command returns the current bit pattern for the user status word. All 16 bits
of the user status word are defined with the INDUST command. Each bit can correspond to an axis status bit,
a system status bit, or an input.

Example:
INDUSE1 ; Enable user status
INDUST1-5A ; User status bit 1 defined as axis 1 status bit 5
INDUST2-3F ; User status bit 2 defined as axis 6 status bit 3
3INDUST3-5J ; User status bit 3 defined as input 5 on I/O brick 3
INDUST4-1K ; User status bit 4 defined as interrupt status bit 1
2%INDUST16-2I ; User status bit 16 defined as system status bit 2 for task 2
TUS ; Return the state of the user status word

TVEL Transfer Current Commanded Velocity
Type Transfer
Syntax <!><a>TVEL
Units Reported value is in units/sec (scalable by SCLV)
Range n/a
Default n/a
Response TVEL: *TVEL23.3450,23.0000,45.7800,456.7800 ...

1TVEL: *1TVEL23.3450

See Also ERES, SCALE, SCLV, TVELA, V, [VEL]

Product Rev

6K 5.0

The TVEL value represents the current commanded velocity. It is not the programmed velocity (V). If
scaling is enabled (SCALE1), the TVEL value is scaled by the velocity scaling factor (SCLV).

Stepper Axes: If scaling is disabled (SCALEØ), the value is measured in revolutions/sec (actual velocity in
commanded counts/sec divided by the drive resolution DRES value).

Servo Axes: If scaling is disabled (SCALEØ), the value is measured in encoder revs/sec or ANI volts/sec.

Command Descriptions 287

TVELA Transfer Current Actual Velocity
Type Transfer
Syntax <!><a>TVELA
Units Reported value is in units/sec
Range n/a
Default n/a
Response TVELA: *TVELA+1.55,-3.25,-5.55,+2.30

1TVELA: *TVELA+1.55

See Also ENCCNT, SCALE, SCLV, SFB, TVEL, V, [VEL], [VELA]

Product Rev

6K 5.0

The Transfer Current Actual Velocity (TVELA) command reports the current velocity as derived from the
feedback device. The sign determines the direction of motion. You can use the TVELA command at all
times; therefore, even if no motion is being commanded, TVELA will still report a non-zero value as it
detects the servoing action.

Units of Measure:

Steppers: The velocity is always revs/sec (actual velocity in counts/sec multiplied by the ERES value
if in ENCCNT1 mode, or multiplied by DRES if in ENCCNT0 mode).

Servos: If scaling is enabled (SCALE1), the velocity value will be scaled by the velocity scaling factor
(SCLV). If scaling is not enabled (SCALEØ), the value returned will be in encoder revs/sec or ANI
volts/sec.

Example:
TVELA ; Reports the current actual velocity; since no motion is

; commanded, the servoing velocities are reported.
; Example response is: *TVELA+0.0097,-0.0027,+0.0103,-0.0044

TVMAS Transfer Current Master Velocity
Type Following and Transfer
Syntax <!><a>TVMAS
Units n/a
Range n/a
Default n/a
Response TVMAS *TVMAS+0,+0,+0,+0,+0,+0,+0,+0

1TVMAS *1TVMAS0

See Also FFILT, FOLMAS, SCALE, SCLMAS, V, [VMAS]

Product Rev

6K 5.0

The TVMAS command transfers the current velocity of the master. The master must be assigned first
(FOLMAS command) before this command will be useful.

The precision of the reported TVMAS value is dependent upon the FFILT filter value (details are provided in
the “Master Position Filtering” section in the Following chapter of the Programmer's Guide.

If scaling is enabled (SCALE1), the value returned is scaled by the master scaling factor (SCLMAS). If scaling
is disabled (SCALE0), the value returned is in counts/sec.

288 6K Series Command Reference

[TW] Thumbwheel Assignment
Type Assignment or Comparison
Syntax TWi (See below for examples)
Units i = sets used by INPLC, INSTW, OUTPLC and OUTTW
Range 1-8
Default n/a
Response n/a

See Also INPLC, INSTW, OUTPLC, OUTTW, [SS], TSS

Product Rev

6K 5.0

The Thumbwheel Assignment (TW) command, executed from within another command, reads data from a
parallel device and loads it into the command field the TW command is occupying. Rule of Thumb for
command value substitutions: If the command syntax shows that the command field requires a real number
(denoted by <r>) or and integer value (denoted by <i>), you can use the TW substitution (e.g., V2,(TW)).

The value of the TW command designates which input and output set to use. TW values 1-4 correspond to
INSTW and OUTTW sets 1 - 4, respectively. TW values 5-8 correspond to INPLC and OUTPLC sets 1 - 4,
respectively.

The TW command can be used as a variable assignment (VAR1=TW2) or in another command (e.g.,
A10,(TW2),10,1). However, the TW command cannot be used in an expression such as VAR4=1 + TW2 or
IF(TW2<8) .

For more information on interfacing thumbwheels, refer to your product's Installation Guide.

Example:
INSTW2,1-4,5 ; Set INSTW set 2 as BCD digits on onboard inputs 1-4, with

; input 5 as the sign bit
OUTTW2,1-3,4,50 ; Set OUTTW set 2 as output strobes on onboard outputs 1-3,

; with output 4 as the output enable bit, and strobe time
; of 50 milliseconds

A(TW2) ; Read data into axis 1 acceleration using INSTW set 2 and
; OUTTW set 2 as the data configuration

Command Descriptions 289

UNTIL() Until Part of Repeat Statement
Type Program Flow Control
Syntax <!>UNTIL(expression)
Units n/a
Range Up to 80 characters (including parentheses)
Default n/a
Response n/a

See Also JUMP, REPEAT

Product Rev

6K 5.0

The Until Part of Repeat Statement (UNTIL()) command, in conjunction with the REPEAT command,
provide a means of conditional program flow. The REPEAT command marks the beginning of the
conditional statement. The commands between the REPEAT and the UNTIL command are executed at least
once. Upon reaching the UNTIL command, the expression contained within the UNTIL command is
evaluated. If the expression is false, the program flow is redirected to the first command after the REPEAT
command. If the expression is true, the first command after the UNTIL command is executed.

Up to 16 levels of REPEAT ... UNTIL() commands may be nested.

NOTE: Be careful about performing a GOTO between REPEAT and UNTIL . Branching to a different
location within the same program will cause the next REPEAT statement encountered to be nested
within the previous REPEAT statement, unless an UNTIL command has already been encountered.
The JUMP command should be used in this case.

All logical operators (AND, OR, NOT), and all relational operators (=, >, >=, <, <=, <>) can be used within the
UNTIL expression. There is no limit on the number of logical operators, or on the number of relational
operators allowed within a single UNTIL expression.

The limiting factor for the UNTIL expression is the command length. The total character count for the
UNTIL command and expression cannot exceed 80 characters. For example, if you add all the letters in the
UNTIL command and the letters within the () expression, including the parentheses and excluding the
spaces, this count must be less than or equal to 80.

All assignment operators (A, AD, ANI , AS, D, DAC, DPTR, ER, IN , INO, LIM , MOV, OUT, PC, PCC, PCE, PCMS,
PE, PER, SS, TIM, US, V, VEL, etc.) can be used within the UNTIL expression.

Example:
REPEAT ; Beginning of REPEAT ... UNTIL() loop
GO1110 ; Initiate motion on axes 1, 2, and 3
IF(IN=b1X0) ; IF condition: if onboard input 1 = 1, input 3 = Ø
VAR1=VAR1+1 ; If condition comes true increment variable 1 by 1
ELSE ; Else part of IF condition
TPE ; If condition does not come true transfer position of

; all encoders
NIF ; End IF statement
UNTIL(VAR1=12) ; Repeat loop until variable 1 = 12

290 6K Series Command Reference

[US] User Status
Type Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also INDUSE, INDUST, TUS

Product Rev

6K 5.0

The User Status (US) operator is used to assign the user status bits to a binary variable, or to make a comparison
against a binary or hexadecimal value. To make a comparison against a binary value, the letter b (b or B) must be
placed in front of the value. The binary value itself must only contain ones, zeros, or Xs (1, Ø, X, x). To make a
comparison against a hexadecimal value, the letter h (h or H) must be placed in front of the value. The
hexadecimal value itself must only contain the letters A through F, or the numbers Ø through 9.

Syntax: VARBn=US where “n” is the binary variable number,
or US can be used in an expression such as IF(US=b11Ø1) , or IF(US=h7)

All 16 bits of the user status word are defined with the INDUST command. Each bit can correspond to an
axis status bit, a system status bit, or an input.

If it is desired to assign only one bit of the user status value to a binary variable, instead of all 16, the bit
select (.) operator can be used. For example, VARB1=US.12 assigns user status bit 12 to binary variable 1.

Example:
VARB1=US ; User status assigned to binary variable 1
VARB2=US.12 ; User status bit 12 assigned to binary variable 2
VARB2 ; Response, if bit 12 is set to 1, will be:

; *VARB2=XXXX_XXXX_XXX1_XXXX_XXXX_XXXX_XXXX_XXXX
IF(US=b111011X11) ; If the user status contains 1's in bit locations

; 1, 2, 3, 5, 6, 8, and 9, and a 0 in bit location 4,
; do the IF statement

 TREV ; Transfer revision level
ELSE ; Else
 IF(US=h7F00) ; If the user status contains 1's in bit locations

; 1, 2, 3, 5, 6, 7, and 8, and 0's in every other bit
; location, do the IF statement

 TSTAT ; Transfer statistics
 NIF ; End of second if statement
NIF ; End of first IF statement

V Velocity
Type Motion
Syntax <!><@><a>V<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units r = units/sec
Range Stepper Axes:0.00000-2,048,000 (max. depends on SCLV & PULSE)

Servo Axes: 0.00000-6,500,000 (max. depends on SCLV)
Default 1.0000
Response V: *V1.0000,1.0000,1.0000,1.0000 ...

1V: *1V1.0000

See Also GO, MC, PULSE, SCALE, SCLV, TSTAT, TVEL, TVELA, [V],
[VEL], [VELA], VF

Product Rev

6K 5.0

The Velocity (V) command defines the speed at which the motor will run when given a GO command. The
motor will accelerate at a predefined acceleration (A) rate, before reaching the velocity (V) specified. The
maximum velocity attainable is 2,048,000 units/sec (stepper axes) or 6,5000,000 units/sec (servo axes).

The velocity remains set until you change it with a subsequent velocity command. Velocities outside the
valid range are flagged as an error, with a message *INVALID DATA-FIELD x , where x is the field number.
When an invalid velocity is entered the previous velocity value is retained.

UNITS OF MEASURE and SCALING : refer to page 16.

Command Descriptions 291

ON-THE-FLY CHANGES : While running in the continuous mode (MC1), you can change velocity on the
fly (while motion is in progress) in two ways. One way is to send an immediate velocity command (!V)
followed by an immediate go command (!GO). The other, and more common, way is to enable the
continuous command execution mode (COMEXC1) and execute a buffered velocity command (V) followed by
a buffered go command (GO).

Example:
SCALE1 ; Enable scaling
SCLA25000,25000,1,1 ; Set the acceleration scaling factor for axes 1 and 2 to

; 25000 steps/unit/unit, axes 3 and 4 to 1 step/unit/unit
SCLV25000,25000,1,1 ; Set the velocity scaling factor for axes 1 and 2 to

; 25000 steps/unit, axes 3 and 4 to 1 step/unit
SCLD1,1,1,1 ; Set the distance scaling factor for axes 1, 2, 3, and 4

; to 1 step/unit
DEL proge ; Delete program called proge
DEF proge ; Begin definition of program called proge
MA0000 ; Incremental index mode for axes 1-4
MC0000 ; Preset index mode for axes 1-4
A10,12,1,2 ; Set the acceleration to 10, 12, 1, and 2 units/sec/sec

; for axes 1, 2, 3 and 4
V1,1,1,2 ; Set the velocity to 1, 1, 1, and 2 units/sec for

; axes 1, 2, 3 and 4
D100000,1000,10,100 ; Set the distance to 100000, 1000, 10, and 100 units

; for axes 1, 2, 3 and 4
GO1100 ; Initiate motion on axes 1 and 2, 3 and 4 do not move
END ; End definition of proge

[V] Velocity (Programmed) Assignment
Type Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also GO, SCALE, SCLV, SSV, V, [VEL]

Product Rev

6K 5.0

The velocity assignment (V) operator is used to compare the programmed velocity value to another value or
variable, or to assign the current programmed velocity to a variable.

Syntax: VARn=aV where “n” is the variable number, and “a” is the axis number,
or V can be used in an expression such as IF(1V<25)

When assigning the velocity value to a variable, an axis specifier must always precede the assignment (V)
operator or it will default to axis 1 (e.g., VAR1=1V). When making a comparison to the programmed
velocity, an axis specifier must also be used (e.g., IF(1V<2Ø)). The (V) value used in any comparison, or in
any assignment statement is the programmed (V) value. If the actual velocity information is required, refer
to the VEL command.

UNITS OF MEASURE and SCALING : refer to page 16.

Example:
IF(2V<25) ; If the programmed velocity on axis 2 is less than 25

; units/sec, then do the statements between the IF and NIF
VAR1=2V*2 ; Variable 1 = programmed velocity of axis 2 times 2
V,(VAR1) ; Set the velocity on axis 2 to the value of variable 1
NIF ; End the IF statement

292 6K Series Command Reference

VAR Numeric Variable Assignment
Type Variable
Syntax <!>VAR<i><=r>
Units i = variable number

r = number or expression
Range i = 1-225

r = ±999,999,999.99999999
Default n/a
Response VAR1: *VAR1=+0.0

See Also DVAR, VARB, VARCLR, VARI, VARS, WRVAR

Product Rev

6K 5.0

Numeric variables can be used to store any real number value, with a range from -999,999,999.99999999 to
+999,999,999.99999999. The information is assigned to the variable with the equal sign (e.g., VAR1=32.3).

All variables (numeric [VAR], integer [VARI], binary [VARB], and string [VARS]) are automatically stored in
battery-backed RAM.

Variables are also used in conjunction with mathematical (=, +, - , * , / , SQRT), trigonometric (ATAN, COS,
PI , SIN , TAN), and bitwise operators (&, | , ̂ , ~). For example, VAR1=(3+4-7*4/4+3-2/1.5)*3 .

Each variable expression must be less than 80 characters in length, including the VAR1= part of the
expression.

Numeric data can also be read into a variable, through the use of the READ , DAT, or TW commands (e.g.,
VAR1=READ1).

All variables can be used within commands that require a real or integer value. For example, the A
command requires real values for acceleration; therefore, the command A(VAR1),1Ø,12,(VAR2) is legal.
Indirect variable assignments are also legal; (e.g., VAR(VAR1)=5 or VAR(VAR2)=VAR(VAR4)).

Rule of Thumb for command value substitutions: If the command syntax shows that the command field
requires a real number (denoted by <r>) or and integer value (denoted by <i>), you can use the VAR
substitution.

Example:
VAR1=2*PI ; Set Variable 1 to 2p
D(VAR2),,(VAR3) ; Set the distance value on axis 1 equal to variable 2,

; and the distance on axis 3 equal to variable 3

Indirect Variables: Numeric variables can be used indirectly. Only one level of indirection is possible
(e.g., VAR(VAR(VARn)) is not a legal command). The example below shows how indirect variables are
used to clear 50 variables (from 1 to 50).

Example:
VAR51 = 1 ; Set Variable 51 to 1
REPEAT ; Begin repeat/until loop
VAR(VAR51) = 0 ; Clear variables (e.g., if VAR51 = 8,

; then VAR(VAR51)=0 is equivalent to VAR8=0)
VAR51 = VAR51 + 1 ; Increment counter
UNTIL (VAR51 = 51) ; End repeat/until loop

Command Descriptions 293

VARB Binary Variable Assignment
Type Variable
Syntax <!>VARB<i><=bb...bbb> (32 bits)
Units i = variable number
Range i = 1-125

b = 0, 1, X, or x
Default n/a
Response VARB1: *VARB1=XXXX_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX

See Also DVARB, PLCP, VAR, VARI, VARCLR, VARS, VCVT, WRVARB

Product Rev

6K 5.0

Binary variables can be used to store any 32-bit or less binary value. The 32-bit binary value must be in the
form of 32 ones, zeros, or Xs. The information is assigned to the binary variable with the equal sign.

All variables (numeric [VAR], integer [VARI], binary [VARB], and string [VARS]) are automatically stored in
battery-backed RAM.

Example : VARB1=b1111ØØØØ1111XXXX1111ØØØØxxxx1111
Notice that the letter b is required. The b signifies binary, 1's, Ø's, and X's only.

Example : VARB1=h7F4356A3
Notice that the letter h is required. The h signifies hexadecimal, Ø-9, A-F only.

Binary variables are also used in conjunction with bitwise operators (&, | , ̂ , and ~).
Example : VARB1=VARB2 | VARB3 & b1111ØØØØ11ØØ1

The expression must be less than 80 characters in length, including the (VARB1=b or VARB1=h) part of the
expression.

All binary variables can be used to set bits for commands that require at least 4 bits of binary information.
For example, the OUT command requires 24 bits of binary information; therefore, the command
OUT(VARB1) is legal.

Rule of Thumb for command value substitutions: If the command syntax shows that the command field
requires a binary value (denoted by), you can use the VARB substitution.

Example :
VARB1=b1110 & hA ; Binary variable 1 is set to binary 1110 bitwise

; "AND"ed with hexadecimal A
VARB1=IN.7 ; State of onboard input bit 7 assigned to binary variable 1
OUT(VARB2) ; State of all onboard outputs assigned to binary variable 2

VARCLR Variable Clear
Type Variable
Syntax <!>VARCLR
Units n/a
Range n/a
Default n/a
Response n/a

See Also DVAR, DVARI, DVARB, VAR, VARB, VARI, VARS

Product Rev

6K 5.0

VARCLR resets all numeric variables (VAR), integer variables (VARI), binary variables (VARB), and string
variables (VARS) to their factory default values:

Numeric (VAR) and Integer (VARI) variables are set to 0.0
Binary (VARB) variables are set to bxxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx
String (VARS) variables are set to ""

294 6K Series Command Reference

VARI Integer Variable Assignment
Type Variable
Syntax <!>VARI<i><=i>
Units 1st i = variable number

2nd i = integer number
Range 1st i = 1-225

2nd i = -2,147,483,647 to +2,147,483,647
Default n/a
Response VARI1: *VARI1=+Ø

See Also DVARI, PLCP, VARB, VAR, VARCLR, WRVARI

Product Rev

6K 5.0

Integer variables can be used to store integer number value, with a range from -2,147,483,647 to
+2,147,483,647. The information is assigned to the variable with the equal sign (e.g., VARI1=32.).

All variables (numeric [VAR], binary [VARB], integer [VARI], and string [VARS] are automatically stored in
battery-backed RAM.

Integer variables can be used with mathematical (=, +, - , * , /) and bitwise operators (&, | , ̂ , ~). For example,
VARI1=(3+4-7*4/4+3-2/2)*3 . Numeric (VAR) and integer (VARI) variables can be mixed in the
mathematical expressions. The results, if fractional, are truncated. NOTE: VARI cannot be used with
trigonometric operators (ATAN, COS, PI , SIN , TAN) and square root (SQRT).

Each variable expression must be less than 80 characters in length, including the VAR1= part of the
expression.

Numeric data can also be read into a variable, through the use of the READ , DAT, or TW commands (e.g.,
VARI1=READ1). Setting an integer variable to a real number results in a truncation.

All integer variables can be used within commands that require a real or integer value. For example, the A
command requires real values for acceleration; therefore, the command A(VARI1),1Ø,12,(VARI2) is
legal. Indirect variable assignments are also legal; (e.g., VARI(VARI1)=5 or
VARI(VARI2)=VARI(VARI4)).

Integer variables should be used whenever possible to allow faster math operation than the numeric
variables (VAR).

Rule of Thumb for command value substitutions: If the command syntax shows that the command field
requires a real number (denoted by <r>) or an integer value (denoted by <i>, you can use the VARI

substitution.

Example :
VARI1=2*3 ; Set Variable 1 to 6
D(VARI2),,(VARI3) ; Set the distance value on axis 1 equal to

; integer variable 2, and the distance on axis 3
; equal to integer variable 3

Indirect Variables: Integer variables can be used indirectly. Only one level of indirection is possible (e.g.,
VARI(VARI(VARIn)) is not a legal command). The example below shows how indirect variables are used
to clear 50 variables (from 1 to 50).

Example :
VARI51 = 1 ; Set Integer Variable 51 to 1
REPEAT ; Begin repeat/until loop
VARI(VARI51) = Ø ; Clear variables (e.g., if VARI51 = 8, then

; VARI(VARI51)=Ø is equivalent to VARI8=Ø)
VARI51 = VARI51 + 1 ; Increment counter
UNTIL (VARI51 = 51)

Command Descriptions 295

VARS String Variable Assignment
Type Variable
Syntax <!>VARS<i><="message">
Units i = variable number

message = text string
Range i = 1-25

Message = up to 20 characters
Default n/a
Response VARS1: *VARS1="Hi John"

See Also ', [\], EOT, [READ], VAR, VARB, VARCLR, VARI, VCVT, WRITE,
WRVARS

Product Rev

6K 5.0

String variables can be assigned a character string up to 20 characters long. The characters within the string
can be any character except the quote ("), the semicolon (;), and the colon (:). The backslash character (\)
immediately followed by a number is okay.

All variables (numeric [VAR], integer [VARI], binary [VARB], and string [VARS]) are automatically stored in
battery-backed RAM.

To place specific control characters that are not directly available on the keyboard within a character string,
use the backslash character (\), followed by the control character's ASCII decimal equivalent. Multiple
control characters can be sent.

For example, to set the string for variable #1 equal to HI MOM<cr>, use the command VARS1="HI MOM\13"
where \13 corresponds to the carriage return character.

Common characters and their ASCII equivalent value:

Character Description ASCII Decimal Value

<lf> Line Feed 10

<cr> Carriage Return 13

" Quote 34

: Colon 58

; Semi-colon 59
\ Backslash 92

Example :
VARS1="Enter velocity >" ; Assign a message to string variable #1
VAR2=READ1 ; Transmit string variable 1, and wait for numeric

; data entered in the format of !'<data>.
; Once numeric data is received, place it in
; numeric variable 2.
; Example of data entry is to type "!'10.0", which
; will assign numeric variable 2 the value 10.00

296 6K Series Command Reference

VCVT Variable Type Conversion
Type Operator (Mathematical)
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also VAR, VARB, VARI

Product Rev

6K 5.0

Using the Variable Type Conversion (VCVT) operator, you can convert numeric (VAR or VARI) values to
binary (VARB) values, and vice versa. The operation is a signed operation as the binary value is interpreted
as a two's complement number, with the least significant bit (LSB) on the left and the most significant bit
(MSB) on the right. A don't care (X) in a binary value will be interpreted as a zero (Ø).

If the mathematical statement's result is a numeric value, then VCVT converts binary values to numeric
values. If the statement's result is a binary value, then VCVT converts numeric values to binary values.

You can also convert real (VAR) values to integer (VARI) values (real values are truncated in the process).

NOTE: Numeric variables (VAR) have insufficient range to convert a full 32-bit binary variable (VARB). For
example, executing the VARB1=h00000004 command and then the VAR1=VCVT(VARB1) command yields
an INVALID DATA error.

Numeric-to-Binary Conversion:
VAR1=-5 ; Set numeric variable value = -5
VARB1=VCVT(VAR1) ; Convert the numeric value to a binary value and

; store in VARB1
VARB1 ; Display value of VARB1. The response should be:

; *VARB1=1101_1111_1111_1111_1111_1111_1111_1111

VAR1=25 ; Set numeric variable value = 25
VARB1=VCVT(VAR1) ; Convert the numeric value to a binary value and

; store in VARB1
VARB1 ; Display value of VARB1. The response should be:

; *VARB1=1001_1000_0000_0000_0000_0000_0000_0000

Binary-to-Numeric Conversion:
VARB1=b0010_0110_0000_0000_0000_0000_0000_0000 ; Set binary variable = +100.0
VAR1=VCVT(VARB1) ; Convert the binary value to a numeric value
VAR1 ; *VAR1=+100.0

[VEL] Velocity (Commanded) Assignment
Type Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also SCALE, SCLV, SFB, TVEL, TVELA, V, [V], VELA

Product Rev

6K 5.0

Use the VEL operator to compare the current commanded velocity to another value or variable, or to assign
the current commanded velocity to a variable. The velocity value used in any comparison, or in any
assignment statement is the current commanded velocity value, not the programmed velocity (V) or the
actual velocity as measured from the feedback device (VELA).

Syntax: VARn=aVEL where “n” is the variable number, and “a” is the axis number, or VEL can be used
in an expression such as IF(2VEL>4) . When assigning the current velocity value to a variable,
an axis specifier must always precede the assignment (VEL) operator (e.g., VAR1=1VEL). When
making a comparison to the current velocity, an axis specifier must also be used, or else it will
default to axis 1 (e.g., IF(1VEL<2Ø)).

Command Descriptions 297

The VEL value represents the current commanded velocity. It is not the programmed velocity (V). If scaling
is enabled (SCALE1), the VEL value is scaled by the velocity scaling factor (SCLV).

Stepper Axes: If scaling is disabled (SCALEØ), the value is measured in revolutions/sec (actual velocity in
commanded counts/sec divided by the drive resolution DRES value).

Servos: If scaling is disabled (SCALEØ), the value is measured in encoder revs/sec or ANI volts/sec.

Example:
IF(2VEL<25) ; If the current velocity on axis 2 is less than 25 units/sec,

; then do the statements between the IF and NIF
 VAR1=2V*2 ; Variable 1 = programmed velocity of axis 2 times 2
NIF ; End the IF statement

[VELA] Velocity (Actual) Assignment
Type Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also ENCCNT, ERES, SCLV, TVEL, TVELA, [V], V, [VEL]

Product Rev

6K 5.0

The VELA operator is used to compare the current actual velocity (as derived from the feedback device) to
another value or variable, or to assign the current velocity to a variable. If the programmed velocity
information is required, refer to the [V] operator; if the current commanded velocity information is
required, refer to the [VEL] operator.

The sign determines the direction of motion. You can use the VELA operator at all times; therefore, even if
no motion is being commanded, TVELA will still report a non-zero value as it detects the servoing action.

Syntax: VARn=aVELA where “n” is the variable number, and “a” is the axis number, or VELA can be
used in an expression such as IF(2VELA>4) . When assigning the current velocity value to a
variable, an axis specifier must always precede the VELA assignment operator (e.g.,
VAR1=1VELA). When making a comparison to the current velocity, an axis specifier must also
be used, or else it will default to axis 1 (e.g., IF(1VELA<2Ø)).

Units of Measure:

Steppers: The velocity is always revs/sec (actual velocity in counts/sec multiplied by the ERES value
if in ENCCNT1 mode, or multiplied by DRES if in ENCCNT0 mode).

Servos: If scaling is enabled (SCALE1), the velocity value will be scaled by the velocity scaling factor
(SCLV). If scaling is not enabled (SCALEØ), the value returned will be in encoder revs/sec or ANI
volts/sec.

Example:
IF(2VELA<25) ; If the current velocity on axis 2 is less than 25 units/sec,

; then do the statements between IF and NIF
 VAR1=2V*2 ; Variable 1 = programmed velocity of axis 2 times 2
NIF ; End the IF statement

298 6K Series Command Reference

VF Final Velocity
Type Compiled Motion
Syntax <!><@>VF<r>,<r>,<r>,<r>,<r>,<r>,<r>,<r>
Units n/a
Range 0 (non-zero values result in error message)
Default 0
Response n/a

See Also FOLRN, FOLRD, FOLMAS, FOLMD, GOBUF, SCLD, FOLEN, V

Product Rev

6K 5.0

The Final Velocity (VF) command designates that the motor will move the load the programmed distance in
a preset GOBUF segment, completing the move at a final speed of zero. VF applies only to the next
(subsequent) GOBUF, which marks an intermediate “end of move” within a profile. VF is used only in
conjunction with the GOBUF command. Normal preset GO moves always finish with zero velocity.

The VF command remains in effect for the affected axis until a GOBUF is executed on that axis, or until you
issue a RESET command.

Any non-zero value that is entered for VF will result in an immediate error message.

[VMAS] Current Master Velocity
Type Following; Assignment or Comparison
Syntax See below
Units n/a
Range n/a
Default n/a
Response n/a

See Also FFILT, FMCNEW, FMCP, FOLMAS, FOLMD, SCALE, SCLMAS, TVMAS

Product Rev

6K 5.0

The Master Velocity (VMAS) command is used to assign the master velocity value to a variable, or to make a
comparison against another value. The master must be assigned first (FOLMAS command) before this
command will be useful.

Syntax: VARn=aVMAS where “n” is the variable number and “a” is the axis number, or VMAS can be used
in an expression such as IF(2VMAS>1Ø) . The VMAS command must be used with an axis
specifier, or it will default to axis 1 (e.g., VAR1=1VMAS, IF(2VMAS>5) , etc.).

The precision of the VMAS value is dependent upon the FFILT filter value.

If scaling is enabled (SCALE1), the velocity value is scaled by the master scaling factor (SCLMAS). If scaling
is disabled (SCALEØ), the velocity value is in counts/sec.

Example:
IF(2VMAS>4.3) ; If the master of axis 2 is traveling at more than

; 4.3 user units/sec then do the IF statement
 OUT.4=b1 ; Set onboard output #4 to 1
NIF ; End of IF statement
VAR14=3VMAS ; Set VAR14 to axis 3's master velocity

Command Descriptions 299

WAIT() Wait for a Specific Condition
Type Program Flow Control
Syntax <!>WAIT(expression)
Units n/a
Range Up to 80 characters (including parentheses)
Default n/a
Response n/a

See Also FMCLEN, FMCNEW, FMCP, GOWHEN, IF, NWHILE, REPEAT, [SS], T,
TSS, UNTIL, WHILE

Product Rev

6K 5.0

The Wait for a Specific Condition (WAIT) command is used to wait for a specific expression to evaluate
true. No commands, except for immediate commands, after the WAIT command will be processed until the
expression contained within the parentheses of the WAIT command evaluates true. The COMEXC command
has no effect on the WAIT command.

All logical operators (AND, OR, NOT), and all relational operators (=, >, >=, <, <=, <>) can be used within the
WAIT() expression. There is no limit on the number of logical operators, or on the number of relational
operators allowed within a single WAIT() expression.

The limiting factor for the WAIT() expression is the command length. The total character count for the
WAIT() command and expression cannot exceed 80 characters. For example, if you add all the letters in the
WAIT command and the letters within the () expression, including the parenthesis and excluding the spaces,
this count must be less than or equal to 80.

All assignment operators (A, AD, AS, D, ER, IN , INO, LIM , MOV, OUT, PC, PCE, PCMS, PE, PER, SS, TIM, US,
V, VEL, etc.) can be used within the WAIT() expression.

Example:
MC1 ; Mode continuous
COMEXC1 ; Enable continuous command mode
GO1 ; Initiate motion on axis 1
WAIT(IN=b1) ; Wait for onboard input 1 to be active
S1 ; Stop motion on axis 1
WAIT(MOV=b0) ; Wait for motion complete on axis 1
COMEXC0 ; Disable continuous command execution mode

WHILE() WHILE Statement
Type Program Flow Control; Conditional Branching
Syntax <!>WHILE(expression)
Units n/a
Range Up to 80 characters (including parentheses)
Default n/a
Response n/a

See Also IF, JUMP, NWHILE, REPEAT, UNTIL

Product Rev

6K 5.0

The While Statement (WHILE) command, in conjunction with the NWHILE command, provide a means of
conditional program flow. The WHILE command marks the beginning of the conditional statement, the
NWHILE command marks the end. If the expression contained within the parenthesis of the WHILE command
evaluates true, then the commands between the WHILE and NWHILE are executed, and continue to execute as
long as the expression evaluates true. If the expression evaluates false, then program execution jumps to the
first command after the NWHILE. Up to 16 levels of WHILE ... NWHILE commands may be nested.

Programming order: WHILE(expression) ...commands... NWHILE

NOTE: Be careful about performing a GOTO between WHILE and NWHILE. Branching to a different
location within the same program will cause the next WHILE statement encountered to be nested
within the previous WHILE statement, unless a NWHILE command has already been encountered.
The JUMP command should be used in this situation.

300 6K Series Command Reference

All logical operators (AND, OR, NOT), and all relational operators (=, >, >=, <, <=, <>) can be used within the
WHILE() expression. There is no limit on the number of logical operators, or on the number of relational
operators allowed within a single WHILE() expression.

The limiting factor for the WHILE() expression is the command length. The total character count for the
WHILE() command and expression cannot exceed 80 characters. For example, if you add all the letters in
the WHILE command and the letters within the () expression, including the parenthesis and excluding the
spaces, this count must be less than or equal to 80.

All assignment operators (A, AD, AS, D, ER, IN , INO, LIM , MOV, OUT, PC, PCE, PCMS, PE, PER, SS, TIM, US,
V, VEL, etc.) can be used within the WHILE() expression.

Example:
WHILE(IN=b1X0) ; While onboard input 1 = 1, input 3 = Ø,

; execute commands between WHILE and NWHILE
T5 ; Wait 5 seconds
TPE ; Transfer position of all encoders
NWHILE ; End WHILE statement
WHILE(1ANV<2.3) ; While analog channel 1's voltage is less than 2.3 volts,

; execute commands between WHILE and NWHILE
TPC ; Transfer commanded position of all axes
NWHILE ; End WHILE statement

WRITE Write a Message
Type Communication Interface
Syntax <!>WRITE"<message>"
Units n/a
Range Up to 69 characters (may not use ", ; or :)
Default n/a
Response WRITE"message": message

See Also [\], EOT, PORT, [READ], VARS, WRVAR, WRVARB, WRVARS

Product Rev

6K 5.0

The Write a Message (WRITE) command provides an efficient way of transmitting message strings to the
Ethernet port and the RS-232C or RS-485 ports. These messages can then be used by the operating
program. The EOT command characters will be transmitted after the message.

Each message can be assigned a character string up to 69 characters long. The characters within the string
can be any character except the quote ("), the colon (:), and the asterisk (*).

To place specific control characters that are not directly available on the keyboard within the character
string, use the backslash character (\), followed by the control character's ASCII decimal equivalent.
Multiple control characters can be sent. For example, to set the message equal to
HI MOM<cr>, use the command WRITE"HI MOM\13" where \13 corresponds to the carriage return
character. Common characters and their ASCII equivalent values are listed below:

Character Description ASCII Decimal Value

<lf> Line Feed 10

<cr> Carriage Return 13

" Quote 34

: Colon 58

; Semi-colon 59

\ Backslash 92

Example:
WRITE"It's a wonderful life!" ; Send the message "It's a wonderful life!"

Command Descriptions 301

WRVAR Write a Numeric Variable
Type Communication Interface
Syntax <!>WRVAR<i>
Units i = variable number
Range i = 1-225
Default n/a
Response WRVAR1: +0.0

See Also EOT, [READ], VAR, WRITE, WRVARB, WRVARI, WRVARS

Product Rev

6K 5.0

Use the WRVAR command to transfer a specific numeric variable (VAR) to the Ethernet port and the RS-232C
or RS-485 ports. Only the value and the EOT command characters are transmitted.

Example:
VAR1=100 ; Set variable 1 equal to 100
WRVAR1 ; Transmit variable 1 (the value +100.0 is transmitted)

WRVARB Write a Binary Variable
Type Communication Interface
Syntax <!>WRVARB<i>
Units i = variable number
Range i = 1-125
Default n/a
Response WRVARB1: XXXX_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX

See Also EOT, [READ], VARB, WRITE, WRVAR, WRVARI, WRVARS

Product Rev

6K 5.0

Use the WRVARB command to transfer a specific binary variable (VARB) to the Ethernet port and the
RS-232C or RS-485 ports. Only the binary value and the EOT command characters are transmitted.

Example:
VARB1=b1101 ; Set binary variable 1 to 1101
WRVARB1 ; Transmit binary variable 1

; (value transmitted =1101_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX_XXXX)

WRVARI Write an Integer Variable
Type Communication Interface
Syntax <!>WRVARI<i>
Units i = variable number
Range i = 1-225
Default n/a
Response WRVARI1: +0

See Also EOT, [READ], VARI, WRITE, WRVAR, WRVARB, WRVARS

Product Rev

6K 5.0

Use the WRVARI command to transfer a specific integer variable (VARI) to the Ethernet port and the
RS-232C or RS-485 ports. Only the integer value and the EOT command characters are transmitted.

Example:
VARI1=100 ; Set integer variable 1 equal to 100
WRVARI1 ; Transmit integer variable 1 (the value +100 is transmitted)

302 6K Series Command Reference

WRVARS Write a String Variable
Type Communication Interface
Syntax <!>WRVARS<i>
Units i = variable number
Range i = 1-25
Default n/a
Response WRVARS1: No response until a string is placed in VARS1

See Also EOT, [READ], VARS, WRITE, WRVAR , WRVARB, WRVARI

Product Rev

6K 5.0

Use the WRVARS command to transfer a specific string variable (VARS) to the Ethernet port and the RS-232C
or RS-485 ports. Only the string and the EOT command characters are transmitted.

Example:
VARS1="John L" ; Set string variable 1 = "John L"
WRVARS1 ; Transmit string variable 1 (string "John L" is transmitted)

XONOFF Enable/Disable XON / XOFF
Type Communication Interface
Syntax <!>XONOFF
Units n/a
Range 0 (disable), 1 (enable)
Default 1 for COM1, 0 for COM2 (PORT command setting determines which

COM port’s XONOFF setting is checked)
Response XONOFF *XONOFF1

See Also], [, BOT, DRPCHK, E, EOT, ERRBAD, ERROK, LOCK, PORT

Product Rev

6K 5.0

Use the XONOFF command to enable or disable XON/XOFF (ASCII handshaking).

XONOFF1 enables XON/XOFF, which allows the 6K product to recognize ASCII handshaking control
characters. When XON/XOFF is enabled, ASCII 17 or ∧Q is a signal to start sending characters; ASCII 19
or ∧S is a signal to stop sending characters. XONOFFØ disables XON/XOFF.

The PORT command determines which COM port is affected by the XONOFF command. Each port will track
its XON/XOFF values

RS-485 Multi-drop: If you are using RS-485 multi-drop, disable XON/XOFF by executing the PORT2
command followed by the XONOFFØ command.

NOTE: COM1 is the “RS-232” connector or “ETHERNET” connector; COM2 is the “RS-232/485”
connector.

Appendix A: 6K Series Command List 303

Appendix A: 6K Command List
(Firmware Revision 5.0)

Command Description Command Description

% Task Identifier
[!] Immediate Command Identifier
[@] Global Command Identifier
; Begin Comment
$ Label Declaration
[#] Step Through a Program
' Enter Interactive Data
[.] Bit Select
["] Begin and End String
[\] ASCII Character Designator
[=] Assignment or Equivalence
[>] Greater Than
[>=] Greater Than or Equal
[<] Less Than
[<=] Less Than or Equal
[<>] Not Equal
[()] Operation Priority Level
[+] Addition
[-] Subtraction
[*] Multiplication
[/] Division
[&] Boolean And
[|] Boolean Inclusive Or
[^] Boolean Exclusive Or
[~()] Boolean Not
[<<] Shift from Right to Left (bit 32 to bit 1)
[>>] Shift from Left to Right (bit 1 to bit 32)
[Send Response to Both COM Ports
] Send Response to Alternate COM Port
A Acceleration
[A] Acceleration [operator]
AA Acceleration, S-curve
AD Deceleration
[AD] Deceleration [operator]
ADA Deceleration, S-curve
ADDR Auto-Address Multiple Serial Units
[AND] And [operator]
[ANI] Analog Input Voltage [operator]
ANIEN Analog Input Enable
ANIFB Analog Inputs as Axis Feedback
ANIMAS Assign Analog Input as Master
ANIRNG Analog Input Voltage Range
[AS] Axis Status [operator]
[ASX] Axis Status, Extended [operator]
[ATAN()] Arc Tangent [operator]
AXSDEF Axis Definition
BAUD Baud Rate
BOT Beginning of Transmission Characters
BP Set a Program Break Point
BREAK Terminate Program Execution
C Continue Command Execution
CMDDIR Commanded Direction Voltage
COMEXC Continuous Command Processing Mode

COMEXL Continue Execution on End-of-Travel Limit
COMEXR Continue Motion on Pause/Continue Input
COMEXS Continue Execution on Stop
[COS()] Cosine [operator]
D Distance
[D] Distance [operator]
[DAC] Value of DAC Output Voltage [operator]
DACLIM DAC Output Voltage Limit
[DAT] Data Assignment [operator]
DATA Data Statement
[DATP] Data Program
DATPTR Set Data Pointer
DATRST Reset Data Pointer
DATSIZ Data Program Size
DATTCH Data Teach
DCLEAR Clear RP240 Display
DEF Begin Definition of Program
DEL Delete Program
DJOG Enable RP240 Jog Mode
[DKEY] Value of RP240 Key
DLED Turn RP240 LEDs ON/OFF
DPASS Change RP240 Password
DPCUR Position RP240 Display Cursor
[DPTR] Data Pointer Location [operator]
[DREAD] Read RP240 Numeric Data [operator]
[DREADF] Read RP240 Function Key [operator]
DREADI RP240 Data Read, Immediate Mode
DRES Drive Resolution
DRFEN Drive Fault Input Enable
DRFLVL Drive Fault Input, Active Level
DRIVE Drive Enable/Disable
DRPCHK RP240 COM Port Check
DSTP Enable/Disable RP240 Stop Key
DVAR Display Numeric Variable on RP240
DVARB Display Binary Variable on RP240
DVARI Display Integer Variable on RP240
DWRITE Write Text to RP240
E Enable Serial Communication
ECHO Enable Communication Echo
EFAIL Encoder Failure Detect
ELSE Else Condition of IF Statement
ENCCNT Encoder Count Reference Enable
ENCPOL Encoder Polarity
ENCSND Encoder Step & Direction Mode
END End Definition of Program
EOL End-of-Line Termination Characters
EOT End-of-Transmission Characters
[ER] Error Status [operator]
ERASE Erase All Programs
ERES Encoder Resolution
ERRBAD Error Prompt Characters
ERRDEF Program Definition Prompt Characters
ERRLVL Error Detection Level

Command Description Command Description

304 6K Series Command Reference

ERROK Good Prompt Characters
ERROR Enable Error Checking
ERRORP Assign an Error Program
ESDB Stall Backlash Deadband
ESK Kill on Stall
ESTALL Enable Stall Detection
EXE Execute Program from a Compiled Program
[FB] Value of Feedback Device [operator]
FFILT Following Filter
FGADV Following Geared Advance
FMAXA Follower Axis Maximum Acceleration
FMAXV Follower Axis Maximum Velocity
FMCLEN Master Cycle Length
FMCNEW Restart Master Cycle Counting
FMCP Initial Master Cycle Position
FOLEN Enable Following Mode
FOLK Following Kill, Limitations
FOLMAS Assignment of Master to Follower
FOLMD Master Distance
FOLRD Denominator of Follower-to-Master Ratio
FOLRN Numerator of Follower-to-Master Ratio
FOLRNF Numerator of Final Follower-to-Master Ratio
FPPEN Enable Master Position Prediction
[FS] Following Status [operator]
FSHFC Continuous Shift
FSHFD Preset Shift
FVMACC Virtual Master Count Acceleration
FVMFRQ Virtual Master Count Frequency
GO Initiate Motion
GOBUF Store a Compiled Motion Segment
GOL Initiate Linear Interpolated Motion
GOSUB Call a Subroutine
GOTO Goto a Program or Label
GOWHEN Conditional Go
HALT Terminate Program Execution
HELP Technical Support Phone Numbers
HOM Initiate Homing Operation
HOMA Homing Acceleration
HOMAA Homing Acceleration, S-curve
HOMAD Homing Deceleration
HOMADA Homing Deceleration, S-curve
HOMBAC Backup to Home
HOMDF Homing Final Direction
HOMEDG Home Reference Edge
HOMV Homing Velocity
HOMVF Homing Velocity, Final Approach
HOMZ Home to Encoder Z Channel
IF() IF Statement
[IN] Input Status [operator]
INDEB Input Debounce Time
INDUSE Enable User Status
INDUST User Status Definition
INEN Enable Specific Inputs
INFNC Input Function Assignment
INLVL Input Active Level
[INO] Other Inputs (Enable Input) Status [operator]
INPLC Establish PLC Data Inputs
INSELP Enable Program Selection via Inputs
INSTW Establish Thumbwheel Data Inputs
INTHW Enable Checking for Alarm Events

INTSW Force an Alarm Event
JOG Enable Jog Mode
JOGA Jog Acceleration
JOGAA Jog Acceleration, S-curve
JOGAD Jog Deceleration
JOGADA Jog Deceleration, S-curve
JOGVH Jog Velocity, High
JOGVL Jog Velocity, Low
JOY Enable Joystick Mode
JOYA Joystick Acceleration
JOYAA Joystick Acceleration, S-curve
JOYAD Joystick Deceleration
JOYADA Joystick Deceleration, S-curve
JOYAXH Joystick Analog Channel, High
JOYAXL Joystick Analog Channel, Low
JOYCDB Joystick Center Deadband
JOYCTR Joystick Center
JOYEDB Joystick End Deadband
JOYVH Joystick Velocity, High
JOYVL Joystick Velocity, Low
JOYZ Joystick Zero (Center)
JUMP Jump to Program or Label (No Return)
K Kill Motion
<ctrl>K Kill Motion
KDRIVE Disable Drive on Kill
L Loop
LH Enable Hardware End-of-Travel Limits
LHAD Hardware EOT Limits Deceleration
LHADA Hardware EOT Limits Decel, S-curve
[LIM] Hardware EOT & Home Limit Inputs, Status
LIMEN Limit Input Enable
LIMFNC Limit Input Function Assignment
LIMLVL Hardware EOT & Home Inputs, Active Level
LN End of Loop
LOCK Lock Resource to a Task
LS Enable Software End-of-Travel Limits
LSAD Software EOT Limits, Deceleration
LSADA Software EOT Limits Decel, S-curve
LSNEG Negative-Direction Software EOT Limit
LSPOS Positive-Direction Software EOT Limit
LX Terminate Loop
MA Enable Absolute/Incremental Positioning
MC Enable Continuous/Preset Positioning
MEMORY Partition Product Memory
MEPOL Master Encoder Polarity
MESND Master Encoder Step & Direction Mode
[MOV] Axis Moving Status [operator]
NIF End IF Statement
[NMCY] Master Cycle Number Status [operator]
[NOT] Not [operator]
NTADDR Set IP Address
NTMASK Ethernet Network Mask
NWHILE End of WHILE Statement
ONCOND Enable Program Interrupt (“On”) Conditions
ONIN On an Input Condition GOSUB
ONP On Condition Program Assignment
ONUS On a User Status Condition GOSUB
ONVARA On Numeric Variable 1 Condition GOSUB
ONVARB On Numeric Variable 2 Condition GOSUB
[OR] Or [operator]

Command Description Command Description

Appendix A: 6K Series Command List 305

OUT Activate Programmable Outputs
[OUT] Programmable Outputs Status [operator]
OUTALL Activate Programmable Outputs, Range
OUTEN Disable Programmable Outputs
OUTFNC Programmable Output Function Assignment
OUTLVL Programmable Output Active Level
OUTPn Output on Position — Axis Specific
OUTPLC Establish PLC Strobe Outputs
OUTTW Establish Thumbwheel Strobe Outputs
PA Path Acceleration
PAA Path Acceleration, S-curve
PAB Path Absolute
PAD Path Deceleration
PADA Path Deceleration, S-curve
[PANI] Position of ANI Inputs
PARCM Radius-Specified CCW Arc Segment
PARCOM Origin-Specified CCW Arc Segment
PARCOP Origin-Specified CW Arc Segment
PARCP Radius-Specified CW Arc Segment
PAXES Participating Axes for Contouring
[PC] Position Commanded [operator]
[PCC] Captured Commanded Position [operator]
[PCE] Position of Captured Encoder [operator]
[PCME] Position of Captured Master Encoder [operator]

[PCMS] Position of Captured Master Cycle [operator]

PCOMP Compile a Profile or Program
[PE] Position of Encoder [operator]
[PER] Position Error [operator]
PESET Set Encoder Absolute Position (steppers)
PEXE Execute a Compiled Program
[PI] Pi (π) [operator]
PL Select Path Local/Work Coordinate System
PLC Define Path Local Coordinates
PLCP Compiled PLC Program
PLIN Move in a Line (Line Segment)
PLN End of Loop, Compiled Motion
PLOOP Start of Loop, Compiled Motion
[PMAS] Current Master Cycle Position [operator]
[PME] Position of Master Encoder [operator]
PMECLR Clear Master Encoder Absolute Position
PMESET Set Master Encoder Absolute Position
PORT Designate Destination COM Port
POUT Compiled Output (Contouring)
POUTn Compiled Output (Compiled Motion), Axis Specific

PPRO Path Proportional Axis
PRTOL Path Radius Tolerance
PRUN Run a Compiled Profile
PS Pause Program Execution
PSET Establish Absolute Position Reference
[PSHF] Net Position Shift Status [operator]
[PSLV] Commanded Follower Position [operator]
PTAN Path Tangent Axis Resolution
PUCOMP Un-Compile a Compiled Profile
PULSE Step Output Pulse Width
PV Path Velocity
PWC Path Work Coordinates
RADIAN Specify Units in Radians or Degrees
RE Enable Registration
[READ] Read a Value
REG Registration Distance

REGLOD Registration Lockout Distance
REGSS Registration Single-Shot
REPEAT REPEAT Statement
RESET Reset the 6K Controller
RUN Begin Executing a Program
S Stop Motion
SCALE Enable Scaling Factors
SCANP Scan a Compiled PLC Program
SCLA Acceleration Scale Factor
SCLD Distance Scale Factor
SCLMAS Master Axis Scale Factor
SCLV Velocity Scale Factor
[SEG] Number of Free Segment Buffers [operator]

SFB Select Servo Feedback Source
SGAF Gain – Acceleration Feedforward
SGENB Enable a Servo Gain Set
SGI Gain – Integral Feedback
SGILIM Gain – Integral Windup Limit
SGP Gain – Proportional Feedback
SGSET Save a Servo Gain Set
SGV Gain – Velocity Feedback
SGVF Gain – Velocity Feedforward
[SIN()] Sine [operator]
SINAMP Virtual Master Sine Wave Amplitude
SINANG Virtual Master Sine Wave Angle
SINGO Virtual Master - Start Internal Sine Wave
SMPER Maximum Allowable Position Error
SOFFS Servo Control Signal Offset
[SQRT] Square Root [operator]
[SS] System Status [operator]
STARTP Start-up Program
STEP Enable Single Step Mode
STRGTD Target Zone Distance
STRGTE Enable Target Zone Mode
STRGTT Target Zone Timeout Period
STRGTV Target Zone Velocity
[SWAP] Task Swap Assignment [operator]
T Time Delay
[TAN()] Tangent [operator]
TANI Transfer ANI Analog Input Voltage
TAS Transfer Axis Status
TASF Transfer Axis Status (full-text report)
[TASK] Task Number Assignment [operator]
TASX Transfer Axis Status, Extended
TASXF Transfer Axis Status, Extended (full-text)
TCMDER Transfer Command Error
TDAC Transfer DAC Voltage
TDIR Transfer Program Directory
TDPTR Transfer Data Pointer Status
TER Transfer Error Status
TERF Transfer Error Status (full-text report)
TEX Transfer Program Execution Status
TFB Transfer Position of Feedback Devices
TFS Transfer Following Status
TFSF Transfer Following Status (full-test report)
TGAIN Transfer Servo Gains
[TIM] Current Timer Value [operator]
TIMINT Timer Value to Cause an Alarm Event
TIMST Start Timer
TIMSTP Stop Timer

Command Description Command Description

306 6K Series Command Reference

TIN Transfer Programmable Input Status
TINO Transfer Other Input Status
TINOF Transfer Other Input Status (full-text report)
TIO Transfer Expansion I/O Status
TLABEL Transfer Labels
TLIM Transfer Hardware Limit Status
TMEM Transfer Memory Usage
TNMCY Transfer Master Cycle Number
TNTMAC Transfer Ethernet Address
TOUT Transfer Programmable Output Status
TPANI Transfer Position of ANI Inputs
TPC Transfer Commanded Position
TPCC Transfer Captured Commanded Position
TPCE Transfer Position of Captured Encoder
TPCME Transfer Position of Captured Master Encoder

TPCMS Transfer Position of Captured Master Cycle
TPE Transfer Position of Encoder
TPER Transfer Position Error
TPMAS Transfer Position of Master (current cycle)
TPME Transfer Position of Master Encoder
TPROG Transfer Program Contents
TPSHF Transfer Net Position Shift
TPSLV Transfer Commanded Position of Follower
TRACE Enable Program Trace Mode
TRACEP Enable Program Flow Mode
TRANS Enable Translation Mode
TREV Transfer Revision Level
TRGFN Trigger Functions
[TRIG] Trigger Interrupt Status [operator]
TRGLOT Trigger Interrupt Lockout Time
TSCAN Transfer Scan Time of PLC Program
TSEG Transfer Number of Free Segment Buffers
TSGSET Transfer Servo Gain Set
TSKAX Task Axis Association for Multi-Tasking
TSKTRN Task Turns Before Swapping

TSS Transfer System Status
TSSF Transfer System Status (full-text report)
TSTAT Transfer Controller Statistics
TSTLT Transfer Settling Time
TSWAP Transfer Currently Active Tasks
TTASK Transfer Task Number
TTIM Transfer Timer Value
TTRIG Transfer Trigger Interrupt Status
TUS Transfer User Status
TVEL Transfer Current Commanded Velocity
TVELA Transfer Current Actual Velocity
TVMAS Transfer Current Master Velocity
[TW] Thumbwheel Assignment [operator]
UNTIL() Until Part of REPEAT Statement
[US] User Status [operator]
V Velocity
[V] Velocity [operator]
VAR Numeric Variable Assignment
VARB Binary Variable Assignment
VARCLR Clear All Variables
VARI Integer Variable Assignment
VARS String Variable Assignment
VCVT() Variable Type Conversion
[VEL] Commanded Velocity Assignment [operator]

[VELA] Actual Velocity Assignment [operator]
VF Final Velocity
[VMAS] Velocity of Master [operator]
WAIT() Wait for a Specific Condition
WHILE() WHILE Statement
WRITE Write a Message
WRVAR Write a Numeric Variable
WRVARB Write a Binary Variable
WRVARI Write a Integer Variable
WRVARS Write a String Variable
XONOFF Enable XON/XOFF ASCII Handshaking

Appendix B: ASCII Table 307

Appendix B: ASCII Table
DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR

0 00 NUL
1 01 SOH
2 02 STX
3 03 EXT
4 04 EOT
5 05 ENQ
6 06 ACK
7 07 BEL
8 08 BS
9 09 HT
10 0A LF
11 0B VT
12 0C FF
13 0D CR
14 0E SO
15 0F S1
16 10 DLE
17 11 XON
18 12 DC2
19 13 XOFF
20 14 DC4
21 15 NAK
22 16 SYN
23 17 ETB
24 18 CAN
25 19 EM
26 1A SUB
27 1B ESC
28 1C FS
29 1D GS
30 1E RSt
31 1F US
32 20 SPACE
33 21 !
34 22 "
35 23 #
36 24 $
37 25 %
38 26 &
39 27 `
40 28 (
41 29)

42 2A *
43 2B +
44 2C ,
45 2D -
46 2E .
47 2F /
48 30 ∅
49 31 1
50 32 2
51 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 3A :
59 3B ;
60 3C <
61 3D =
62 3E >
63 3F ?
64 40 @
65 41 A
66 42 B
67 43 C
68 44 D
69 45 E
70 46 F
71 47 G
72 48 H
73 49 I
74 4A J
75 4B K
76 4C L
77 4D M
78 4E N
79 4F O
80 50 P
81 51 Q
82 52 R
83 53 S

84 54 T
85 55 U
86 56 V
87 57 W
88 58 X
89 59 Y
90 5A Z
91 5B [
92 5C \
93 5D]
94 5E ^
95 5F _
96 60 '
97 61 a
98 62 b
99 63 c
100 64 d
101 65 e
102 66 f
103 67 g
100 68 h
105 69 i
106 6A j
107 6B k
108 6C l
109 6D m
110 6E n
111 6F o
112 70 p
113 71 q
114 72 r
115 73 s
116 74 t
117 75 u
118 76 v
119 77 w
120 78 x
121 79 y
122 7A z
123 7B {
124 7C |
125 7D }

DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR

308 6K Series Command Reference

126 7E ~
127 7F DEL
128 80 Ç
129 81 ü
130 82 é
131 83 â
132 84 ä
133 85 à
134 86 å
135 87 ç
136 88 ê
137 89 ë
138 8A è
139 8B ï
140 8C î
141 8D ì
142 8E Ä
143 8F Å
144 90 É
145 91 æ
146 92 Æ
147 93 ô
148 94 î
149 95 ò
150 96 û
151 97 ù
152 98 ÿ
153 99 Ö
154 9A Ü
155 9B ¢
156 9C £
157 9D ¥
158 9E Pt
159 9F ƒ

160 A0 á
161 A1 í
162 A2 ó
163 A3 ú
164 A4 ñ
165 A5 Ñ
166 A6 ª
167 A7 º
168 A8 ¿
169 A9
170 AA ¬
171 AB 1/2

172 AC 1/4

173 AD ¡
174 AE «
175 AF »

176 B0

177 B1

178 B2

179 B3 ¦

180 B4

181 B5

182 B6
183 B7

184 B8

185 B9

186 BA

187 BB

188 BC
189 BD
190 BE

191 BF

192 C0

193 C1
194 C2

195 C3

196 C4 −
197 C5 †

198 C6

199 C7

200 C8

201 C9
202 CA
203 CB

204 CC

205 CD =

206 CE
207 CF
208 D0
209 D1
210 D2
211 D3

212 D4
213 D5
214 D6

215 D7
216 D8

217 D9

218 DA

219 DB
220 DC

221 DD

222 DE
223 DF
224 E0 α
225 E1 β
226 E2 Γ
227 E3 π
228 E4 Σ
229 E5 σ
230 E6 ∝
231 E7 τ
232 E8 Φ
233 E9 θ
234 EA Ω
235 EB δ
236 EC ∞
237 ED ∅
238 EE ∈
239 EF ∩
240 F0 ≡
241 F1 ±
242 F2 ≥
243 F3 ≤
244 F4 Ï
245 F5 |
246 F6 ÷
247 F7 ≈
248 F8 °°°°
249 F9 •

250 FA ·
251 FB √
252 FC η
253 FD 2
254 FE ••••
255 FF

Appendix C: 6K vs. 6000 309

Appendix C: 6K vs. 6000 Programming Differences

The 6K Series product family is a “next generation” version of the existing 6000 Series product family.
Because of changes in hardware and enhancements to firmware features, the command language (now
referred to as the “6K command language”) is slightly different.

Features That Work Differently

I/O Handling

• Programmable and analog I/O configuration is
different. Referencing requires brick identifier
() — a “brick” is onboard I/O or an extended
I/O brick that has any combination of 8 SIM
modules for digital and analog I/O. I/O bit
patterns no longer conform to old syntax.
Onboard I/O are considered I/O brick zero (0).
New status command (TIO) displays the
controller’s I/O configuration. The “@” prefix
makes a command apply to all I/O bricks (e.g.,
@TIN reports status of all inputs on all I/O
bricks).

• Position capture only captures the dedicated axis
(not all axes anymore); ANI position can no
longer be captured. When trigger nA or nB is
activated, the 6K performs a “hardware capture”
(encoder/commanded position capture accuracy is
± 1 count) of the dedicated “n” axis: Servos
capture the encoder and commanded; steppers
capture the commanded position by default, or the
encoder position if encoder capture is enabled
(ENCCNT1). If the axis is a slave in a Following
application, the position of the associated master
is also captured (interpolated, accuracy is 50 µs
multiplied by the velocity at the time of the
capture). The Master Trigger (“TRIG-M”) does a
hardware capture of the “Master Encoder and all
axes (encoder on servo axes, commanded (if
ENCCNT0) or encoder (if ENCCNT1) on stepper
axes). TSS/SS bits 25-28 no longer indicate
position captures; instead, this status information
is now reported with TTRIG/TRIG.

• OUT, OUTALL, and POUTn no longer reference
only the programmable outputs that have the
default function assignment (OUTFNCi-A);
instead, OUT, OUTALL, and POUTn now
reference all programmable outputs by their
absolute reference as onboard outputs or outputs
on a serial I/O brick. An attempt to change an
output that is not an OUTFNCi-A output will
elicit an error message (message is TBD), and the
command will be ignored, but command
processing will keep going. No error bit is set.

• Joystick control method uses digital inputs
(external serial I/O, or onboard limits or triggers)
and INFNC or LIMFNC definitions (M =
Release, N = Axis select, and O = Velocity
select). JOYAXL, JOYAXH, JOYCDB,

JOYCTR, JOYEDB, and JOYZ syntax is changed to
accommodate (e.g., JOYAXH3-2 assigns analog
input #2 on brick #3 to control axis 1). Range for the
analog channels is -10 to +10VDC (on existing
products, it's 0-2.5VDC). TINOF (bits 1-5) no longer
reports joystick input status—instead, refer to the
respective TIN or TLIM bits for the inputs configured
as joystick inputs (M, N, and O function
assignments). Because the analog input voltage range
is increased to +/- 10V with 12-bit resolution and
because of the requirement to use external I/O, the
syntax, ranges and defaults for joystick setup
commands are changed (JOYCDB, JOYCTR,
JOYEDB).

• INPLC, OUTPLC, INSTW, & OUTTW now require
the I/O brick prefix (); otherwise, these
commands are applied only to the on-board inputs or
outputs. All thumbwheel inputs must be on the same
brick.

• INDUST syntax is altered. To use the system status
(selection "I"), you should prefix the INDUST
command with the task # for the system status you
want (otherwise the default is task 1) – e.g.,
3%INDUST16-2I assigns user status bit 16 to the 2nd
bit of system status for task 3. To use the IN input
status (selection "J"), you must prefix the INDUST
command with the I/O brick # (otherwise, the default
is on-board triggers) – e.g., 2INDUST14-4J assigns
user status bit 14 to the status of I/O point 4 on I/O
brick 2 (2IN.4).

• Debounce: INDEB is now brick-specific (all triggers
constitute brick 0) — i.e., the INDEB value applies to
all inputs on the specified brick. Therefore the syntax
is changed to <!>INDEB<i> (drop the first
integer field, which was used for the input number).
INDEB now works the same for all general-purpose
and trigger inputs (using the functionality the was
previously applicable only to the general-purpose
inputs). A new command, TRGLOT, sets the lock-out
time for only the triggers defined as Position Capture
inputs (INFNCi-H) — TRGLOT overrides the
INDEB setting for the affected trigger inputs. INDEB
also applies to limit inputs that are assigned standard
input functions (e.g., Stop input) with the LIMFNC
command. If an input is assigned a limit input
function (R, S, or T), the input is not debounced
(INDEB has no effect).

• Limit functions are added to INFNC so that external
inputs can be used as limit inputs: R = positive limit,

310 6K Series Command Reference

S = negative limit, T = home limit. If an input is
assigned a limit input function, it is no longer
debounced (INDEB has no affect on it), and LH
applies to the input, according to the axis and
limit function assignment. It is still affected by
INEN.

• The new LIMEN command adds INEN
functionality for physical limit inputs (on the
“LIMITS” connector), regardless of the inputs’
assigned LIMFNC function. LH is still used to
enable checking the state of the EOT limits (LH1,
LH2 or LH3 is still required to detect errors).

• Limit inputs are programmable with the LIMFNC
command. The default power-up state is such that
each limit input is assigned to the correct
LIMFNC function (e.g., the positive travel EOT
limit for axis one is assigned LIMFNC1-1R).
When an external input on and I/O brick is
assigned a limit function, the user should reassign
the hardware limit input as a general-purpose
input (LIMFNCi-A) or as a different non-limit
LIMFNC function. When left in the default
function assignment (R, S, or T), the limits are
not debounced; but if assigned other LIMFNC
functions (including LIMFNCi-A), they are
debounced with the INDEB setting for the on-
board inputs.

• The functions of LHLVL and HOMLVL have
been consolidated into LIMLVL (same bit
assignments as LIM & LIMEN).

• INFEN and OUTFEN have been removed. Use
the new DRFEN command to enable or disable
checking the drive fault input.

• The digital outputs on the serial I/O bricks will be
sinking or sourcing, depending on the jumper
setting (on the I/O brick). The controller will
auto-detect the jumper setting on power up and
set the OUTLVL accordingly.

• TRGFN syntax changes: It now requires an axis
identifier prefix, eliminating the succession of 8-
bit patterns for each axis. Only A, B and M are
allowed for the trigger identifier. When web
registration (Following enhancements) is
released, an additional function will be added to
the TRGFN syntax.

• Analog input voltage range can be set with
ANIRNG. Default is -10V to +10V. Other
options are: 0 to +5V, -5 to +5V, and 0 to +10V.

Stepper Axis Behavior

• No Encoder position feedback (closed loop)
features for steppers. MANY references to
operation being different based on ENC. These
features are no longer available to steppers: ENC
Mode, Position Maint. features, Target Zone
mode, and TPER & PER.

• Can't capture encoder position unless ENCCNT1
is used (and then commanded position can't be
captured).

• Steppers no longer stop instantaneously on a kill,
drive fault, limit, etc. — steppers now stop at
LHAD/LHADA.

• Stepper axes now support s-curve profiles.

• Commanded position (AKA "motor" position) for
steppers is now reported with the PC, TPC, & TPCC
commands. The PM, TPM, PCM, and TPCM
commands can still be in the product but they will not
be documented.

• FOLK is now applicable to steppers.

• Output on Position works for steppers, now.

Encoders

• EFAIL added to detect encoder failures. Error
reported with TASX bit 5 and error bit 17. Works
only on differential encoders. By default, the 6K is
compatible with differential encoders, but if you
jumper pins 8 & 9 on the encoder connector (this
feature requires a PCB modification) you can connect
a single-ended encoder.

• New commands for addressing only the “Master
Encoder”, to check position (TPME, PME), captured
position (TPCME, PCME), set absolute position
(PMESET, PMECLR), change polarity (MEPOL),
change to step and direction input (MESND).

• “FOLSND” is changed to “ENCSND” to avoid
confusion about the functionality (does not depend on
Following). FOLSND is still available as a hidden
command for users of existing 6000 products.

• No counter commands (CNTE, CNT, CNTINT,
CNTR). Instead, you must use ENCSND.

New Error Messages

• “ALTERNATIVE TASK NOT ALLOWED”:
Attempted to execute a LOCK command in another
task.

• “AXIS NOT PART OF TASK ”: A task is
attempting to execute a contouring path whose
participating axis or axes (PAXES) are not associated
with the task (TSKAX).

• “COMMAND/DRIVE MISMATCH”: The command (or
≥ one field in the command) is not appropriate to the
AXSDEF configuration (e.g., attempting to execute a
servo tuning command on a stepper axis).

• “COMMAND NOT ALLOWED IN PROGRAM”:
Attempted to place a non-allowed command (e.g.,
scaling command) in a program.

• “ INCORRECT BRICK NUMBER”: Attempted to
execute a command that addresses an I/O brick that is
not connected to your 6K controller.

• “ INVALID TASK IDENTIFIER ”: Attempting to
launch a PEXE or EXE command into the supervisor
task (task 0).

• “ INPUT NOT DEFINED AS JOYSTICK
INPUT”: Attempting to execute JOYCDB, JOYCTR,
JOYEDB, or JOYZ before executing JOYAXH or
JOYAXL to assign the analog input to an axis.

Appendix C: 6K vs. 6000 311

Communications

• COM1 is the connector labeled “RS-232” or
“ETHERNET”, and COM2 is the connector
labeled “RS-232/485”.

• LOCK allows users to tie up the COM ports for a
specific task (affects port handling — [,],
DRPCHK, PORT)

• RS-422 in 6K only

• Baud rate adjusted with BAUD command (new)
— default is 9600.

• Fast status (FASTAT) is removed. Status
information is fixed and accessed through the
Communications Server.

• Interrupts are now “alarms” and are available
only through use of the Communications Server
and ActiveX control (via Ethernet only)

• RP240 canned menus are different (run only);
DVARI & DVARB are new; DSTP to
enable/disable RP240 Stop button.

Miscellaneous

• Scaling changes: Scaling commands are now
automatically stored in battery-backed RAM, and
they are no longer allowed in a program (must be
outside — this is handled by Motion Planner).
Separate contouring and linear interpolation path
scaling parameters (PSCLA, PSCLD, PSCLV) are
no longer required; instead, use the SCLD value
to scale all path motion (accel/decel, velocity, and
distance).

• Command syntax & reporting formats have been
modified to accommodate 8 axes (e.g., added
fields per axis).

• Servo updates are fixed (this obsoletes the SSFR
& INDAX commands); Only one system update
now (2 ms)

• Status bit information (axis, system, error, user,
Following, TSTAT, etc.) — deletions, additions,
alterations:

ASX: bit 5 for encoder fail,
bit 6 for Z channel state (1 = active,
0 = inactive)

ER: bit 16 for command error (Cleared with
TCMDER),
bit 17 for encoder fail (if EFAIL1.
Cleared with EFAIL0)

• Error conditions/handling — Each task has its
own error status register and error program.

• SYNTAX: Syntax change for REG: axis specific,
only A and B are allowed.

• SYNTAX: Bit select syntax (syntax that required
"-" before now allows you to use "=" instead, but
not vice versa)

• SYNTAX: New ability to address a command to a
specific address (and group of addresses of n,
n+1, n+2, etc.)

• Timer enhancement: TIMST syntax has an additional
optional field (<r>) — new syntax is TIMST,<r>.
If TIMST0, then <r> represents an absolute time; if
TIMST1, then <r> represents a task number (timer
will resume with the value of the timer for the
specified task). Timer resolution is fixed at 2 ms.

• Program interrupts (ON conditions) — Each task has
its own ON conditions and ONP program.

• Memory allocation for all 6K products most closely
resembles the allocation for existing AT6000
products.

• 6K does not support COMEXK and COMEXP
modes.

• Following enhancements— Geared Advance
(FGADV) and virtual master and sine wave
(FVMACC, FVMFRQ, SINAMP, SINANG, SINGO).

• Contouring enhancements — axes may now have
different DRES and PULSE (steppers) and feedback
resolutions (servo). Mechanical resolutions may also
be different.

New Commands/Features for the 6K

Commands

% Task Identifier
ANIEN Analog Input Enable
ANIFB Assign Analog Inputs as Axis Feedback
ANIMAS .. Assign Analog Inputs to Axes
ANIRNG .. Analog Input Voltage Range
AXSDEF . Axis Definition
BAUD....... Baud Rate
[DKEY] .. Value of RP240 Key
DRFEN Drive Fault Input Enable
DSTP Enable/Disable RP240 Stop Key
DVARB ... Display Binary Variable on RP240
DVARI Display Integer Variable on RP240
EFAIL Encoder Failure Detect
ENCCNT . Encoder Count Reference Enable
ENCSND.. Encoder Step & Direction Mode
EXE Execute Program from a Compiled PLCP

Program
FGADV ... Following Geared Advance
FVMACC . Virtual Master Count Frequency Acceleration
FVMFRQ . Virtual Master Count Frequency
LIMEN...... Enable Limit Inputs Defined as Non-Limit Inputs
LIMFNC .. Limit Input Function
LIMLVL Limit Input Active Level
LOCK Lock Resource to Task
MEPOL Master Encoder Polarity
MESND.... Master Encoder Step & Direction Mode
NTADDR . IP Address for Ethernet Communication
NTMASK.. Network Mask for Ethernet Communication
[PCMS] . Captured Master Cycle Position
PESET..... Establish Encoder Absolute Position Reference
PEXE Execute Compiled Prog. from Compiled PLCP

Prog.
PLCP Compiled PLC Program
[PCME] .. Captured Master Encoder Position
[PME]..... Position of Master Encoder
PMECLR.. Clear Master Encoder Absolute Position

Reference
PMESET.. Establish Master Encoder Absolute Position

Reference

312 6K Series Command Reference

SCANP ... Scan Compiled PLCP Program
SINAMP .. Virtual Master Internal Sine Wave

Amplitude
SINANG .. Virtual Master Internal Sine Wave Angle
SINGO Virtual Master - Initiate Internal Sine Wave
[SWAP] . Task Swap Assignment
[TASK] .. Task Number Assignment
TIO Transfer Current Expansion I/O

Configuration
TNTMAC . Transfer Ethernet Address
TPCME Transfer Position of Captured Master

Encoder
TPCMS ... Transfer Captured Master Cycle Position
TPME....... Transfer Position of Master Encoder
TRACEP . Program Flow Mode Enable
TRGLOT . Trigger Lockout Time
[TRIG] ... Trigger Capture Status
TSCAN..... Scan Time of Last PLCP Program
TSKAX Task Axis
TSKTRN .. Task Turns Before Swapping
TSWAP ... Transfer Task Swap
TTASK Transfer Task Number
TTRIG Transfer Trigger Capture Status
VARI Integer Variable Assignment
WRVARI . Write an Integer Variable

Features

• Multi-tasking (impact: task-specific commands &
report-backs, and syntax)

• PLC Scan mode

• Following enhancements: Geared Advance and
Virtual Master

• Integer variables (VARI)

• Master encoder handling

• TRACEP (trace mode enhancement)

• Compiled conditionals (not first release)

• Baud rate changed with command (BAUD) only

• RP240 menus, DVARI, DVARB, DSTP

• Ethernet communication and “alarm” event
handling

• Additional syntax symbols (% for addressing
specific tasks, for addressing specific I/O
bricks)

6000 Commands not in the
6K Command Language

ANI Option
ANIPOL
ANV
ANVO
ANVOEN
CA
PCA
TCA
TPCA

Counter
CNT
CNTE
CNTINT
CNTR
TCNT

Command Processing
COMEXK
COMEXP

Encoder
EMOVDB
ENC
EPM
EPMDB
EPMG
EPMV

Feedrate
FR
FRA
FRH
FRL
FRPER

Servo (misc.)
INDAX
SSFR
SDTAMP
SDTFR

Interrupt
INTCLR
TINT

Data Streaming Mode
SD
STD
STREAM

Product Specific: ZETA610n
DACTDP
DAREN
DAUTOS
DELVIS
DMTIND
DMTSTT
DWAVEF

Product Specific: APEX615n
DRESET

Product Specific: 6270
DACMIN
LDT
LDTGRD
LDTPOL
LDTRES
LDTUPD
PCL
SGAFN
SGIN
SGPN
SGVFN
SGVN
SOFFSN
SSWD
SSWG
TLDT
TPCL

Miscellaneous
OUTANA
SSV
TANV
TEST
FASTAT

Scaling (contouring and linear interpolation only)
PSCLA (use SCLA instead)
PSCLD (use SCLD instead)
PSCLV (use SCLV instead)

Index 313

Index

Operator Symbols
–, 29
', 24
!, 24
!, 22
", 25
#, 24
π (pi), 198
$, 23
&, 30
 (), 29
*, 30
. (bit select operator), 25
/, 30
;, 22
@, 22
\, 26
^, 32
|, 31
~(), 32
+, 29
<, 27
<<, 33
<=, 28
<>, 28
=, 26
>, 27
>=, 27
>>, 33

A
absolute position

absolute path (PAB), 184
absolute positioning mode

(MA1), 163
effect on distance, 55

establishing, 197, 209
effect on position report, 90,

189, 190, 191, 192, 193,
196, 203, 256, 266, 267,
268, 269, 270, 271, 272

master encoder
clear, 203
establishing, 203

zeroed after homing, 116
acceleration, 35

assignment of, 36
change on-the-fly, 51, 164
feedforward gain, 233
jerk calculations, 15
maximum, follower axis, 92
path, 183
scaling, 17
scaling factor (SCLA), 223, 227
s-curve profiling, 13, 36

homing, 117
jogging, 138
joystick, 142
paths, 183

access, 130, 156
actual feedbackdevice position. See

position
addition (+), 29

address
Ethernet, 265
IP, 170

address, auto-addressing units in a
chain, 39

advance, geared (Following), 91
alarm event

enable checking (INTHW), 135
force a condition (INTSW), 136
trigger with an input, 129, 155
trigger with timer value, 259

analog input
ANI option. See ANI
joystick, 144, 145, 146, 147

voltage range, 145
voltage range selection, 42

analog output offset (servo), 241
AND (logical operator), 40
ANI

as Following master (ANIMAS),
42

check input voltage, 248
enable (ANIEN), 41
feedback (ANIFB), 41
override (ANIEN), 41
position

assignment/comparison, 90, 185
status, 248, 256, 266

selected with SFB, 231, 256
voltage

assignment/comparison, 40
status, 40, 248, 262

voltage range section (ANIRNG),
42

application examples
continuous phase shift, 104
Following, 95
GOWHEN, 112
preset phase shift, 105
scaling setup, 19

applications help (HELP), 115
arc segment, 186, 187, 188
arc tangent, 46, 214
ASCII character designator (\), 26
ASCII Table, 307
assignment of axes to tasks, 279
assignment of master and follower,

97
axis assigned to task (TSKAX), 279
axis moving status, 43, 167, 249
axis scaling, 16
axis status, 43, 248
axis status, extended, 45, 250, 251,

252
axis type definition (AXSDEF), 46
axis, contouring, 189

B
backup to home (HOMBAC), 120,

121
baud rate, establish, 47
BCD program select input, 127, 133,

154
begin and end string ("), 25

begin comments (;), 22
begin executing a program (RUN),

222
begin program definition (DEF), 62
beginning of transmission characters

(BOT), 47
binary value identifier (b), 4
binary variable (VARB), 293

clearing, 293
display of bits, 33
display on RP240, 73
writing, 301

bit select operator (.), 4, 25
bitwise AND (&), 31
bitwise exclusive OR (^), 32
bitwise NOT (~), 33
bitwise OR (|), 31
Boolean And (&), 30
Boolean Exclusive Or (^), 32
Boolean Inclusive Or (|), 31
Boolean Not (~), 32
branching

ELSE, 76
error program, 86
GOSUB, 110
GOTO, 111
IF, 122
JUMP, 147
NIF, 168
NWHILE, 170
REPEAT, 221
UNTIL, 289
WHILE, 299

BREAK, 48, 110
break point (BP), 47
buffered commands

looping (begin - L), 150
looping (end - LN), 158
looping, compiled, 201

C
call a subroutine (GOSUB), 110
carriage return

command delimiter, 4
transmission character, 79

case sensitivity, 4
center position specifications, 187,

188, 207
characters

command delimiters, 4
comment delimiter, 4, 22
field separators, 4
limit per line, 4
neutral (spaces), 4

circular interpolation. See
contouring

clear display (DCLEAR), 62
clear error condition, 85
clear variables (VARCLR), 293
COM port

enable/disable (E), 75
function, setup, 71
lock to a task, 158
selection (PORT), 204

314 6K Series Command Reference

commanded acceleration,
feedforward gain, 233

commanded direction polarity, 50
commanded position, 196, 271

capture, 128, 190, 267
comparison or assignment, 189
display, 266
follower

assignment/comparison, 210
transfer, 273

commands
buffered, 22

looping, 158
looping, compiled, 201

command buffer execution
after end-of-travel limit

(COMEXL), 52
after pause/continue input

(COMEXR), 52
after stop (COMEXS), 53
continuous (COMEXC), 50

command description format, 2
command field symbols, 3
command list, 303
command value substitutions, 5
command-to-product

compatibility, 2
default settings, 2
delimiters, 4
immediate, 22
syntax, 2
types, 2

comment delimiter, 4, 22
communication interface

addressing units in a chain, 39
baud rate, 47
COM port selection (PORT), 204
controlling multiple COM ports,

204
send response to alternate port,

34
send response to both ports, 34

echo enable, 75
enable communication (E), 75
Ethernet

Ethernet address, 265
IP address, 170
network mask, 170

lock COM port, 158
RP240 check, 71
XON/XOFF, enable & disable,

302
communications server, 135, 136
compiled motion. See PLC program

compiling (PCOMP), 194
execute from PLC program

(PEXE), 197
failed PCOMP, 242, 281
final velocity, 298
GOBUF segments, 108
looping, 201
memory status, 242, 281
outputs (POUTn command), 205
run the profile (PRUN), 208
status of program storage, 253
status, free segments, 231, 278
uncompile the profile

(PUCOMP), 212
compiling a profile or program

(PCOMP), 194
conditional branching

ELSE, 76
IF, 122
NIF, 168
NWHILE, 170
REPEAT, 221
UNTIL, 289
WHILE, 299

conditional go, 112
continue (!C), 47, 49, 53, 150
continuous positioning mode (MC1),

164
continuous shift. See shift,

continuous
contouring, 183

axes, inclusion of, 189
memory allocation, 165
path

absolute (PAB), 184
acceleration (PA), 183
acceleration, s-curve, 183
CCW arc, origin specified,

187
CCW arc, radius specified,

186
compile (PCOMP), 194
compile (PCOMP), failure,

242, 281
CW arc, origin specified, 188
CW arc, radius specified, 188
deceleration (PAD), 184
deceleration, s-curve, 185
definition (DEF/END), 63, 78
execute from PLC program

(PEXE), 197
incremental (PAB), 184
line segment definition, 200
local coordinates (PLC), 199
local mode (PL), 198
memory allocation, 165
memory status, 253
outputs (POUT), 205
proportional axis (PPRO), 206
radius tolerance (PRTOL), 207
run/execute (PRUN), 208
s-curve accel/decel, 183, 185
tangent axis resolution

(PTAN), 211
uncompile (PUCOMP), 212
velocity (PV), 213
work coordinates (PWC), 213

scaling (SCLD), 18
control characters, 300
control signal offset, 241
controlling multiple serial ports

select target port (PORT), 204
send response to alternate port, 34
send response to both ports, 34

coordinates, contouring
absolute, 184
incremental, 184

cosine, 54, 214

D
DAC

limit, 57
value

assignment/comparison, 56
status, 253

damping, 237
data

assignment (DAT), 57
fields, in command syntax, 3
program (DATP), 57, 58
program size (DATSIZ), 60
read from the RP240, 67
statement (DATA), 57

memory required, 165
storage, 57, 58, 60, 254
teach, 61
transfer, 181, 182

deadband
joystick center, 145
joystick end, 145
stall, 88

debounce time for programmable
inputs, 124

debounce time for trigger interrupt
inputs, 277

debugging tools. See Programmer's
Guide and back cover
axis status (extended) report, 250
axis status report, 248
break point, 47
break, manual, 48
ENABLE status, 261, 262
error messages, 9
HALT, 115
identify bad command, 12, 252
single-step mode, 24, 243
technical support, 115
trace mode, 273, 274
translation mode, 275

deceleration, 37
assignment/comparison, 38
change on-the-fly, 51
limits

hard, 151
soft, 160

path, 184
scaling, 17
s-curve profiling, 13, 38

hard limits, 151
homing, 118
jogging, 139
joystick, 143
paths, 185
soft limits, 160

default command settings, 2
define

program/subroutine/path (DEF),
62

user status, 125
degrees, unit of measure, 214
delay time (T command), 247
delete a program/subroutine/path

(DEL), 63
delimiter, comment, 4, 22
delimiters, command, 4
digital-to-analog converter (DAC)

voltage, 56, 57, 253
direction polarity, commanded, 50
disable drive, 70
disable drive on kill, 149
display

messages, 25
RP240. See RP240

distance, 55
assignment, 56
change on-the-fly, 51, 55
fractional step truncation, 19,

228, 229

Index 315

master. See master, distance
registration, 218

lock-out, 219
scaling factor (SCLD), 223
target zone, 244

division, 30
drive

configuration
axis definition (AXSDEF), 46
disable drive on kill, 149
drive fault input enable

(DRFEN), 69
fault level (DRFLVL), 70
resolution (DRES), 69

definition per axis (AXSDEF), 46
disable, 70
enable, 70
fault, 70

input, 45, 70, 251
enable (DRFEN), 69

level (DRFLVL), 70
output, 178
status, 45, 251, 252

fault input enable (DRFEN), 69
shutdown, 70, 148, 149

E
echo, communication, 75
ELSE, 76, 122, 168
enable input status, 80, 131, 261,

262
error checking, 84
error program, 85
error status, 80, 255

enable or disable Following, 94
status, 102, 257

enabling the drives, 70
encoder

capture/counter enable (steppers),
77

failure detection, 76
failure status, 45, 251
master

polarity, 167
position

assignment/comparison,
203, 272

capture, 192, 269
status, 272

step & direction input, 167
polarity, 77
position

assignment/comparison, 90,
196

capture, 128, 191, 268
error, 196
status, 256, 271

resolution (ERES), 81
selected with SFB, 231
step & direction input

(ENCSND), 78
Z-channel homing, 116, 121
z-channel state status, 45, 251

end of line terminating characters
(EOL), 79

end of loop (LN), 150, 158
end of loop, compiled (PLN), 201
end of transmission characters

(EOT), 79

end program/subroutine/path
definition (END), 78

end-of-travel limits
active level, 157
deceleration, 151

s-curve, 151
effect on command buffer, 52
effect on homing, 116, 120
enable/disable, 150
function assignment (INFNC),

130
function assignment (LIMFNC),

154
simulate activation, 153
soft limit

decel, 159
decleration, s-curve, 160
range, negative direction, 161
range, positive direction, 161

status, 43, 152, 249, 264
enter interactive data ('), 24
erase all programs (ERASE), 81
error

clearing, 85
error checking enable (ERROR), 84
error detection level (ERRLVL), 83
program assignment (ERRORP), 85
prompt (ERRBAD), 82
responses, 9
status, 80, 254, 255

Ethernet
Ethernet address, 265
IP address, 170
network mask, 170

events, alarm, 135
exclusive or (^), 32
execute program from PLC program,

89
expansion I/O, status, 262
extended axis status, 45, 251, 252

F
factory default settings, 222
failure of encoder, detect, 76
fast status

register, 136
faults. See drive, fault. See error
feedback source selection, 231

ANI input (ANIFB), 41
field separator, 4
filter, master position, 90
final velocity (compiled motion),

298
follower

acceleration, max., 92
commanded position

assignment/comparison, 210
transfer, 273

conditional go, 112
definition of, 97
master assignment, 97
phase shift. See shift
ratio to master, 100

change on the fly, 101
final (compiled motion), 101
status, 102, 257

velocity, max., 92
Following

application examples, 95
conditions for killing a profile, 97

distance scaling, 18
enable or disable, 94

status, 102, 257
geared advance, 91
status, 102, 256, 258
step & direction input (MESND),

167
force an alarm event (INTSW), 136
fractional step truncation, 228, 229

G
gains

acceleration feedforward, 233
gain set, display, 258, 279
gain set, enabling, 233
gain set, saving, 236
integral feedback, 234, 235
integral windup limit, 235
proportional feedback, 235
velocity feedback, 237
velocity feedforward, 237

geared advance, 91
global command identifier (@), 4,

22
GO, 107

compiled (GOBUF), 108
GOBUF, compiled motion segments,

108
good prompt (ERROK), 84
gosub, 110

branch to error program, 84
on input condition, 172
on user status condition, 173
on VAR1 condition, 174
on VAR2 condition, 174

goto, 111
branch to error program, 84

GOWHEN, 112
error condition, 80, 255

check, 85
status, 44, 249
via trigger input, 276

greater than (>), 27
greater than or equal (>=), 27

H
halt, 115

stop error program, 85
hard limit

active level (LIMLVL), 157
deceleration (LHAD), 151
enable (LH), 150
s-curve deceleration, 151
status, 152, 264

HELP, 115
hexadecimal value identifier (h), 4
homing

acceleration, 117
backup enable, 119
deceleration, 118
final direction, 119
home input, 130
home input, 156
home input

active level, 157
reference edge, 120
status, 152, 264

initiate (HOM), 116
s-curve accel/decel, 117, 118
status, 43, 249

316 6K Series Command Reference

to encoder Z-channel, 121
velocity

final, 121
starting, 120

zero absolute postion, 116

I
IF, 40, 76, 122, 168
immediate commands, 22
immediate data read from RP240, 67
immediate stop, 223
in position, 137
inclusive or (|), 31
incremental positioning mode

(MAØ), 163
effect on distance, 55

indirect variables, 292
initial master cycle position, 94
inputs, 6

analog. See ANI
joystick. See joystick

joystick (INFNC functions), 129
joystick (LIMFNC functions),

155
limits

end-of-travel. See end-of-
travel

home. See homing, home
input

programmable
active level (INLVL), 131
alarm event, 129, 155
bit pattern, 6
configuration, 262
debounce time, 124
enable (INEN), 126
function assignments

(INFNC), 127
function assignments

(LIMFNC), 154
simulate activation of, 153

jog
negative direction, 129,

155
positive direction, 129, 155
speed select, 129, 155

kill, 128, 155
pause/continue, 128, 155

effect on command buffer,
52

position capture, 128
program select, 130, 156
program select, BCD, 127,

154
registration, 214
status, 123, 261
stop, 128, 155, 223
strobe time, 133
thumbwheel, 134, 288
trigger interrupt, 128, 190,

191, 192, 193, 267, 268,
269, 270

user fault, 128, 155
trigger. See trigger inputs

integer variable (VARI), 294
display on RP240, 73
writing (WRVARI), 301

integral feedback gain, 234
integral windup limit, 235
interactive date('), 24

interrupt, program, 171, 172, 174
IP address, 170

J
jerk calculations, 15
jerk, reducing, 13
jog

acceleration, 138
s-curve, 138

deceleration, 138
s-curve, 139

input
negative direction, 129, 155
positive direction, 129, 155
speed select, 129, 155

mode enable (JOG), 137
using RP240, 63
velocity

high, 139
low, 140

joystick
acceleration (JOYA), 142
analog channel high (JOYAXH),

144
analog channel low (JOYAXL),

144
center (JOYCTR), 145
center deadband (JOYCDB), 145
deceleration (JOYAD), 143
enable operation (JOY), 140
end deadband (JOYEDB), 145
input functions (INFNC), 129
input functions (LIMFNC), 155
s-curve accel/decel, 142, 143
velocity high (JOYVH), 146
velocity low (JOYVL), 146
voltage range, 145
zero (JOYZ), 147

jump, 111, 147

K
kill, 148, 149

conditions that will kill a
Following move, 97

disable drive, 149
immediate (!K), 133, 164
input, 128, 155
on stall (ESK), 88

L
label

declaration ($), 23
transfer, 263

LEDs, RP240, 65
left-to-right math, 4
length, master cycle, 93
less than (<), 27
less than or equal (<=), 28
limits

activate output, 178
end-of-travel. See end-of-travel

limits
function assignments (LIMFNC), 154

simulate activation of, 153
home. See homing, home input
status, 152, 264

line feed
command delimiter, 4
transmission character, 79

line segment, contouring, 200
linear interpolation

distance, 55
distance scaling, 18, 228
initiate motion (GOL), 110
path

acceleration (PA), 183
path

acceleration s-curves (PAA),
183

deceleration (PAD), 184
deceleration s-curves (PADA),

185
velocity (PV), 213

local coordinate system, 184, 198,
199

lock COM port to a task, 158
lock-out distance, registration, 219
logical operators

AND, 40
NOT, 169
OR, 175

loops
compiled, 201
end of loop, 158

compiled, 201
nested, 150
terminate, 162

M
master

assign an ANI input (ANIMAS),
42

definition of, 97
status, 102, 257

direction, status of, 102, 257
distance

fractional step truncation, 229
programming (FOLMD), 99

encoder
positon, 203, 272

captured, 192, 269
clear, 203
set, 203

follower assignment, 97
master cycle

counting
restart, 93

length, 93
master cycle

number
assignment/comparison,

169
transfer, 265

position
assignment/comparison

(PMAS), 202
capture (PCMS), 193
capture (TPCMS), 270
initial, 94
rollover, 202, 272
transfer (TPMAS), 272

status, 102, 257
master cycle position capture,

193, 270
master position filtering, 90

status, 102, 257
master position prediction, 101

status, 102, 257
moving, status of, 102, 257

Index 317

ratio to follower, 100
change on the fly, 100
status, 102, 257

scaling, 18, 229
velocity, 287, 298

mathematical operators
(), 29
*, 30
/, 30
+, 29
=, 26
SQRT, 241

maximum allowable position error,
240

maximum follower acceleration, 92
maximum follower velocity, 92
memory

after a reset, 222
allocation, 165
data statement (teach mode), 165
labels, 23
locking, 130, 156
status, usage, 253, 264

messages
display on RP240 (DWRITE), 74
error, 9
sending, 25

motion parameters, 107
motion, compiled. See contouring or

compiled motion
moving/not moving status, 43, 167,

249
multi-line response, 79
multiplication, 30
multi-tasking

assign axes to tasks (TSKAX),
279

control task swapping, 280
identify the controlling task, 250,

284
lock resource to a task, 158
status, 283
task identifier (%), 4, 21
tasks active (status), 246, 284

N
nested loops, 150
network mask, 170
neutral characters, 4
NIF, 76, 122, 168
not equal (<>), 28
not, bitwise operator (~), 32
not, logical operator (NOT), 169
number, master cycle, 169, 265
numeric variable, 301

clearing, 293
display on RP240, 72

NWHILE, 170, 299

O
offset

position, 197, 209
master encoder, 203

servo control signal, 241, 253
on conditions (program interrupts),

171, 172, 173, 174
one-shot registration, 220
on-the-fly D changes, 51, 55
on-the-fly FOLRD & FOLRN

changes, 51, 100, 101

on-the-fly MA & MC changes, 51,
163, 164

on-the-fly profile change not
possible, 44, 249

on-the-fly V, A & AD changes, 51,
164

operation priority level, 29
operator symbols

', 24
!, 22
", 25
#, 24
$, 23
&, 30
(), 29
*, 30
. (bit select operator), 25
/, 30
;, 22
@, 22
\\, 26
^, 32
|, 31
~(), 32
+, 29
<, 27
<<, 33
<=, 28
<>, 28
=, 26
>, 27
>=, 27
>>, 33

or, 299
or, Boolean exclusive (^), 32
or, Boolean inclusive operator (|), 31
or, logical operators (OR), 175
origin specified CCW arc segment

(PARCOM), 187
origin specified CW arc sergment

(PARCOP), 188
oscillation, reducing, 234
other input status (INO), 131
outputs, 6

DAC control signal limit, 56, 57
path (POUT), 205
programmable

activate, 175
activate, multiple, 177
active level (OUTLVL), 179
bit pattern, 6
configuration, 262
enable (OUTEN), 177
fault output, 178
function assignments

(OUTFNC), 178
limit encontered, 178
maximum position error

exceeded, 179
moving/not moving, 178
output on position, 179, 180
PLC, 181
program in progress, 178
stall indicator, 178
status, 175, 176, 177, 265
strobing, 181

over-damping, 237
override analog inputs (ANIEN), 41
overshoot, 234, 235

P
participating axes, contouring

(PAXES), 189
partitioning memory, 165
password, RP240, 65
pause active, status, 242, 281
pause program execution (PS), 209
pause/continue input, 128, 155

effect on motion & program
execution, 52

phase, shift
continuous, 103
position assignment/comparison,

210
position transfer, 273
preset, 105

Pi (π), 198
PLC

data inputs (INPLC), 132
inputs, 132
strob outputs (OUTPLC), 181

PLC program
compiling (PCOMP), 194
defining (PLCP), 199
execute compiled program from

(PEXE), 197
execute program from (EXE), 89
initiate scan mode (SCANP), 225
memory storage, 165
time of last scan, 278

pointer, data
location, 66, 254
reset, 59
set, 58

polarity
commanded direction, 50
drive fault input, 70
encoder input, 77
end-of-travel inputs, 157
home inputs, 157
master encoder input, 167
programmable inputs, 131
programmable outputs, 179
trigger inputs, 131

PORT (selecting a COM port), 204
position

absolute, establishing, 197, 209
actual, 196, 271
ANI

assignment/comparison, 90,
185

status, 248, 256, 266
capture

commanded, 77, 190, 267,
277, 285

commanded position, 128
encoder, 77, 128, 191, 268,

277, 285
master encoder, 192,

269
for registration, 214
master, 128
master cycle, 193, 270

commanded, 189, 196, 266, 271
captured, 190

current feedback device, 90
encoder, 196, 271

assignment/comparison, 90
master, 203, 272
status, 256

318 6K Series Command Reference

error
exceeded max. limit, 43, 80,

249, 255
setting max. allowable

(SMPER), 240
status, 196, 271

master cycle, 94
master encoder

absolute, clearing, 203
absolute, establishing, 203
offset, 203

master position prediction. See
master, master position
prediction

offset, 197, 209
output on position, 180
overshoot, 235
positioning mode selection, 163,

164
change on the fly, 163, 164

RP240 cursor (DPCUR), 65
set to zero after homing, 116
setpoint, 189, 266
shift

continuous, 103
geared to master, 91
preset, 105
set to zero upon FOLEN1, 94

tracking, 237
power-up start program (STARTP),

243
pre-emptive GOs. See on-the-fly. See

on-the-fly. See on-the-fly
preset positioning mode (MCØ), 164
preset shift. See shift, preset
priority level, 29
product revision, 2, 275
profile, compiling (PCOMP), 194
program

branch condition, 23, 110, 111,
147, 173

break point, 47
comments, 4
contents, display, 272
data (DATP), 58
debug, 275

command errors, 252
definition, 62, 78, 222
definition, prompt (ERRDEF), 83
directory, 253
erase, 81
error handling, 85
error responses, 9
execution

from compiled program
(EXE), 89

status, 242, 256, 281
termination, 48, 115
upon power-up, 243

flow control, 115, 147, 168, 169,
221

interrupts, 171
jump (branch), 147
label, 23
list all programs, 253
memory allocation, 165
name, 63, 133
pause, 209
PLC

definition of (PLCP), 199
memory storage, 165

PLC scan (SCANP), 225
power-up program, 243
reset, effect of, 222
run, 222
security, 130, 156
selection, 130, 133, 156
size restriction, 165
step through, 24, 243
storage, 165, 264
trace mode, 273, 274
translation mode, 275
upload, 272

programmable inputs. See inputs,
programmable

programmable outputs. See outputs,
programmable

programming examples. See
application examples

prompt
error, 82
program definition, 83

proportional axis, 189
proportional feedback gain, 235
pulse width (PULSE), 212

R
radian, 214
radius

CCW arc segment (PARCM),
186

center point, 207
CW arc segment (PARCP), 188
endpoint, 207
error, 207
start point, 207

ratio of follower to master, 100
change on the fly, 100, 101
final ratio (in compiled profile),

101
status, 102, 257

read a value (READ), 217
read data from parallel I/O, 181
read RP240 data (DREAD), 66, 67
read RP240 function key

(DREADF), 67
registration

distance, 218
lock-out, 219

enable, 214
input debounce, 277
single-shot (REGSS), 220
status, profile not possible, 44,

249
status, trigger occurred, 44, 249
trigger interrupt, 128

relational operators, 122, 221, 289,
299, 300

REPEAT, 40, 169, 221, 289
reset, 222

controller (RESET), 222
data pointer (DATRST), 59

resolution
drive, 69
encoder, 81
path tangent axis, 211

responses
beginning-of-transmission

characters, 47
end of line characters, 79

end-of-transmission characters,
79

error, 9
send to both COM ports, 34

restart master cycle counting, 93,
276

revision level, 275
rollover of master cycle position,

202, 272
round-off error, square root, 241
RP240

COM port setup, 71
connection verified, 242
connection verified, 281
data read, 66
data read immediate mode, 67
display binary variable

(DVARB), 73
display integer variable (DVARI),

73
display layout, 65, 74
display numeric variable

(DVAR), 72
display variable, 72
jog mode, 63
LEDs, 65
password, 65
position cursor, 65, 66
read function key, 67
stop key enable/disable, 72
value of key pressed, 64
write text, 74

RS-232C
auto-addressing (ADDR), 39
COM port setup, 71
enable/disable communication,

75
lock COM port, 158

RS-485
auto-addressing (ADDR), 39
COM port setup, 71
disable XON/XOFF, 302
enable/disable communication,

75
lock COM port, 158

run, compiled program (PRUN), 208
run, PLC program (SCANP), 225
run, program (RUN), 222

S
save command buffer on limit, 52
scaling, 16

acceleration, 17, 227
contouring, 18
distance, 18, 228
enabling, 223
examples, 19
master, 18, 229
velocity, 18, 230

scan PLC program (SCANP), 225
scan time of last PLC program, 278
s-curves, 13

acceleration, 36
contouring

path acceleration, 183
path deceleration, 185

deceleration, 38
hard limit deceleration, 151
homing acceleration, 117
homing deceleration, 118

Index 319

jogging acceleration, 138
jogging deceleration, 139
joystick acceleration, 142
joystick deceleration, 143
linear interpolation

path acceleration, 183
path deceleration, 185

soft limit deceleration, 160
security of programs, 130, 156
segment. See contouring. See

compiled motion
select bit, 25
servo

chattering, 237
commanded position, 189, 266
control signal offset, 241
DAC

offset, 241
setting limit, 57
value assignment/comparison,

56
voltage status, 253

data gathering, status, 242, 281
feedback source selection, 231,

256
gain sets

display, 279
enable, 233
saving, 236

gains. See gains
move completion criteria, 244
over-damping, 237
overshoot, 235
position error, 235

max. allowable, 240
position tracking, 237
steady state position error, 235
target distance zone, 244
target velocity zone, 245
target zone mode enable, 244
target zone settling time, 284
target zone settling timeout

period, 245
set contouring axes (PAXES), 189
set data pointer (DATPTR), 58
setting time. See target zone
shift

continuous, 103
application example, 104
position

assignment/comparison, 210
transfer, 273

geared to master, 91
L to R (bit 1 to bit 32), 33
preset, 105

application example, 105
position

assignment/comparison, 210
transfer, 273

R to L (bit 32 to bit 1), 33
status, 102, 257

shutdown the drive, 70, 148, 149
sine, 238
sine wave (virtual master)

amplitude (SINAMP), 239
angle (SINANG), 239
start (SINGO), 239

single step mode, 24, 243
single-line responses, 79
single-shot registration (REGSS),

220

soft limit
deceleration (LSAD), 160
effect on command buffer, 52
enable (LS), 159
negative-direction range

(LSNEG), 161
positive-direction range (LSPOS),

161
s-curve deceleration, 160

software revision level, 275
space (neutral character), 4
square root, 241
stall detect (ESTALL), 88
stall detect backlash deadband

(ESDB), 88
start timer (TIMST), 260
start-up program (STARTP), 243
statistics, controller config. & status,

283
status

ANI position, 40, 248
axis, 43, 248
axis, extended, 45, 250, 251, 252
command error, 12, 252
commanded position, 189, 266

captured, 190, 267
compiled motion memory, 242,

281
DAC voltage, 56, 253
data pointer location, 66, 254
drive fault input, 45, 251
enable input, 261, 262
encoder

master position, 203, 272
encoder failure, 45, 251
encoder position, 196, 271

captured, 191, 268
error, 80, 254, 255
Ethernet address, 265
expansion I/O, 262
Following, 102, 256, 258
free segments, compiled memory,

231, 278
gain set, 279
gains, current active, 258
inputs, 290

enable, 261, 262
programmable, 123

interrupt, 290
labels, 263
limits, 152, 157, 264
master encoder position

captured, 192, 269
memory, 253, 264
moving/not moving, 167
outputs, 175, 176, 177, 265
pause, 242, 281
position capture, 277, 285
position error, 196, 271
program contents, 272
program directory, 253
program execution, 242, 256, 281
settling time, 284
software revision level, 275
system, 241, 281, 282, 290
timer, 285
user, 124, 286, 290
velocity

feedback device, 287
motor, 286

voltage input for ANI, 248

wait, 242, 281
z-channel state, 45, 251

steady state position error, 235
step & direction from encoder

(ENCSND), 78
step & direction from master

encoder (MESND), 167
step through a program, 24, 243
stop

command, 223
effect on program execution, 53
input (INFNCi-D), 53, 128, 223
input (LIMFNCi-D), 155

stop key (RP240), 72
stop timer (TIMSTP), 260
string variable (VARS), 25, 295, 302

clearing, 293
strobe

PLC, 181
thumbwheels, 182
time, 133

subroutine
branch condition, 173
definition, 62, 78
effect of reset, 222
name, 63

substitutions, command values, 5
binary variable (VARB), 293
data assignment (DAT), 57
numeric data read (READ), 217
numeric variable (VAR), 292
RP240 Function Key (DREADF),

67
RP240 numeric data (DREAD), 66
thumbwheel data (TW), 288

subtraction, 29
support, technical assistance, 115
swapping, tasks

controlling, 280
status, 246, 284

syntax, 2, 3
guidelines, 4

system status (SS), 241

T
tangent (TAN), 247
tangent axis, 189
target zone, 43, 249

display actual settling time, 284
enabling, 244
setting the distance zone, 244
setting the timeout period, 245
setting the velocity zone, 245
timeout, 44, 249

task supervisor, 21
tasks. See multi-tasking

direct with prefix (%), 21
teach mode

data assignment (DAT), 57
data pointer (DATPTR), 58
data pointer reset (DATRST), 59
data program (DATP), 58
data program size (DATSIZ), 60
data statement (DATA), 57
data storage (DATTCH), 61
memory requirement, 165

technical support, 115
terminate loop (LX), 162
terminate program execution, 48, 85,

115

320 6K Series Command Reference

thumbwheel
assignment (TW), 288
data inputs (INSTW), 134
strobe outputs (OUTTW), 182

time delay (T), 247
timeout, target zone, 44, 249
timer, 285

assignment of value (TIM), 259
start, 260
stop, 260
value to cause alarm (TIMINT),

259
trace mode, 273, 274
transfer

analog input voltage, ANI
(TANI), 248

axis status (TAS), 248
axis status, extended (TASX),

250, 251, 252
captured commanded position

(TPCC), 267
captured master cycle position

(TPCMS), 270
command error, 252
commanded position of follower

(TPSLV), 273
current actual velocity (TVELA),

287
current commanded velocity

(TVEL), 286
DAC voltage, 253
data pointer location (TDPTR),

254
error status (TER), 254, 255
Ethernet address (TNTMAC),

265
expansion I/O configuration

(TIO), 262
Following status (TFS), 256, 258
free segments (TSEG), 278
input status programmable (TIN),

261
labels (TLABEL), 263
limits (TLIM), 264
master cycle number (TNMCY),

265
master cycle position (TPMAS),

272
master velocity (TVMAS), 287
memory usage (TMEM), 264
net position shift (TPSHF), 273
other input status (TINO), 261,

262
output status (TOUT), 265
PLC scan time, 278
position commanded (TPC), 266
position error (TPER), 271
position of ANI inputs (TPANI),

266
position of captured encoder

(TPCE), 268
position of captured master

encoder (TPCME), 269
position of encoder (TPE), 271
position of master encoder

(TPME), 272
position of selected feedback

device (TFB), 256
program (TPROG), 272
program directory (TDIR), 253

program execution status (TEX), 256
revision level (TREV), 275
servo gain set (TSGSET), 279
servo gains (TGAIN), 258
servo settling time (TSTLT), 284
statistics (TSTAT), 283
system status (TSS), 281, 282
timer (TTIM), 285
user status (TUS), 286

translation mode, 275
transmitting message strings, 300
trigger inputs

active level, 131
debounce, 124

if interrupt inputs, 277
I/O bit pattern, 6
position capture, 128, 190, 191,

192, 193, 267, 269, 270
status, 277, 285

programmed
GOWHEN function, 276
restart master cycle counting,

276
status, 102, 257

programmed functions, 127, 154
registration, 128, 214, 218
status, 123, 261

trigonometric operators, 198, 214,
238, 292

troubleshooting. See Programmer's
Guide
axis status, 248
axis status, extended, 250
controller statistics, 283
enable input status, 261, 262
error messages, 9
Following status, 256, 258
identify bad command, 12
system status, 241
technical support, 115

truncation
acceleration/deceleration, 17, 227
distance, 19, 228, 229
velocity, 18, 230

U
uncompile a compiled profile

(PUCOMP), 212
unconditional looping, 150, 158

compiled, 201
units of measurement, 2, 16, 224
UNTIL, 40, 169, 221, 289
user fault, 128, 155, 178
user status, 124, 286, 290

basis for gosub, 173
definition (INDUST), 125

V
value substitution, command fields, 5
variables, 24

binary, 290
display on RP240, 73
writing, 301

clearing (VARCLR), 293
conversion between numeric and

binary, 296
indirect, 292
integer, 294

display on RP240, 73
writing, 301

numeric, 292
display on RP240, 72
teach data, 57, 62
writing, 301

string, 295
writing, 302

velocity, 290
assignment, 291

actual, 297
commanded, 296

change on-the-fly, 51, 164
feedback gain (SGV), 237
feedforward gain (SGVF), 237
final (compiled motion), 298
jog, high, 139
jog, low, 140
master

assignment/comparison, 298
transfer, 287

maximum, based on pulse width,
212

maximum, follower axis
(steppers), 92

scaling (SCLV), 223, 230
target zone, 245

voltage
ANI input, 40, 248
DAC voltage, 56, 253
offset (servo), 241, 253

voltage range for ANI inputs, 42

W
WAIT, 40, 169, 299

compared to GOWHEN, 113
status, 242, 281

WHILE, 40, 169, 170, 299
windup, integral gain, 235
work coordinate system, 184, 198,

213
write, 25, 300

binary variable, 301
integer variable, 301
message, 300
numeric variable, 301
RP240 text, 74
string variable, 302

X
x-center point, 187, 188
x-coordinate, 199, 213
x-endpoint, 186, 187, 188, 200
XON/XOFF, enable & disable, 302

Y
y-center point, 187, 188
y-coordinate, 199, 213
y-endpoint, 186, 187, 188, 200

Z
z-channel, 121
zero absolute position after homing,

116
zero master cycle position, 94

9.#6HULHV#&RPPDQGV — Functional Grouping

Alarm Events
INTHW
INTSW
TIMINT

Assignment &
Comparison
A
AD
ANI
AS
ASX
D
DAC
DAT
DPTR
DREAD
DREADF
ER
FB
FS
IN
INO
LIM
MOV
NMCY
OUT
PANI
PC
PCC
PCE
PCMS
PE
PER
PMAS
PSHF
PSLV
READ
SEG
SS
SWAP
TIM
TRIG
TW
US
V
VAR
VARB
VARI
VARS
VEL
VELA
VMAS

Branching –
Conditional
ELSE
IF
NIF
NWHILE
REPEAT
UNTIL
WHILE

Branching –
Unconditional
GOSUB
GOTO
JUMP
L
LN
LX
PLN
PLOOP

Command Buffer
Control
COMEXC
COMEXL
COMEXR
COMEXS
GOWHEN

Communication
Interface
[
]
ADDR
BAUD
BOT
E
ECHO
EOL
EOT
ERRBAD

ERRDEF
ERRLVL
ERROK
LOCK
NTADDR
NTMASK
PORT
READ
RESET
TNTMAC
WRITE
WRVAR
WRVARB
WRVARI
WRVARS
XONOFF

Contouring
DEF
END
MEMORY
PA
PAA
PAB
PAD
PADA
PARCM
PARCOM
PARCOP
PARCP
PAXES
PCOMP
PEXE
PL
PLC
PLIN
POUT
PPRO
PRTOL
PRUN
PTAN
PUCOMP
PV
PWC
TDIR
TMEM

Controller
Configuration
AXSDEF
CMDDIR
DRFEN
EFAIL
ENCCNT
INDUSE
INDUST
KDRIVE
MEMORY
NTADDR
PULSE
SFB
TIO
TNTMAC
TREV
TSTAT

Data Storage
DAT
DATA
DATP
DATPTR
DATRST
DATSIZ
DATTCH
DPTR
TDPTR
TW

Display
(status)
TANI
TAS
TASF
TASX
TASXF
TCMDER
TDAC
TDIR
TDPTR
TER
TERF
TEX
TFB
TFS
TFSF

TGAIN
TIN
TINO
TINOF
TIO
TLABEL
TLIM
TMEM
TNMCY
TNTMAC
TOUT
TPANI
TPC
TPCC
TPCE
TPCME
TPCMS
TPE
TPER
TPMAS
TPROG
TPSHF
TPSLV
TREV
TSCAN
TSEG
TSS
TSSF
TSTAT
TSTLT
TSWAP
TTASK
TTIM
TTRIG
TUS
TVEL
TVELA
TVMAS

Drive Config.
DRES
DRFEN
DRFLVL
DRIVE
KDRIVE

Encoder
EFAIL
ENCCNT
ENCPOL
ENCSND
ERES
ESDB
ESK
ESTALL
FB
MEPOL
MESND
PCE
PCME
PE
PER
PESET
PME
PMECLR
SFB
TFB
TPCE
TPCME
TPE
TPER
TPME

Error Handling
ER
ERRBAD
ERRLVL
ERROR
ERRORP
TCMDER
TER
TERF

Following
ANIMAS
FFILT
FGADV
FMAXA
FMAXV
FMCLEN
FMCNEW
FMCP
FOLEN
FOLK
FOLMAS

FOLMD
FOLRD
FOLRN
FOLRNF
FPPEN
FSHFC
FSHFD
FVMACC
FVMFRQ
GOWHEN
NMCY
PCMS
PMAS
PSHF
PSLV
SCLD
SCLMAS
TFS
TFSF
TNMCY
TPCME
TPCMS
TPMAS
TPSHF
TPSLV
TRGFN
TVMAS
VMAS

Homing
HOM
HOMA
HOMAA
HOMAD
HOMADA
HOMBAC
HOMDF
HOMEDG
HOMV
HOMVF
HOMZ
IN
INFNC
LIM
LIMFNC
LIMLVL
TIN
TLIM

Inputs
ANI
ANIEN
ANIFB
ANIMAS
ANIRNG
DRFEN
DRFLVL
IN
INDEB
INEN
INFNC
INLVL
INO
INPLC
INSELP
INSTW
LIM
LIMEN
LIMFNC
LIMLVL
TIN
TINO
TINOF
TIO
TLIM
TRGFN
TRGLOT
TRIG
TTRIG

Interrupt to
Program
ONCOND
ONIN
ONP
ONUS
ONVARA
ONVARB

Jogging
INFNC
JOG
JOGA
JOGAA
JOGAD

JOGADA
JOGVH
JOGVL
LIMFNC

Joystick
ANI
ANIEN
ANIRNG
INFNC
JOY
JOYA
JOYAA
JOYAD
JOYADA
JOYAXH
JOYAXL
JOYCDB
JOYCTR
JOYEDB
JOYVH
JOYVL
JOYZ
LIMFNC
TIO

Limits
(End-Of-Travel)
INFNC
LH
LHAD
LHADA
LIM
LIMEN
LIMFNC
LIMLVL
LS
LSAD
LSADA
LSNEG
LSPOS
TLIM

Loops
L
LN
LX
PLN
PLOOP

Motion
A
[A]
AA
AD
[AD]
ADA
C
D
[D]
GO
GOWHEN
^K
K
MA
MC
MOV
PSET
PESET
S
V
[V]

Motion
(Compiled)
FOLRNF
GOBUF
PCOMP
PEXE
PLN
PLOOP
PLN
PLOOP
POUT
PRUN
PUCOMP
SEG
TSEG
VF

Motion (Linear
Interpolated)
D
GOL
PA

PAA
PAD
PADA
PV
SCLD

Motion
(S-Curve)
AA
ADA
HOMAA
HOMADA
JOGAA
JOGADA
JOYAA
JOYADA
LHADA
LSADA
PAA
PADA

Multi-Tasking
% (Task I.D.)
LOCK
SWAP
TASK
TSKAX
TSKTRN
TSWAP
TTASK

Operators
(Bitwise)
&
|
^
~
<<
>>

Operators
(Logical)
AND
NOT
OR

Operators (Math)
=
()
+
-
*
/
SQRT

Operators
(Other)
!
@
;
$
#
'
. (period)
"
\
[
]

Operators
(Relational)
=
>
>=
<
<=
<>

Operators (Trig)
ATAN
COS
PI
RADIAN
SIN
TAN

Outputs
OUT
[OUT]
OUTALL
OUTEN
OUTFNC
OUTLVL
OUTP
OUTPLC

OUTTW
POUT
TIO
TOUT

PLC Program
EXE
PEXE
PLCP
SCANP
TSCAN

Power-Up
Execution
RESET
STARTP

Program Debug
Tools
#
ANIEN
BP
HELP
INEN
OUTEN
STEP
TCMDER
TRACE
TRACEP
TRANS

Program
Definition &
Execution
DATP
DEF
DEL
END
ERASE
ERRORP
EXE
INFNC
INSELP
MEMORY
ONP
PEXE
PLCP
RUN
SCANP
SEG
STARTP
TDIR
TEX
TMEM
TPROG
TSEG
$

Program Flow
Control
BP
BREAK
C
ELSE
GOSUB
GOTO
GOWHEN
HALT
IF
JUMP
L
LN
LX
NIF
NWHILE
PS
REPEAT
T
TRACEP
UNTIL
WAIT
WHILE

Registration &
Position Capture
INFNC
PCC
PCE
PCME
PCMS
RE
REG
REGLOD
REGSS

TPCC
TPCE
TPCME
TPCMS
TRGLOT
TRIG
TTRIG

RP240
DCLEAR
DJOG
DKEY
DLED
DPASS
DPCUR
DREAD
DREADF
DREADI
DRPCHK
DSTP
DVAR
DVARB
DVARI
DWRITE

Scaling
SCALE
SCLA
SCLD
SCLV
SCLMAS

Servo
CMDDIR
DAC
DACLIM
FB
SFB
SGAF
SGENB
SGI
SGILIM
SGP
SGSET
SGV
SGVF
SMPER
SOFFS
STRGTD
STRGTE
STRGTT
STRGTV
TDAC
TFB
TGAIN
TSGSET
TSTLT

Timer
TIM
TIMINT
TIMST
TIMSTP
TTIM

Variables
DVAR
DVARB
DVARI
DWRITE
VAR
VARB
VARCLR
VARI
VARS
VCVT
WRVAR
WRVARB

	Introduction
	Description of Format
	Syntax -- Letters and Symbols
	Syntax -- General Guidelines
	Syntax -- Command Value Substitutions
	Programmable I/O Bit Patterns
	Programming Error Messages
	S-Curve Accel/Decel Profiling
	Units of Measure and Scaling

	Operators
	Command Descriptions
	Commands - A
	Commands - B
	Commands - C
	Commands - D
	Commands - E
	Commands - F
	Commands - G
	Commands - H
	Commands - I
	Commands - J
	Commands - K
	Commands - L
	Commands - M
	Commands - N
	Commands - O
	Commands - P
	Commands - R
	Commands - S
	Commands - T
	Commands - U
	Commands - V
	Commands - W
	Commands - X

	6K Command List, alphabetical
	Commands by Functional Group
	ASCII Table
	6K vs. 6000 Programming Differences
	Technical Assistance

